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Table Caption 

Table 3.1  Phosphate tetrahedral sites in phosphate glass and A/P-ratio.  

Table 3.2  Fluorescence intensity ratio of 5D0→
7F2 to 5D0→

7F1 transition of Eu3+ in 

matrix glasses (silicate, phosphate, phospho-silicate and glass cullet) doped with 1 mol% 

Eu2O3 and quenched in air. 

Table 3.3  IR band assignments in the range 500–1600 cm-1 for (Cullet+Eu)–xP2O5 glass 

samples doped with 1 mol% Eu2O3 and quenched in water. 
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Figure Caption 

Figure 1.1  Pearl oyster farming process and shell waste.  

Figure 1.2  Production process of glass showing cullet recycle and generation of glass 

polishing sludge.  

Figure 2.1  A shell of Pinctada vulgaris and its cross section showing prismatic layers 

and nacre layers. 

Figure 2.2  Microstructure of calcitic prism (CP) layer. GL is a growth line among parallel 

growth lines. OM are inter-prismatic organic membranes.  

Figure 2.3  X-ray diffraction pattern. (a) CP powdered sample. (b) Calcium carbonate 

from ICSD powder diffraction file database. Peaks indicate calcite phase. 

Figure 2.4  Thermal decomposition of prismatic layer and calcium carbonate reagent. (a)  

Weight loss of CP powdered sample and CaCO3 reagent (inset). (b) Five weight losses of CP 

powdered sample (magnified). 

Figure 2.5  Thermal   decomposition of prismatic layer and CaCO3  reagent. (a) 

Exothermic reaction of CP powdered sample. (b) Exothermic reaction of CaCO3 reagent. 

Figure 2.6  Excitation and emission spectra of as-grinded and heated CP powdered 

samples. 

Figure 2.7  Shell of Pinctada vulgaris after being cleaned from oceanic living organism. 

(a) Outer side of shell shielded by CP layers irradiated by daylight (left side) and commercial 

UV LED (right side). (b) and (c) Close up of ventral side of shell under daylight and 

commercial UV LED irradiations, respectively. The circles show areas where the brownish 

CP layers turn to red whereas pale white unchanged. 

Figure 2.8  An inner side of shell (Pinctada vulgaris). (a) Inner shell irradiated by 

commercial UV LED (left side) and daylight (right side). (b) and (c) Area 1 and 2 
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respectively, that turn to pale blue and red, under commercial UV LED irradiations. 

Irradiated area size is ~1 mm. 

Figure 2.9  Emission spectra of CP powdered sample and inner CP layer. (a) Emission 

spectrum of CP powdered sample excited at 405 nm. (b) Emission spectrum of inner CP 

layer on the area 2 in the Figure 2.8(c) excited at 404.7 nm. Detection spot size is ~50 µm.  

Figure 2.10  Cross section of shell and CP layers under 404.7 nm irradiation showing 

lamellar pattern formed by red fluorescence and black lamellae. (a) Nacre as inner side of 

shell fully covered by the calcitic prism in the outer side. (b) Area 1 on CP layers showing 

red parallel lines and organic membranes. (c) Area 2 on CP layers. (d) Area 3 on CP layers 

selected for measuring emission from red and black lamellae. Irradiated area size is ~200 

µm–1 mm. 

Figure 2.11  Emission spectra of CP powdered and CP thin cross section sample. (a) 

Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra 

measured on A, B, C and D spots in lamellar pattern of area 3 as shown in Figure 2.10(d). 

Red lamellae are the lamellae occupied by organic substance related porphyrin structure. 

Detection spot size is ~1 µm. 

Figure 2.12  Marked area and Elemental mapping on CP layers. (a) Marked area in CP 

shell sample. The arrows show location of black zone. (b) The marked area, under 404.7 nm 

irradiation, showing the most black and wider zone between red fluorescent zones. (c) 

Calcium map of marked area, showing calcium is not concentrated on the black zone. (d) 

Sulphur map of marked area, showing rich sulphur is concentrated on the black zone than on 

the adjacent area.  

Figure 2.13  Emission spectra of CP powdered and CP thin cross section sample. (a) 

Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra 

measured on E, F, and G points in lamellar pattern as shown in Figure 2.12(b). Detection 

spot size is ~10 µm. 

Figure 2.14  Excitation spectra of extracted liquid and CP powdered. 
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Figure 3.1  Spectra of (cullet+Eu)–35P2O5 (1 mol % Eu2O3, A/P-ratio = 0.53): (a) 

excitation spectrum with 614 nm monitored wavelength and (b) emission spectrum with 

under 393 nm excitation wavelength.  

Figure 3.2  Illustration of local structure around Eu3+ ion in silicate and phosphate 

networks: (a) alkali earth or alkaline earth metal (symbolized as A) sits in the second neighbor 

of Eu3+ ion forming Eu–O–A linkage and (b) phosphorus sits in the second neighbor of Eu3+ 

ion forming Eu–O–P linkage. 

Figure 3.3 Emission spectra of Eu3+ in glass cullet, silicate and phospho-silicate glass 

matrices under 393 nm excitation: (a) emission intensity at 5D0→
7F2 transition for glass 

cullet+Eu matrix is in comparison to silicate glass, (b) emission intensity at 5D0→
7F2 

transition for glass cullet+Eu with 45 mol % P2O5 addition, (cullet+Eu)–45P2O5, is in 

comparison to phospho-silicate glass matrix. The emission intensity of 5D0→
7F1 transition 

has been normalized to a value of 1.0 to compare visually with that of 5D0→
7F2 transition for 

investigated glasses. 

Figure 3.4  Fluorescence intensity ratio of (cullet+Eu)–xP2O5 ( ) glass samples. Range 

of intensity ratio for silicate, phosphate, and phospho-silicate glasses from Table 3.2 are 

pointed by dash lines. Region A: sample composition with A/P-ratio ≤ 1. Region B: sample 

composition with A/P-ratio > 1. The solid line is guide to the eyes. 

Figure 3.5  IR spectra of (cullet+Eu)–xP2O5 glass samples. The spectra indicate the 

presence of pyrophosphate (Q1) and metaphosphate (Q2) groups. The assignments of 

absorption band are summarized in Table 3.3. 

Figure 3.6  Recovery efficiency of Eu3+ dissolved in water in different compositions. 

Region A: sample composition with A/P- ratio ≤ 1. Region B: sample composition A/P- ratio 

> 1, also shown in Figure 3.4. 
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Chapter 1  

General Introduction 

1.1 Background 

Sustainable development has become a priority for the world since science and 

technology’s impact on the environment has been greatly accelerated in the past century. 

There is no doubt that science and technology have increased human capacity to extract 

natural resources through industrial developments, but they have not fully offered parallel 

and similar insight into how these resources can be returned to their environment or how they 

could be entered into a new cycle of extraction, processing and use. Many of the resources 

extracted from nature are used in unsustainable activities and ended up as waste. The waste 

causes a complex effect on the environment such as, climate change, energy crisis, resource 

scarcity, and pollution. For these reasons, sustainable development invokes technology to 

integrate environmental sustainability as its component to be applied in industrial systems. 

The better it is integrated with the industrial system, the lower the effect on the environment 

can be. 
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Several strategies have been introduced to organize environmental components of 

technology in industries such as zero waste, clean production, and industrial ecology. Zero 

waste and clean production aim to phase out generation and use of toxic chemicals and 

materials in the production process by redesigning products and manufacturing methods. In 

other words, zero waste and clean production look at internal industry improvement to 

eliminate the inputs of toxic substances into the process chains. Meanwhile, industrial 

ecology strategy takes a macro level perspective on closing the loop of production flow in 

inter-industry. Implementation of industrial ecology requires a fundamental shift from one-

way industrial system to circular system model. In circular system, the waste is exchanged 

in inter-industry either as a resource or as a part of input materials.  

Inter-industry cooperation for waste recycling purposes is, however, considered 

beneficial not only because of the high importance of environmental protection but also waste 

recycling networks in many cases have further (economic or technical) advantages over 

internal process chains of industry [1]. Therefore, industrial waste remains a focus of interest 

in a sustainable industrial development. Waste sector is being managed to contribute to the 

improvement of industrial redesign and to the connection to industrial recycling networks. 

Much attention should be devoted in the waste sector such as intensive research to 

characterize and recover potential value of waste. By acknowledging its potential value, the 

waste can be valorized as functional materials that may benefit for internal process chains as 

well as waste recycling networks with inter-industry. 

The scope of this thesis is characterization and recovery of valuable matters contained 

in industrial wastes: shell waste and glass-polishing sludge. These wastes are present in 
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considerable volume in pearl oyster farming companies and in glass industries, respectively. 

Optical characterization was utilized to investigate properties of valuable matter-containing 

wastes that allow them to be designed in a particular purpose according to their native 

properties towards functional materials. Recovery will mean valuable matter recovery, for 

example, attempting to extract fluorescent matter from the shell or to separate rare earth 

elements from glass-polishing sludge. 

1.1.1 Pearl oyster farming and shell waste  

Pearl oysters are members of the phylum Mollusca and belong to the class Bivalvia. 

Bivalve mollusks are distinguished by having two shells (two valves) and a soft body. They 

appear to grow best in clear water that free from large amounts of sediment. They are widely 

distributed throughout Persian Gulf, Red Sea, Mediterranean Sea and throughout the Indo-

Pacific as far as Japan and Australia. Life cycle of pearl oyster in pearl oyster farming is 

shown in Figure 1.1. Baby oysters, called spat, are born in hatcheries of oyster farm and 

grown in tanks at the pearl oyster farms. They are matured in baskets in ocean waters after 

they are 60 days old. After they have grown stronger spending 2–3 years in the water, they 

are large enough to withstand grafting, a surgically implanting an artificial nucleus (irritant) 

into the tissue of a pearl oyster. Then, an irritant is inserted into the mature ovary tissue 

around which lustrous nacre is formed. The oysters are then returned to the water by stringing 

them on net pocket panel or placing them in oyster baskets suspended from rafts. The pearl 

oysters should be allowed to rest in very calm waters for about 40 days after grafting before 

they are inspected because that is when most deaths or nucleus rejections occur. During the 

post grafting culture, the pearl exterior forms over time and fluctuates with water temperature 
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and other conditions. It usually takes about 1½–2 years to form a pearl with sufficiently thick 

nacre 0.8–0.12 in or (2–3 mm) to harvest. The oysters are left suspended for 1–2 years 

depending on the desired finished diameter of the pearl. The pearls are carefully cut out of 

the oyster's flesh and separated from the shell. The extracted pearls are processed for sale and 

wasted shells are traditionally recycled to be jewelry, buttons and other decorative items and 

ornamentation.  

Nowadays, by the application of technology, wasted oyster shells have been 

investigated to be recycled with various functions such as, calcium resource [2], gas 

absorbent [3], etc. Also, bivalvia shells have been used extensively as successful bio-

monitors recording their life history and information of environmental changes preserved 

through structural, morphological, and chemical changes within the shell [4, 5]. 

In Uwajima city, southwestern part of Ehime prefecture, Japan, number of pearl 

culturing companies are 607 with total production of pearls reached 24,051 kg (24 tons) [6]. 

It is estimated that producing 1 gram of pearl will produce 30 gram of shell wastes. Research 

and development is needed to find sustainable way to recycle the wasted shells or to recover 

valuable matter towards functional materials. In this thesis, the shell was characterized to 

acknowledge the properties of shell specially origin and distribution of fluorescence matter. 

The fluorescence matter distribution might be an indication of certain condition of the pearl 

oyster during growth period for example, sea environment and climate change, metabolism 

of the pearl oyster and quality level of the pearl in the shell. 
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Figure 1.1 Pearl oyster farming process and shell waste
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1.1.2 Rare earth-containing glass-polishing sludge and metallurgical slags 

Glass has wide range of applications and uses depending on its source of raw 

materials. Soda lime glasses are for container glasses, tableware and flat glass. The crystal 

tableware, TV screens and display screen equipment are made of lead glasses. The 

borosilicate and aluminosilicate glasses are for making glass fibers, wool insulation, 

ovenware, thermo flasks and for scientific and optical apparatus.  

The total world production of optical glass is about 20,000 tons/year [7]. Optical glass 

used for optical equipment includes a large quantity of rare earth elements for improving its 

optical characteristic. Lanthanum-containing glass has a high refractive index and a low 

dispersion, and it is therefore very suitable for the manufacturing of lenses. Special optical 

glass for use in lenses of cameras, microscopes, binoculars or microscopes can contain more 

than 40 wt% of La2O3 while some optical glasses contain Y2O3 and Gd2O3, in addition to 

La2O3 [7]. Rare earth elements are vital components not only for glass technology but also 

for green technology. However, their natural reserves are only concentrated in few countries 

and their supplies are strictly delimited. Moreover, they have hardly effective substitutes, low 

recycling rate, and unsustainable primary mining [8]. Therefore, exploring rare earth 

elements from secondary resources such as industrial waste is necessary in order to maintain 

their sustainability. 

Production process of optical glass involves series of stages. Each stage has its own 

input, out-put and there is possibility of waste generation. For example, glass-polishing 

sludge with glass particles are waste generated from mechanical and chemical polishing 

stage.  
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Figure 1.2 Production process of glass showing cullet recycle and generation of glass polishing sludge.
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Because of optical glass composition, the glass particles might contain rare earth elements. 

However, the rare earth elements are always found in low concentration due to incorporating 

of wastes from other stages of process chains. In this case, glass-polishing sludge brings not 

only rare earth-containing glass particles but also contaminant such as cerium and alumina 

particles from hydrolysis of poly(aluminum chloride) as a flocculant of glass-polishing 

slurry. This issue is also found in metallurgical slag, an industrial waste from metal 

production process.  

Rare earth-containing metallurgical slags are reported in many metal productions. For 

instance, in iron-making process with magnetite ore containing monazite ores as feeds, 3–9 

% of rare earths report to slag [9], and fluoride-type iron ores containing greater than 7.5 % 

of rare earth elements end up in slag [10]. Likewise, red mud, by-product of alumina 

production, contains 0.1–1 % of rare earth elements [11, 12]. Even though their 

concentrations are very low, in fact, these slags are present in considerable volumes. As 

consequence, the total amounts of trapped rare earth elements in the slags are large enough 

and might be a promising secondary resource of rare earth elements.  

Despite their low concentration in industrial waste, rare earth elements preferentially 

unite with slag due to their higher chemical affinity into oxygen rather than into metal alloys 

such as in the case of recycling spent batteries by pyrometallurgical process. In an 

investigation of slag system SiO2–CaO melted with spent Ni-MH batteries, it was revealed 

that almost all rare earth oxides from the batteries are selectively precipitated in the solid 

phase of SiO2–CaO–Re2O3 and separated from metal alloys [13]. Similarly, a number of 

systematic slag composition SiO2–CaO–MgO and CaO–CaF2 have been investigated and 
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found that composition of 35CaO–65CaF2 (wt %) delivered the best separation between Ni-

Co alloys and high concentrated rare earth oxides that are accumulated in the slag [14]. Low 

concentration and a tendency of rare earth elements to accumulate in slag system bring about 

less economic value to recover the elements by pyrometallurgical process. Meanwhile, 

hydrometallurgical process needs large consumption of chemicals and releases new chemical 

residues that are harmful for environment. In order to make efficient recovery, an idea comes 

up that the rare earth elements in slag system are required to concentrate in such a solid phase 

that solubility of rare earth into acid increase [7]. A recent study related to this manner dealt 

with recycling of Nd–Fe–B magnet [15]. The study revealed that, in the slag system Al2O3–

CaO–MgO–P2O5–SiO2, rare earth elements show strong affinity into a certain phase called 

britholite phase (silico–phosphates crystallites) then forming solid rare earth-rich phases. It 

was believed that rare earths enriched in this phase would be easy to recover.  

In this thesis, rare earth element-containing glass particles from glass-polishing 

sludge are characterized to estimate effect of phosphate addition after pyrometallurgical 

process. On the basis of our previous research revealing composition condition of P2O5 to 

coordinate with rare earth ions in phospo-silicate glass system, we hypothesized in this 

present investigation that rare earth elements preferentially coordinate with phosphate rather 

than with silicate in multi-component system of glass particles. Then, by controlling 

phosphate composition, the rare earth element in the glass can be recovered without acid 

treatments.  
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1.2 Purpose and construction of this study 

The main objectives of this thesis are characterization of shell waste, Pinctada 

vulgaris from pearl oyster farming and recovery of rare earth elements from glass-polishing 

sludge.  

Several experiments were arranged to achieve the objectives. Fluorescence 

spectroscopy was utilized to characterize properties of substance or elements contained in 

the sample, then followed by thermogravimetric / differential thermal analysis (TG/DTA), x-

ray diffraction and fourier transform infrared (FTIR) spectroscopy, scanning electron 

microscopy / energy dispersive spectroscopy (SEM/EDS) and inductively coupled plasma-

mass spectroscopy (ICP-MS).  

Characterization of pearl oyster shell is aimed to locate the distribution of 

fluorescence matter and identify the presence of organic substances, composition, and 

elements composed the shell. Extraction of fluorescent matter was conducted by using acid 

treatments and chromatographic column. Then, we confirm the fluorescent matter by 

identifying excitation and emission spectra and compare to spectra of porphyrin. Details of 

experimental procedures, results and discussion of these experiments are presented in chapter 

2.  

Recovery of rare earth elements incorporated with glass particles from glass-polishing 

sludge are conducted by melting the rare earth element-containing glass particle with P2O5 

addition, and then leached into water. A series of P2O5 concentrations were introduced to rare 

earth-containing glass particles. The effect of P2O5 addition upon recovery of rare earth 

elements was investigated by utilizing fluorescent spectroscopy and inductively coupled 
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plasma-mass spectroscopy (ICP-MS). Details of experimental procedures, results and 

discussion of these experiments are presented in chapter 3. Chapter 4 is general conclusion 

of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

References 

[1]. Posch A (2010) Industrial Recycling Networks as Starting Points for Broader 

Sustainability‐Oriented Cooperation. Journal of Industrial Ecology. 14(2):242-257. 

[2]. Onoda H, Nakanishi H (2012) Preparation of calcium phosphate with oyster 

shells. Natural Resources. 3(2):71. 

[3]. Jung J, Yoo K, Kim H, Lee H, Shon B (2007) Reuse of Waste Oyster Shells as a 

SO2/NOx Removal Absorbent. Journal of Industrial and Engineering Chemistry-

Seoul. 13(4):512. 

[4]. Nuñez JD, Laitano MV, & Cledón M (2012) An intertidal limpet species as a 

bioindicator: Pollution effects reflected by shell characteristics. Ecological 

Indicators. 14(1):178-183. 

[5]. MacFarlane GR, Markich SJ, Linz K, Gifford S, Dunstan RH, O'Connor W, Russell 

RA (2006) The akoya pearl oyster shell as an archival monitor of lead 

exposure. Environmental Pollution. 143(1):166-173. 

[6]. http://web-japan.org/atlas/nature/nature_fr.html, 1995. 

[7]. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Pontikes Y (2015) Towards zero-

waste valorisation of rare-earth-containing industrial process residues: a critical 

review. J Clean Prod 99:7–38. 

[8]. Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: Focus on 

international markets and future strategies. Resour Policy 38:36–43. 

http://web-japan.org/atlas/nature/nature_fr.html


14 

 

[9]. Kim CJ, Yoon HS, Chung KW, Lee JY, Kim SD, Shin SM, Lee SJ, Joe AR, Lee SI 

Yoo SJ (2014) Leaching kinetics of lanthanum in sulfuric acid from rare earth element 

(REE) slag. Hydrometallurgy 146:133–137. 

[10]. Zheng X, Lin H (1994) Mineralogy and flotation of rare-earth-bearing barium 

fluorophlogopite. Miner Eng. 

[11]. Ochsenkühn-Petropulu M, Lyberopulu T, Ochsenkühn KM, Parissakis G (1996) 

Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chem 

Acta 319:249–254. 

[12]. Tsakanika LV, Ochsenkühn-Petropoulou MT, Mendrinos LN (2004) Investigation of 

the separation of scandium and rare earth elements from red mud by use of reversed-

phase HPLC. Anal Bioanal Chem 379:796–802. 

[13]. Tang K, Ciftja A,Van Der Eijk C, Wilson S, Tranell G (2013) Recycling of the rare 

earth oxides from spent rechargeable batteries using waste metallurgical slags. J Min 

Metall Sect B Metall 49:233–236. 

[14]. Müller T, Friedrich B (2004) Development of a CaO-CaF2 -slag system for high rare 

earth contents. Molten slags fluxes and salts 449–454.  

[15]. Elwert T, Goldmann D, Schirmer T, Strauß K (2014) Affinity of rare earth elements 

to silico-phosphate phases in the system Al2O3-CaO-MgO-P2O5-SiO2. Chemie Ing 

Tech 86:840–847. 

 



15 

 

 

Chapter 2  

Optical characterization of fluorescent matter in 

prismatic layers of Pinctada vulgaris shell 

2.1 Introduction 

Optical properties of molluscan shells such as luminescence (phosphorescence and 

fluorescence) and iridescent color have attracted interest of scientists for long time. The 

structure of molluscan shell plays important role of absorbing, transmitting and reflecting 

light. Some mollusks can produce fluorescence, and their shells selectively transmit and 

absorb some of the light [1, 2]. Other mollusks such as Gastropoda and Bivalvia are unable 

to produce fluorescence but their structural shells express iridescent colors. The shell 

generally constitutes of nacre layers in inner side and prismatic layers in outer side (Figure 

2.1). Iridescent color mostly appears on the nacreous layers. Several investigations have been 

done to reveal this rainbow color on the nacre layers. For instance, in the nacre of 

Gastropoda, Haliotis glabra, the regular stack structure brings about a series of color such 

as violet, green and red due to interference of light [3]. Helcion pruinosus has typical 
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structure only at particular spots with bright green color on the nacre. The green color comes 

from the light reflected by a layered quarter-wave stack embedded approximately 50 µm 

below outer surface and tilted by approximately 24o [4]. Likewise, Pinctada margaritifera 

has strong iridescent color shining on the nacre caused by diffraction of light on the high 

groove, smooth and fine structure [5].  

Meanwhile, prismatic layer does not demonstrate iridescent color. Unlike nacreous 

layers with their structure relatively regular, prismatic layers compose of irregular and 

polygonal columns of calcite crystal, and are separated by inter-prismatic organic membranes 

[6, 7]. As the outer part of shell, prismatic layers contact directly to severe condition, such as 

seawater and other oceanic living organisms. In consequence, their surface become rough, 

coarse, and cannot create optical interference or diffraction effects. In fact, many organic 

substances occupy prismatic layers, for example, sulphur amino acids and conchiolin [8-10]. 

These proteinous substances might include melanins, pyroles, and porphyrins [11] as 

fluorescent compounds. These compounds are abundantly found in prismatic layers of 

Pinctada vulgaris well known as Persian lingah oyster [12]. Porphyrins are recognized as 

fluorophores with high intense fluorescence because have extensive system of electron 

transitions called Soret band (380–500 nm) and Q-bands (500–750 nm) [13]. Thus, optical 

properties of prismatic layers of Pinctada vulgaris would be fluorescence due to the presence 

of porphyrin. However, as far as we know, there are no studies well explaining about the 

distribution of fluorescent matter in the prismatic layers of Pinctada vulgaris. Most of the 

studies are classifying the proteineous substances by extracting prismatic layers.  
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Figure 2.1 A shell of Pinctada vulgaris and its cross section showing prismatic layers and nacre layers. 
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The purpose of this work is to study the distribution of fluorescent matter in the 

prismatic layers of Pinctada vulgaris by fluorescence microspectroscopy. We also need to 

confirm the fluorescent matter by identifying excitation and emission spectra and compare 

them to spectra of porphyrins. Characterization of prismatic layers was also conducted to 

identify the presence of organic substances, composition, and phase of calcium carbonate as 

the main element of prismatic layers. Finally, we extract fluorescent matter using acid base 

extraction and chromatographic column. 

2.2 Experimental Methods 

Materials used in this study were shells of Pinctada vulgaris cultivated in Uwajima, 

Ehime prefecture, Japan. The shells were cleaned from other oceanic living organisms, 

immersed in purified water at 40oC in an ultrasonic cleaner for 5 hours to eliminate seawater 

contaminants, and dried at 60oC in a drying chamber for about 30 minutes.  

The prismatic layers were irradiated using a commercial UV LED enabling us to 

distinguish red fluorescent layers. The red flourescent layers were picked up and separated 

from nacreous layer then ground to be powder with a diameter of ~100 µm. The powdered 

samples were examined using XRD, TG-DTA, and spectrophotometer. 

Thin section samples were made by cutting the shell perpendicular to its surface from 

the dorsal to the ventral side and then embedded into resin. The samples were polished with 

alumina powder and continued with 1 µm diamond slurry until reached ~0.1 mm thickness. 

Afterward, the thin samples were ultrasonically cleaned in purified water at 40oC for 1 hour 

to eliminate the remaining diamond slurry. These thin sections were used for microstructure 

observation, elemental mapping, and fluorescence spectroscopy. The thin section prepared 
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for microstructure observation was etched in 5 vol% hydrochloric acid for 5 seconds to reveal 

growth lines and inter-prismatic membranes. 

The SEM-EDS experiments were carried out using JEOL JSM-6510 LV with an 

Oxford X-max 50 detector. The working voltage is at 15–20 kV and the specimen current is 

between 0.8–2 nA for 6 hours.  

Powdered samples were characterized by X-ray diffraction (D38742, PANalytical) 

using Cu Kα irradiation operated at 45 kV and 40 mA. The scanning rate was 0.2o/s in the 2θ 

range of 10–90o. Phase identification was made by searching the ICSD powder diffraction 

file database. 

TG-DTA (TG-DTA8120, Rigaku) allows us to observe the thermal decomposition of 

calcium carbonate as well as organic matters contained in the prismatic layers. It was 

operated in the temperature range of 25–850oC for prismatic powder with 20 mg at a heating 

rate of 10oC/min. Heat flow and weight loss were recorded during heating process. The 

results were compared to the decomposition of calcium carbonate reagent (99.5%). 

Excitation and emission spectra of prismatic layer were measured by a 

spectrophotometer (F-7000, Hitachi) with a wavelength resolution of 1 nm. It was operated 

at scanning rate 240 nm/min with photomultiplier tube voltage of 400 V. Then, the excitation 

spectrum of powdered sample was refered to determine excitation wavelength for 

fluorescence microspectroscopy.  

A fluorescence microscope (IX70, Olympus) equipped with a mercury lamp (404.7 

nm) and a CCD detector (Spectra-Pro 300, ACTON research) was used to determine 

emission spectra from specific detection spots on the shell and the thin cross section of shell 
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samples. The mercury lamp (404.7 nm) was chosen because its emission line lies near to the 

wavelength of maximum absorption of prismatic layers. By setting up the arrangement of 

objective lens magnification and slit, it enabled us to select emission from 1–50 µm detection 

spots.  

To extract fluorescent matter, a shell should be cleaned from any oceanic living 

organism stuck on its surface. Shell layers (prismatic layers) were selected under UV light 

using commercial UV LED, coarsely broken and powdered. 2 gr powdered shell was added 

in 4 mL HCl in small beaker and they are stirred for about 10 minute and separated solution 

from precipitate in centrifuge machine. A chromatographic column was used to extract 

fluorescent matter in acid solution, and then methanol was used to exude fluorescent matter 

from chromatographic column. These processes were conducted at room temperature. 

2.3 Results and Discussion 

2.3.1 Microstructure of prismatic layers 

Figure 2.2 shows the cross section of prismatic layers polished and etched in 

hydrochloric acid. The image reveals growth lines (GL) transecting inter-prismatic organic 

membranes (OM). The inter-prismatic membrane is an envelope composed of organic 

substances [14] and the growth lines are alternations of rich mineral and rich organic zones 

[15]. 

2.3.2 Calcitic prismatic layers 

Figure 2.3(a) shows the X-ray diffraction pattern of powdered sample from prismatic 

layer. Each peak well agrees with the peak of a PDF card (01-085-1108) as shown in Figure 
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2.3(b). Therefore, it can be determined that phase of calcium carbonate in prismatic layer is 

calcite. We use the name of calcitic prismatic (CP) layer hereinafter.  

 

Figure 2.2 Microstructure of calcitic prism (CP) layer. GL is a growth line among parallel 

growth lines. OM are inter-prismatic organic membranes. 

  

Figure 2.3 X-ray diffraction pattern. (a) CP powdered sample. (b) Calcium carbonate from 

ICSD powder diffraction file database. Peaks indicate calcite phase. 
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2.3.3 Thermal decomposition of prismatic layers 

Figure 2.4(a) shows DTA curves of heat flow and weight loss of both (CP) layer and 

calcium carbonate reagent with 99.5% purity. Five weight losses and three exothermic events 

were detected in CP powdered sample due to thermal decomposition positioning in 

temperature ranges 25–190oC, 190–383oC, 383–512oC, 512–670oC, and 670–850oC (Figure 

2.4(b)). The first weight loss (25–190oC) was attributed to loss of absorbed water. The second 

to the fourth weight losses corresponding to exothermic reactions of I, II, and III (Figure 

2.5(a)) started from 190oC and ended at 670oC, were attributed to burn out of organic 

substances. Loss of weight in temperature range of 670–800oC was the decomposition of 

CaCO3 into CaO and CO2. This result supports other investigations about the thermal 

decomposition of organic substances in prismatic layer of molluscan shells [16]. In 

comparison to calcium carbonate reagent without organic content, thermal decomposition 

shown in Figure 2.5(b) did not show any exothermic reactions after loss of water content at 

25–190oC and before the decomposition of CaCO3 at 700–800oC. Through this experiment, 

total organic substances in CP of Pinctada vulgaris can be estimated about 7.1 %. This 

amount is close to the highest organic content ever reported in granular prism of Entodesma 

navicula, ~ 7.4 % [17]. 

2.3.4 Excitation and emission spectra of prismatic layers 

Figure 2.6 shows the excitation and emission spectra of as-grinded and heat-treated 

CP powdered samples. There is a strong absorption band at 350–460 nm with a peak 

wavelength of 402 nm. There are also three weak bands with peak wavelengths at 506, 542, 

and 564 nm. The emission spectrum excited at 402 nm shows three peaks of 621, 652, and 
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681 nm. The CP powdered sample heat treated up to 383oC after the first exothermic reaction 

(I) as shown in Figure 2.5(a) showed no emission spectra. 

The red fluorescent matter naturally occurred in many molluscan shells is a 

fluorophore called porphyrin [18]. It is well understood that absorption bands of porphyrin 

posses two distinct bands [19]. The first band is due to an excitation of electron from the 

ground state to the second excited state (S0→S2) called Soret band at 380–500 nm, and the 

second bands are excitation from the ground state to the first excited state (S0→S1) called Q-

bands consisting of several weak bands between 500–750 nm [19]. The Soret and Q-bands 

might be shifted depending on insertion of metal ion into the macrocycle molecules, and the 

fluorescence emission intensity might be changed depending on peripheral substituents on 

the porphyrin ring [20]. For example, insertion of Co, Ni, and Cu ion on the central part of 

porphyrin result in blue shift of the Soret bands, and insertion of Mn(II) and Zn(II) promote 

red shift in the Soret band  and decrease the number of Q bands [13]. 

Compared to the excitation wavelength of CP powdered sample, higher energy state 

occurred in the strong absorbance in the range of 350–460 nm with a peak wavelength of 

402 nm, slightly shifted to the blue region, and lower energy state consists of three weak 

bands ranging between 500–600 nm. The excitation and emission spectra of our sample 

closely correspond to the spectra of uroporphyrin that has a 405 nm peak of Soret band and 

four Q-bands in the range of 500–580 nm, and three peaks of emission spectra at 610–620, 

640–650, and 670–680 nm [21]. The presence of porphyrin in Pinctada fucata shell 

especially in the prismatic layers has been also reported and specifically identified as 

uroporphyrin I [9].  
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Figure 2.4 Thermal decomposition of prismatic layer and calcium carbonate reagent. (a)  

Weight loss of CP powdered sample and CaCO3 reagent (inset). (b) Five weight losses of CP 

powdered sample (magnified). 
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Figure 2.5 Thermal decomposition of prismatic layer and CaCO3  reagent. (a) Exothermic 

reaction of CP powdered sample. (b) Exothermic reaction of CaCO3 reagent.  
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Figure 2.6 Excitation and emission spectra of as-grinded and heated CP powdered samples. 
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2.3.5 Distribution of fluorescent matter 

Figure 2.7 shows the outer surface of shell is fully shielded by CP layer. The 

distribution of fluorescent matter is demonstrated on the outer and inner surfaces of the shell, 

and inside CP layers. Under daylight irradiation shown in Figures 2.7(a) and 2.7(b), most of 

the outer CP layers appeared brownish and some areas appeared pale white. However, when 

the outer CP layers were irradiated using a commercial UV LED, most of the brownish layers 

turned to red with fluorescence on almost over the surface whereas some of the pale white 

area remained pale white as shown in Figure 2.7(c). Figure 2.8 shows the appearance of the 

inner side of the shell both inner CP layers and nacre. The inner CP only occupies the edge 

and ventral side of shell while nacre covers large area on the center. When the inner CP layers 

and nacre were irradiated using a commercial UV LED, some area in the inner CP layers 

show red fluorescence (Figure 2.8(a)) and few do not show (Figure 2.8(b)), while nacre turns 

to pale blue (Figure 2.8(a)). In order to confirm whether this fluorescent matter contains 

porphyrin as observed in the CP powdered sample, the emission spectrum of the inner CP 

layers was compared to the emission spectrum observed from CP powder sample at an 

excitation wavelength of 405 nm. We used the excitation wavelength of 404.7 nm on a 

mercury lamp as an excitation light in the fluorescence microspectroscope because this 

wavelength is within the range of the Soret band (350–425 nm).
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Figure 2.7 Shell of Pinctada vulgaris after being cleaned from oceanic living organism. (a) Outer side of shell shielded by CP 

layers irradiated by daylight (left side) and commercial UV LED (right side). (b) and (c) Close up of ventral side of shell under 

daylight and commercial UV LED irradiations, respectively. The circles show areas where the brownish CP layers turn to red 

whereas pale white unchanged.  
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Figure 2.8 An inner side of shell (Pinctada vulgaris). (a) Inner shell irradiated by commercial UV LED (left side) and daylight 

(right side). (b) and (c) Area 1 and 2 respectively, that turn to pale blue and red, under commercial UV LED irradiations. 

Irradiated area size is ~1 mm. 
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To minimize deviation of the excitation wavelength measured by spectrophotometer, 

CP powdered sample was excited at 405 nm close to the excitation wavelength 404.7 nm 

used in a fluorescence microspectroscope. Then, the emission spectrum of CP powdered 

sample (405 nm excitation) is referred to find the consistency of emission wavelength of both 

samples; inner CP layers and thin section CP layers.  

Figure 2.9 shows the emission spectrum selected from the red fluorescence (area 2) 

on the inner CP layers (Figure 2.8(c)). The three emission peaks have consistent wavelengths 

with a powdered sample. This indicates that red fluorescence emission on the area 2 is also 

due to porphyrin.  

Figure 2.10 shows the distribution of fluorescent matter inside CP demonstrated on a 

thin cross section sample taken from ventral side of shell (Figure 2.10(a)). Under 404.7 nm 

light irradiation, the CP layers emit red fluorescence and only some CP layers show pale 

blue. The fluorescent matter dominates every CP layer transecting several organic 

membranes (Figures 2.2, 2.10(b) and 2.10(c)). It lies over, under and between each other 

forming lamellar pattern consisting of red and black parallel zones (Figure 2.10(d)). It is 

necessary to monitor fluorescence emission spectra in the red and black lamella since 

compositional alternation may derive to the intensity modulation of red fluorescence. We 

select area 3 (Figure 2.10(d)) because the thickness between red and black lamellae is large 

enough to magnify and record the emission by a fluorescence microspectroscope. 
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Figure 2.9 Emission spectra of CP powdered sample and inner CP layer. (a) Emission 

spectrum of CP powdered sample excited at 405 nm. (b) Emission spectrum of inner CP 

layer on the area 2 in the Figure 2.8(c) excited at 404.7 nm. Detection spot size is ~50 µm.  
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Figure 2.10 Cross section of shell and CP layers under 404.7 nm irradiation showing lamellar pattern formed by red 

fluorescence and black lamellae. (a) Nacre as inner side of shell fully covered by the calcitic prism in the outer side. (b) Area 1 

on CP layers showing red parallel lines and organic membranes. (c) Area 2 on CP layers. (d) Area 3 on CP layers selected for 

measuring emission from red and black lamellae. Irradiated area size is ~200 µm–1 mm.
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As shown in Figure 2.11, emission spectra on the red fluorescent lamella on B and D 

spots appeared into three peak wavelengths namely 628 nm, preceded by 652–653 nm and 

690 nm, slightly shifted to red region compared to CP powdered sample (Figures 2.11(a) and 

2.11(b)). The emission intensity of B and D spots are nearly equal. On the other hand, the 

black lamellae on A and C spots in area 3 (Figure 2.10(d)) have emission wavelengths with 

similar peaks of 627, 650–652, and 687 nm but the emission intensities are relatively lower 

than those of red lamellae (B and D spots). 

2.3.6 Lamellar pattern of fluorescent matter 

Lamellar arrangement in the prismatic shell was formed during the regular growth 

rhythms associated with bio-mineralization of shells. It was initiated by living mollusc (the 

mantle) extended from the shell and secreted immiscible liquids (viscous organic and  

extrapallial fluid) forming polygonal cavities through interfacial tension on viscous organic 

fluid, while extrapallial fluid became spore of calcite crystals filling the polygonal cavities, 

afterwards bio-mineralization started [16]. The mantle proceeded extending and retracting 

movement to create new layers below the previous one [22, 23]. During bio-mineralization, 

organic substances were deposited alternately with calcite crystals, therefore, prismatic layers 

show lamellar arrangement [6] as shown in Figure 2.2 (GL). In prismatic layers of Pinna 

nobilis shell, some elements such as magnesium and sulphur have been detected following 

such lamellar pattern with the alternating zonation of magnesium rich and sulphur rich [24].  

As shown in Figures 2.10(b)–2.10(d), under 404.7 nm irradiation, CP layer displays 

red fluorescence pattern. The pattern appears as a number of red parallel lines transecting 

organic membranes. In higher magnification, it appears as lamella composed of red and black 
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parallel zones stacking each other. The lamellar pattern of red fluorescence is acceptable 

because of following lamellar growth arrangement of calcitic prism of pinctada shells. The 

calcitic prismatic layer, in fact, comprises lamellar arrangement of calcium carbonate and 

organic substances. These lamellae are arranged by interchanging the ratio of calcium 

carbonate and organic substances. For instance, growth lines in lamellar prismatic layers are 

narrow zonations, containing organic substances with much higher concentration than in 

adjacent zones [22]. As shown in Figure 2.11(b), the red parallel zones, B and D points, emit 

light in high intensity of red fluorescence whereas the black zones, A and C points, emit light 

nearly half lower than B and D points’ intensities. Therefore, further observation on the black 

zone with low emission intensity was conducted. We marked the most black and wider region 

on the shell sample as shown in Figures 2.12(a) and 2.12(b). As shown in Figure 2.13(b), the 

emission spectrum of black region (F point) shows similar wavelength profile to the emission 

spectrum of CP powdered sample (Figure 2.13(a)). In other words, porphyrin compound is 

also contained in the black region. However, as shown in Figure 2.12, the emission intensity 

of F point is 10 times lower than that at E and G points, and the F point is recorded by CCD 

camera as a black color zone.  

Elemental mapping analysis, shown in Figures 2.12(c) and 2.12(d), indicate the 

existence of sulphur-rich zone occupied the same region as the black region denoted F point 

in Figure 2.12(b). Point elements analysis was also conducted to quantize the weight percent 

of sulphur element. The result also showed concentrated sulphur element on marked area. On 

this area, sulphur was approximately detected at 0.2 weight %. 
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Figure 2.11 Emission spectra of CP powdered and CP thin cross section sample. (a) 

Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra 

measured on A, B, C and D spots in lamellar pattern of area 3 as shown in Figure 2.10(d). 

Red lamellae are the lamellae occupied by organic substance related porphyrin structure. 

Detection spot size is ~1 µm. 
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Figure 2.12 Marked area and Elemental mapping on CP layers. (a) Marked area in CP shell 

sample. The arrows show location of black zone. (b) The marked area, under 404.7 nm 

irradiation, showing the most black and wider zone between red fluorescent zones. (c) 

Calcium map of marked area, showing calcium is not concentrated on the black zone. (d) 

Sulphur map of marked area, showing rich sulphur is concentrated on the black zone than on 

the adjacent area.  
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Figure 2.13 Emission spectra of CP powdered and CP thin cross section sample. (a) 

Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra 

measured on E, F, and G points in lamellar pattern as shown in Figure 2.12(b). Detection 

spot size is ~10 µm. 
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Figure 2.14 Excitation spectra of extracted liquid and CP powdered. 
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This amount is comparable to the amount of sulphur elements ever been reported at 

0.31 weight % in Pinctada shell [24]. Our elemental mapping analysis is in agreement with 

previous results as follows. The presence of sulphur-rich zones has been also confirmed in 

the prismatic layer of Pinctada margaritifera [8] and Pinna nobilis [24]. Other possibility is 

that porphyrin concentration affects the modulation intensity. However, we cannot firmly 

conclude. We can only suggest that the red-black lamellar fluorescence pattern corresponds 

to porphyrin-rich and sulphur-rich zones. 

Extraction process using HCl and chromatographic column were succesful to absorp 

fluorescent matter liquid. Absorption band similarity between the extracted liquid and the 

CP powdered sample (as-grinded) shown in Figure 2.14 indicates that porphyrin-containing 

organic substances didnot change due to acid treatment during the process of extraction. 

2.4 Conclusion 

Organic substances contained in CP layers of Pinctada vulgaris show red 

fluorescence under the irradiation of a 404.7 nm line of mercury lamp. The organic 

substances contain porphyrin compound derivatives identified with the absorption bands. 

The distribution of red fluorescence inside CP layers shows lamellar pattern. This 

distribution follows CP layer lamellar arrangement and was supposedly formed during the 

shell growth process. The lamellar pattern of red fluorescence consists of red and black 

parallel zones. We found that red and black parallel zones are modulation of emission 

intensity corresponding to sulphur distribution. Extraction process using acid treatments and 

chromatographic column obtained extracted liquid containing porphyrin derivatives.
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Chapter 3  

Rare Earth Recovery from Soda Lime Silicate 

Glass Cullet by P2O5 Addition 

3.1 Introduction 

Rare earth elements are essential because they are widely utilized for developing high 

technology applications such as fuel cells, high capacity batteries, permanent magnet for 

wind power generation, etc. [1, 2]. They are also critical because their natural reserves are 

only concentrated in few countries and their supplies are strictly delimited. Moreover, they 

have hardly effective substitutes, low recycling rate, and unsustainable primary mining [3]. 

Intensive studies are being conducted to face this crucial situation including possibilities to 

recover rare earth elements from industrial waste residue, for example, red mud as a residue 

of smelting bauxite [4, 5], and glass-polishing sludge as a waste of glass industries [6, 7]. 

Spent glass-polishing slurry wasted from optical glass industries is of interesting 

industrial waste because its polishing sludge contains relatively high concentrated rare earth 

elements. The polishing sludge comprises Ce originated from polishing powder, glass 



44 

 

particles released from ground and polished glass surface, and alumina particles hydrolyzed 

from flocculants. The glass particles from ground and polished glass surfaces (i.e. LCD glass, 

optical glass, colorant in glass, etc.) might contain notable rare earth elements such as Yb, 

La, Gd, Er, Y, and Eu [8, 9]. Unfortunately, recycling of glass-polishing sludge only focuses 

on Ce recovery. In Ce recycling process, glass particles including other elements are 

discarded through chemical dissolution, filtration, or selective precipitation process [6–8, 10, 

11]. As consequence, the valuable rare earth elements are wasted along with their hosts.  

Therefore, after separating from Ce, glass particles containing rare earth elements 

need further processes. Common process to separate rare earth elements from glass host is 

hydrometallurgical process. However, these processes need large consumption of chemicals 

and releases harmful residues. For example, recovery of rare earth elements from spent 

optical glass used NaOH followed by HCl in leaching process [11]. Recovery of Ce from 

spent glass polishing powder used H2C2O4 and H2SO4 [6], NaOH [7] and HNO3/H2O2 

mixture [8] to dissolve the powder. Most studies have tended to focus on efficient recovery 

of Ce while no one, to the best of our knowledge, has studied concerning recovery of rare 

earth element-containing glass particles in glass-polishing sludge with combination of 

pyrometallurgical and hydrometallurgical process without chemical treatments.  

In this work, rare earth element-containing glass was melted with monoammonium 

phosphate (NH4H2PO4) addition. Monoammonium phosphate was utilized to attract rare earth 

element from silicate to phosphate networks in glass host. By controlling phosphate 

composition, rare earth element in the glass can be leached into water. Initially, rare earth 

element was doped into glass cullet (soda-lime-silicate) to make simulated rare earth 
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element-containing glass particles. Then, the rare earth element-doped glass cullet was 

melted with a series of monoammonium phosphate concentrations then followed by leaching 

treatments. With phosphate addition, the glass cullet might be experimentally approached as 

a phospho-silicate glass system. Then, we exploited chemical behavior of phosphate in the 

matrix of silicate network: its high ionic field strength [12] to attract the rare earth element, 

its tendency of forming discrete anion complexes [13, 14] to cluster the rare earth element 

apart from silicate, and its low durability [15, 16] to leach phosphate with rare earth element 

using water. To study effect of phosphate addition to rare earth element, photoluminescence 

spectroscopy was employed to record emission spectra of rare earth element, especially if the 

glass samples show lack of transparency. Therefore, europium was selected as a dopant into 

glass cullet and its sensitive emission spectrum was utilized to estimate the local vicinity of 

europium ions whether it becomes in coordination with phosphate. Europium ions that 

coordinate with linear phosphate units are expected to occur within the series composition of 

phosphate. In that condition, solubility of rare earth element into water will enhance. Finally, 

europium was recovered from glass sample by leaching into water.  

The objective of this study is to recover rare earth element from soda lime silicate 

glass cullet by utilizing phosphate. Photoluminescence were employed to obtain emission 

spectra, which are affected by surrounding structures. Then, inductively coupled plasma mass 

spectroscopy (ICP-MS) and fourier transform infrared (FTIR) spectroscopy were used to 

detect amount of europium elements dissolved in water, and phosphate structures of glass 

samples, respectively. This study introduces rare earth element-containing glass particle in 
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glass polishing sludge as a potential secondary resource of rare earth elements and offers 

recovery process without acid treatments. 

3.2 Experimental Methods 

We obtained soda lime silicate glass cullet from a glass company with chemical 

composition confirmed by SEM-EDX (JEOL JSM-6510 LV): 70.12SiO2, 0.04Fe2O3, 

1.06Al2O3, 14.34Na2O, 0.51K2O, 6.86MgO, 7.07CaO (mol %). Eu3+-doped glass cullet was 

made as simulated rare earth element-containing glass particle, and labelled as cullet+Eu. 

First, appropriate amount of glass cullet was ground in alumina mortar, thoroughly mixed 

with 1 mol % Eu2O3, and then melted using a platinum crucible in a high temperature electric 

furnace at 1500 oC in air atmosphere for about 2 hours, and followed by quenching in water 

for cooling to room temperature. Europium was selected because it has relatively simple 

energy levels [17], its ground 7F0 and excited 5D0 levels are non-degenerated, and its 

luminescence spectra show very sensitive to small changes in its local chemical vicinity. 

Through analyzing fluorescence emission spectra, we are able to estimate the changes in local 

chemical vicinity of Eu3+ ion due to monoammonium phosphate addition. It also allows us 

to measure small amount of sample either transparent or opaque conditions.  

The addition of monoammonium phosphate is intended to attract rare earth utilizing 

high ionic field strength of phosphate [18–20], and simultaneously attract cations from 

silicate networks [21] such as Na+, K+, Ca2+, Mg2+. Sodium and potassium ions might lead to 

formation of linear phosphate chains, while calcium and magnesium ions can serve as ionic 

cross-links between two different linear phosphate chains. Cullet+Eu was reground and 

mixed with raw material of phosphate, NH4H2PO4. This sample was labelled as (cullet+Eu)–
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xP2O5, with x is the amount of P2O5 in mol %. For analyzing phosphate network chains or 

structures, it is also preferable to express the composition with molar ratio of alkali and 

alkaline earth metal oxides to phosphate, A/P-ratio [19]. The ratio shows a condition to form 

phosphate networks such as ultraphosphate (Q3) cross-link network, metaphosphate (Q2), 

pyrophosphate (Q1), and orthophosphate (Q0) as shown in Table 3.1.  

  (1) 

where A is the alkali metal, and A’ is the alkaline earth metal. x values are 15, 17, 22, 25, 30, 

35, 40, 45 and corresponding A/P-ratio are 1.62, 1.39, 1.01, 0.85, 0.67, 0.53, 0.43, 0.34, 

respectively. 

Table 3.1 Phosphate tetrahedral sites in phosphate glass [22] and A/P-ratio.  

Ideal 

Composition 

(mol%): 

100P2O5 50A2O – 50P2O5 67A2O – 33P2O5 75A2O – 25P2O5 

A/P-ratio : 0 1 2 3 

PO4 

Tetrahedral 

Unit : 

    

[Qn] : Q3 Q2 Q1 Q0 

 : Bridging oxygen  O- : Non-bridging oxygen  A : Alkali ion  n : number of bridging oxygen 

Small amount of the admixture was melted at 1400–1500 oC in air atmosphere by 

employing single hot thermocouple technique [23], and subsequently quenched in air for 

cooling to room temperature. Two thermocouple wires (0.25 mm dia.) made of Pt and Pt-
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13% Rh (R Type) were joined manually. The admixture was placed at the bend side of the 

joined wire. By regulating voltage supply, heat was supplied through thermocouple wire. 

Temperature of the wire gradually increased and heated the sample up to its melting 

temperature. After melting, voltage supply was stop quickly then the sample was normally 

quenched in air. A 0.01 gram of glass sample obtained from this technique takes about 3 

minutes for cooling to room temperature. The accuracy of temperature measurements is 

estimated as ± 2–3 oC. Using hot thermocouple technique enables us to control carefully 

voltage supply for slowly increasing temperature especially when NH4H2PO4 started to 

decompose to NH3, P2O5 and H2O at 180–250 oC. It also enables us to check visually when 

the sample started to melt and minimize melting time by holding it in melting condition for 

about 5 minutes.  

In order to understand the local structure of (cullet+Eu)–xP2O5 system, it is necessary 

to understand the structure of simpler glass system from which the (cullet+ Eu)–xP2O5 system 

is derived. For that reason, several glasses system were prepared and doped with 1 mol % 

Eu2O3 using the same technique. They are silicate glasses 39.6A2O–59.4SiO2 (mol %), 

phosphate glasses, 49.5A2O–49.5P2O5 (mol %),  and phospho-silicate glasses, 9.9A2O–

29.7P2O5–59.4SiO2 (mol %),  with A is  Li, Na, or K. Raw materials used to synthesize these 

glasses are reagent-grade of 99.9% Li2CO3, 99.8% Na2CO3, 99.5% K2CO3, and 99.9% 

LiPO3, 99.9% NaPO3, 99.9 % KPO3, 99.9 % SiO2, and 99.0% NH4H2PO4 and 99.9% Eu2O3.  

(Cullet+Eu)–xP2O5 with x = 15, 22, 35, and 45 mol % were selected for leaching tests. 

The sample was placed in an alumina crucible, preheated at 180 oC for 22 hours in an 

electrical muffle furnace to decompose NH4H2PO4 to NH3, H2O and P2O5. Then it was heated 
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up to a melting temperature of 1500 oC in air atmosphere using a platinum crucible for an 

hour in a high temperature electric furnace. After melting, these samples were quenched in 

water for cooling to room temperature.  

To study effect of phosphate addition to rare earth element, absorption and 

transmittance spectroscopy technique can not be applied because the glass samples are 

opaque. Therefore, photoluminescence spectroscopy was employed to record emission 

spectra for estimating changes in local chemical vicinity of rare earth ions in glass system 

after introducing P2O5. Local chemical vicinity of Eu3+ ion affects symmetry of the ligand 

field Eu3+ ion and Eu-O covalency [24–26], and it may reveal to which network unit the rare 

earth ion coordinates with. Emission spectra of europium were analyzed especially 5D0→
7F1 

and 5D0→
7F2 transition probabilities (Figure 3.1). The 5D0→

7F1 and 5D0→
7F2 are allowed 

magnetic dipole transition and forced electric dipole transition, respectively. The 5D0→
7F1 

transition is independent on matrix composition, while 5D0→
7F2 is hypersensitive to the 

covalency and/or structural changes in the local chemical vicinity of the Eu3+ ion [24, 26]. 

The differences in Eu3+ emission spectra from each sample as a function of glass composition 

can be properly described by fluorescence intensity ratio, I-ratio as follows: 

  (2) 

where I (5D0 →
7F1) is the emission intensity of the 5D0 →

7F1 transition, and I (5D0 →
7F2) is 

the emission intensity of the 5D0 →7F2 transition. This ratio is widely used to estimate 

deviation from the symmetry of the ligand field of Eu3+ ion and Eu-O covalency [17, 25, 27–

30]. Excitation and emission spectra of samples were recorded by photoluminescence 

I − ratio =  
I ( D0

5 → F2
7 )

I ( D0
5 → F1

7 )
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spectrometer (Hitachi, F-7000), working in the UV-visible range of 350–750 cm-1. It was 

operated at scanning speed 240 nm/min, slit width 2.5 nm with photomultiplier tube voltage 

of 400 volt. Emission spectra were measured under monitoring excitation wavelength 393 

nm.  

An infrared spectrophotometer (IR Prestige-21, Shimazu) was used to observe IR 

spectra of glass samples. IR spectra provide information about local structure related to PO4 

and SiO4 tetrahedral groups. The equipment was operated at room temperature in the range 

of 500–1600 cm-1 by using the KBr disc technique. Transmission (%) of IR spectra was 

converted to Kubelka-Munk function intensity unit (arbitrary unit) with the correction of 

powder grain size. 

Powdered samples (<150 µm) were leached using water (ultrapure water, pH 6.8–

7.0) for 96 hours at room temperature. Concentration of rare earth dissolved into water was 

compared to initial concentration of rare earth in the sample to obtain recovery efficiency.  

  (3) 

Initial concentrations of rare earth in the sample were obtained through acid digestion 

treatments using HF (38 wt %) and HNO3 (68 wt %). Both are heated at 200 oC for 4 hours. 

Finally, the sample were leached using HNO3 (3 wt %) for 48 hours at room temperature 

until it was completely dissolved in the solution. Inductively coupled plasma-mass 

spectroscopy (ICP-MS, Varian 820-MS) was used to determine concentration of the rare 

earth element dissolved in acid solution and water with an internal standard technique 

involving the addition of 2 mg/L of Re and Rh. A standard solution (Custom assurance 

% Recovery =  
Concentration of rare earth dissolved in water

Initial concentration of rare earth in sample
×  100 
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standard, Specx CertiPrep) containing 10 mg/L of rare earth elements including Eu was 

diluted from 0.15 to 0.0015 mg/L for composing precise linear line on calibration chart. R–

square value obtained from that linear line is equal to 1.00. 

3.3 Results and Discussion 

3.3.1 Hypersensitive Emission Spectra to Estimate Local Vicinity of Eu3+ Ion  

Photoluminescence was utilized to observe characteristic of excitation and emission 

spectra. Figure 3.1(a) shows excitation spectrum of Eu3+-doped glass cullet with addition of 

phosphate (cullet+Eu)–35P2O5. There are six lines observed in the excitation spectrum. The 

most dominant line appeared at 393 nm. It ascribes to transition originating from the 7F0 

ground state to the 5L6 excited states of Eu3+. Under this excitation line, emission spectrum 

of Eu3+ was recorded as shown in Figure 3.1(b).  

The emission spectrum presents transition bands arising from 5D0 excited states to 7FJ 

(J = 0, 1, 2, 3 and 4) ground states. Emission spectrum in 5D0→
7F1 transition of Eu3+ was 

observed at 593 nm, while the most intense line corresponded to 5D0→
7F2 transition was 

recorded at 614 nm. The band corresponded to 5D0→
7F1 transition presents a magnetic dipole 

nature and its fluorescence intensity is not affected by local chemical vicinity of Eu3+ ion,  

whereas 5D0→
7F2 transition is hypersensitive and is strongly dependent on the local chemical 

vicinity of Eu3+ ion. Therefore, fluorescence intensity of 5D0→
7F1 transition can be 

considered as a standard to compare the relative intensity of the other bands [25]. 

Fluorescence intensity ratio, I-ratios of 5D0 → 7F2 to 5D0 →
7F1 transition for silicate glasses, 

phosphate glasses, phospho-silicate glasses, and glass cullet, were calculated and listed in 

Table 3.2. 
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3.3.2 Fluorescence Intensity Ratio (I-ratio) of Simpler Glass System  

To study the emission spectra of (cullet+Eu)–xP2O5 glass samples, it is necessary to 

analyze and compare to emission spectra of its simpler glass systems. If they show similar 

emission characteristics and corresponding I-ratio with those of simpler glass systems, that 

emission similarity indicates the same degree of their local chemical vicinity.  

In Eu3+-doped silicate glasses, 39.6A2O–59.4SiO2 (mol %) (A = Li, Na, K), I-ratios 

vary upon the variation of modifier ions, and have a tendency to increase for larger ionic 

radius of modifier ions in the order of Li < Na < K (Table 3.2). The dependence of the I-ratio 

on the modifier ions results from a network modifier from alkali ion sat in the second 

neighboring ion of Eu3+ ion and located in a region of non-bridging oxygen of three-

dimensional silicate network [20, 25]. This formation brings about large distortion in local 

chemical vicinity of Eu3+ ions when the network modifier ions are substituted in silicate 

glasses [27]. As a result, their I-ratios depend on composition with wide range from 3.01 to 

3.79 (Table 3.2). 

Unlike Eu3+-doped silicate glasses, I-ratios of Eu3+-doped metaphosphate glasses, 

49.5A2O–49.5P2O5 (mol %) (A = Li, Na, K) are compositional independence. The I-ratios 

slightly change upon the substitution of network modifiers. Metaphosphate glass is made up 

two-dimensional long chains by connecting PO4 tetrahedral units through two bridging 

oxygen.  
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Figure 3.1 Spectra of (cullet+Eu)–35P2O5 glass sample (1 mol % Eu2O3, A/P-ratio = 0.53): 

(a) excitation spectrum with 614 nm monitored wavelength and (b) emission spectrum with 

393 nm excitation wavelength.  
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Table 3.2 Fluorescence intensity ratio of 5D0→
7F2 to 5D0→

7F1 transition of Eu3+ in matrix 

glasses (silicate, phosphate, phospho-silicate and glass cullet) doped with 1 mol% Eu2O3 and 

quenched in air. 

Matrix glass composition 

doped with Eu2O3  (mol%) 

Emission peak (nm) I–ratio** 

I(5D0→
7F2) / I(

5D0→
7F1) 5D0→

7F1 
5D0→

7F2 

39.6Li2O–59.4SiO2  593 615 3.01 ± 0.02 

39.6Na2O–59.4SiO2  594 613 3.62 ± 0.09 

39.6K2O–59.4SiO2 594 613 3.79 ± 0.08 

49.5Li2O–49.5P2O5 593 615 2.54 ± 0.03 

49.5Na2O–49.5P2O5 594 615 2.73 ± 0.03 

49.5K2O–49.5P2O5 594 615 2.58 ± 0.02 

9.9Li2O–29.7P2O5–59.4SiO2 593 614 3.09 ± 0.02 

9.9Na2O–29.7P2O5–59.4SiO2 594 615 3.05 ± 0.02 

9.9K2O–29.7P2O5–59.4SiO2 594 614 3.14 ± 0.02 

Glass cullet* 593 613 3.74 ± 0.02 

(Cullet+Eu)–45P2O5 593 614 3.00 ± 0.02 

*Glass cullet composition: 69.42SiO2–0.04Fe2O3–1.05Al2O3–14.19Na2O–0.51K2O–

6.79MgO–7.07CaO (mol %). 

**Average values of three measurements. 
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Figure 3.2 Illustration of local structure around Eu3+ ion in silicate and phosphate networks: 

(a) alkali earth or alkaline earth metal (symbolized as A) sits in the second neighbor of Eu3+ 

ion forming Eu–O–A linkage and (b) phosphorus sits in the second neighbor of Eu3+ ion 

forming Eu–O–P linkage. 

The modifier ions occupy sites in between these chains, while the rare earth ions 

selectively coordinate with the P=O site (doubly bonded oxygen) [20]. Therefore, emission 

intensity at the 5D0→
7F2 transition of these glasses reflects small distortion in local chemical 

vicinity of Eu3+ ions with increasing ionic radius of alkali ions. As a result, I-ratios varied in 

narrow range of 2.54 to 2.73 (Table 3.2). Illustrations of Eu3+ ion linked to silicate and 

phosphate networks are shown in Figures 3.2(a) and 3.2(b). 

In the phospho-silicate glass system, Eu3+ ion might coordinate with silicate networks 

or phosphate networks. Based on the result of the silicate and phosphate glasses, local 

chemical vicinity of Eu3+ ions will undergo large distortion when they are in coordination 

with silicate networks forming Eu–O–A as shown in Figure 3.2(a). Whereas only slight 

distortion occurs in local chemical vicinity of Eu3+ ions when they are in coordination with 

phosphate networks forming Eu–O–P as shown in Figure 3.2(b). 
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I-ratios of Eu3+-doped phospho-silicate glasses 9.9A2O–29.7P2O5–59.4SiO2 (mol %) 

(A = Li, Na, K) are nearly stable with narrow range of 3.05 to 3.14 (Table 3.2). This result 

shows that local chemical vicinity of Eu3+ ion in the phospho-silicate glasses did not 

experienced large distortion upon the variation of modifier ions. This indicates that the local 

chemical vicinities of Eu3+ ions in the phospho-silicate glasses are different from those of 

silicate glasses. Rather, local chemical vicinities of Eu3+ ions show similar tendency with 

those of phosphate glasses. This tendency most likely indicates that Eu3+ ions coordinate with 

PO4 (Eu–O–P linkage) rather than SiO4 tetrahedral unit. In addition, high ionic field strength 

of phosphate causes Eu3+ ions preferentially coordinate with phosphate networks. This result 

is in good agreement with a previous study dealing with selective coordination of Nd3+ with 

PO4 tetrahedra in the system of 9.9Na2O–29.7P2O5–59.4SiO2 (mol %) [19]. 

Even though containing multi components, Eu3+–doped glass cullet has similar local 

chemical vicinity of Eu3+ ions with the simpler silicate glass, Eu3+–doped 39.6Na2O–

59.4SiO2 (mol %) glass, because their I-ratios are nearly the same. Their emission intensities 

at the 5D0→
7F2 transition are in the same level (Figure 3.3(a)). Likewise, (cullet+Eu)–45P2O5 

(mol %) content has also comparable I-ratios to the Eu3+-doped 9.9Na2O–29.7P2O5–59.4SiO2 

(mol %) glass. Emission intensities at the 5D0→
7F2 transition of these glasses are also in the 

same level (Figure 3.3(b)). 
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3.3.3 Effect of Phosphate Addition upon I-ratio of Eu3+-doped Glass Cullet  

When a series concentration of phosphate, x = 45, 40, 35, 30, 25, 22, 17, 15 mol % 

corresponding to A/P-ratio = 0.34, 0.43, 0.53, 0.67, 0.85, 1.01, 1.39, 1.62,  respectively, were 

introduced into the cullet+Eu system, I-ratios of those glasses system show a trend to level 

off until reach A/P-ratio = 1 (region A, Figure 3.4). In this condition, the I-ratios are 

comparable with that of Eu3+-doped 9.9Na2O–29.7P2O5–59.4SiO2 (mol %) glass, which 

indicates similar local chemical vicinity of Eu3+ ions. When A/P-ratio becomes higher than 

1, I-ratios of those glasses system gradually increase to the range of silicate glasses (region 

B, Figure 3.4). On the basis of fluorescence intensity ratios from previous simpler glass 

samples (Table 3.2), it can be estimated that in the composition of A/P-ratio ≤ 1, the amounts 

of P2O5 are sufficient to attract significant amounts of Eu3+ ions from silicate to phosphate 

networks. PO4 tetrahedral units turn to dominate local chemical vicinity of almost all Eu3+ 

ions, and the local chemical vicinity is most likely the same as simpler phospho-silicate glass 

system. Thus, I-ratios in these compositions (A/P-ratio ≤ 1) are in the same range as simpler 

phospho-silicate glasses (Figure 3.4). Meanwhile, in the composition of A/P-ratio > 1, less 

amounts of P2O5 are unable to attract amounts of Eu3+ ions. Most of the Eu3+ ions remain in 

coordinating with SiO4 tetrahedral units, thus I-ratios increase to the range of silicate glasses 

with increasing A/P-ratio (Figure 3.4). 
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Figure 3.3 Emission spectra of Eu3+ in glass cullet, silicate and phospho-silicate glass matrices under 393 nm excitation: (a) 

emission intensity at 5D0→
7F2 transition for glass cullet+Eu matrix is in comparison to silicate glass, (b) emission intensity at 

5D0→
7F2 transition for glass cullet+Eu with 45 mol % P2O5 addition, (cullet+Eu)–45P2O5, is in comparison to phospho-silicate 

glass matrix. The emission intensity of 5D0→
7F1 transition has been normalized to a value of 1.0 to compare visually with that 

of 5D0→
7F2 transition for investigated glasses.
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Figure 3.4 Fluorescence intensity ratio of (cullet+Eu)–xP2O5 ( ) glass samples. Range of 

intensity ratio for silicate, phosphate, and phospho-silicate glasses from Table 3.2 are pointed 

by dash lines. Region A: sample composition with A/P-ratio ≤ 1. Region B: sample 

composition with A/P-ratio > 1. The solid line is guide to the eyes. 
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3.3.4 The Presence of Metaphosphate and Pyrophosphate Groups  

FTIR spectroscopy was utilized to investigate local structure of samples related to 

PO4 and SiO4 groups. IR spectra are shown in Figure 3.5 with their assignments in Table 3.3. 

The addition of P2O5 into cullet+Eu glass has changed its silicate structure to phospho-silicate 

structure. In the IR spectra of (cullet+Eu)–xP2O5, large and intense bands in 900–1300 cm-1 

(Figure 3.5) correspond to vibrations of Si–O–Si and P–O–P linkages [31-36]. IR spectrum 

for x = 15 mol % P2O5 or A/P-ratio = 1.62 shows intense bands at 918, 1050, and 1123 cm-1 

that are associated to stretching vibration of Si–O (Q3), stretching vibration of Si–O–Si, and 

bending vibration of Si–O (Si–O–Si groups), respectively [31, 32]. Three narrow bands 

peaking at 622, 796, and 1199 cm-1 are assigned as cristobalite-like three-dimensional SiO4 

network [33, 34]. These silicate bands eventually weaken with increasing concentration of 

P2O5 addition (A/P-ratio < 1). On the other hand, weak bands observed in 1000–1100 cm-1 

and 1200–1260 cm-1 become broad and intense bands with increasing concentration of P2O5 

addition (A/P-ratio < 1). The bands in 1000–1100 cm-1 are associated to pyrophosphate 

groups (Q1) [35, 36], and 1200–1260 cm-1 are assigned to asymmetric stretch of PO2 bonds 

of metaphosphate groups (Q2) [35, 37].  
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Figure 3.5 IR spectra of (cullet+Eu)–xP2O5 glass samples. The spectra indicate the presence 

of pyrophosphate (Q1) and metaphosphate (Q2) groups. The assignments of absorption band 

are summarized in Table 3.3. 

 

 

 

 

1600 1400 1200 1000 800 600

Wavenumber (cm
-1
)

K
u

b
el

k
a-

M
u
n

k
 f

u
n

ct
io

n
 i

n
te

n
si

ty
 (

a.
u

.)

x= 45
A/P-ratio = 0.34

1
1
9
9

1
2
0
0

1
1
2
3

7
9
6

x= 15
A/P-ratio = 1.62

6
2
2

1
2
6
0

1
1
0
0

1
0
0
0 9
1
8

x= 35
A/P-ratio = 0.53

x= 22
A/P-ratio = 1.01

1
0
5
0



62 

 

Table 3.3 IR band assignments in the range 500–1600 cm-1 for (Cullet+Eu)–xP2O5 glass 

samples doped with 1 mol% Eu2O3 and quenched in water. 

Wavenumber, cm-1  Assignments References 

622, 796, 1199 Cristobalite-like network 33, 34 

790–800  Si–O–Si bending 31, 32 

918–940  ʋs (Si–O), Q3 groups 31, 32 

1000–1100 ʋs (PO3) stretch, Q1 chain terminal 35, 36 

1050 ʋs (Si–O–Si) stretch 31, 32 

1100 ʋas (Si–O–P) stretch 35, 36 

1123 ʋas (Si–O), Si–O–Si groups 31, 32 

1200–1260 ʋas (PO2) stretch, Q2 units 35, 37 

 

3.3.5 Recovery of Europium  

Considering Eu3+ ions might selectively coordinate with PO4 tetrahedral units in the 

composition of A/P-ratio ≤ 1, glass samples were selected under this ratio for recovery 

process. Recovery of europium was conducted by leaching into water. Addition of P2O5 to 

recover europium elements shows positive result. Cullet+Eu without P2O5 (x = 0 mol %) 

recovered no europium element, while sample with 15 mol % P2O5 addition can recover 1% 

of total europium concentration (Region B, Figure 3.6). Recovery of europium became more 

efficient with increasing concentration of P2O5 addition. In region A where A/P-ratio ≤ 1, 

recovery efficiency has exceeded 50%, and increased to 97% and reached 100% with 22, 35, 

and 45 mol % P2O5 addition, respectively. 
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Figure 3.6 Recovery efficiency of Eu3+ dissolved in water in different compositions. Region 

A: sample composition with A/P- ratio ≤ 1. Region B: sample composition A/P- ratio > 1, 

also shown in Figure 3.4. 
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3.3.6 Recovery of Eu3+ Increases with the Presence of Metaphosphate Chains  

Low recovery efficiency indicates that addition of P2O5 with concentration lower than 

those of alkali and alkaline earth metals are unable to attract significant amount of Eu3+ ions 

from SiO4 units due to lack of PO4 units forming pyrophosphate and metaphosphate groups 

(Region B). In this condition, I-ratios also show that SiO4 tend to affect the vicinity of Eu3+ 

indicating that  Eu3+ ions remain in coordinating with SiO4 tetrahedral units. In addition, local 

structures are dominated by silicate networks indicated by the presence of Si–O–Si vibration 

and cristobalite-like linkages that have inherently good durability in water [38, 39].  

In region A with A/P-ratio ≤ 1, the concentrations of P2O5 are similar to and higher 

than those of alkali metals and alkaline earth metals. In this condition, metaphosphate chains 

started to grow with increasing concentration of P2O5 and coordinated with significant 

amount of Eu3+ ions as can be estimated from the I-ratio. Because metaphosphate chains have 

weak durability in aqueous solutions [40], recovery efficiency of Eu3+ ions into water reaches 

more than 50% (Region A, Figure 3.6). When A/P-ratio = 0.34, metaphosphate chains 

dominated the phospho-silicate structures, recovery efficiency achieved 100%. 

3.4 Conclusion 

The rare earth element was successfully recovered from simulated glass particles. 

Eu3+ ions were likely to coordinate selectively with PO4 tetrahedral units rather than SiO4 

tetrahedral units upon the addition of P2O5 in the simulated glass. When concentration of 

P2O5 is similar to and higher than those of alkali and alkaline earth metals in glasses (A/P-

ratio ≤ 1), PO4 tetrahedral units in metaphosphate chains attract significant amounts of Eu3+ 
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ions. As consequence, 50–100% of europium is recovered. This recovery efficiency might 

be promoted by solubility of metaphosphate (Q2) chains that started to exist in the local 

structure of glass sample in the composition with A/P-ratio ≤ 1. This study offers recovery 

process for rare earth contained in glass host such as glass particles in glass-polishing sludge. 

P2O5 addition and water leaching can be a promising process to recover rare earth elements 

from glass-polishing sludge. This research contributes to the sustainability of rare earth 

elements. Further studies need to be conducted before applying this process in industrial 

application such as increasing recovery efficiency while reducing the amounts of P2O5 

addition. Since raw material of phosphate is finite resource, we also consider in our further 

research to recycle phosphate from the leaching solution in sustainable recycling systems. 
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Chapter 4 

General Conclusion 

In this thesis, industrial wastes namely shell waste and glass-polishing sludge were 

investigated to acknowledge their potential values that can be recovered and recycled. 

Characterization of the wastes would enable them to be valorized towards functional 

materials.  

Chapter 1 reviews pearl oyster farming process and production process of glass, and 

the waste generated from that processes. It also presents potential values of the waste and 

some issues in particular dealing with recycling processes of rare earth elements. The main 

objectives of this thesis are characterization of shell waste, Pinctada vulgaris from pearl 

oyster farming and recovery of rare earth elements from glass-polishing sludge.  

Chapter 2 describes optical characterization of fluorescent matter from wasted shell 

of Pintada vulgaris shells. Fluorescent matter occupies at the outer part of the shell, namely 

prismatic layers. Microstructure of prismatic layers is dominated by calcite (CaCO3) with 

vertical organic membranes and growth lines transecting the organic membranes. Organic 

substances are present in prismatic layers as appear in weight loss and exothermic reactions 
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of TG-DTA curve of powdered prismatic layers. The fluorescent matter might be originated 

from these organic substances and it forms black-red lamellar pattern under UV irradiation 

in the cross section of prismatic layers. Observation using fluorescence microspectroscopy 

revealed that the black-red fluorescent lamellar pattern is due to emission intensity 

modulation and correspond to sulphur element concentration. The fluorescent matter both in 

prismatic layers and in extracted liquid is originated from porphyrin derivatives-containing 

organic substance.  

Further investigations are necessary to explore deeply about the fluorescent matter 

distribution in prismatic layers. The lamellar fluorescence distribution might be an indication 

of certain condition of the pearl oyster during growth period, for example, sea environment 

and climate change, metabolism of the pearl oyster and quality level of the pearl in the shell.  

Chapter 3 presents the effect of phosphate addition on recovery of rare earth elements 

from glass particles-containing glass-polishing sludge. Recovery of rare earth element from 

glass particles-containing glass-polishing sludge was conducted by melting with 

monoammonium phosphate (NH4H2PO4) addition and then leaching into water. Glass cullet 

doped with rare earth was used as simulated glass particles because it has multi-components. 

By melting with P2O5, however, glass samples became lack of transparency. For that reason, 

europium was selected as dopant in glass cullet and utilized its fluorescence spectra for the 

estimation of local structure around europium ions. Fluorescence intensity ratio of Eu3+, I-

ratio was calculated to estimate local vicinity of Eu3+ ions, whether Eu–O–A or Eu–O–P 

coordination. Addition of P2O5 to the glass cullet system changed glass structure from silicate 

networks to phospho-silicate networks. When phosphate was added into the glass cullet, 
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phosphate with the alkali-alkaline earth metals in glass cullet would form PO4 networks: 

orthophosphate, pyrophosphate, and/or metaphosphate. The effect of P2O5 addition to I-ratio 

of (cullet+Eu)–xP2O5 glass was found in two conditions: A/P ratio > 1 and A/P ratio ≤ 1. I-

ratio of (cullet+Eu)–xP2O5 glasses in the condition A/P ratio > 1 are comparable to the simple 

silicate glass system. Meanwhile, I-ratios of (cullet+Eu)–xP2O5 glasses in the condition A/P 

ratio ≤ 1 most likely indicate the formation of Eu–O–P coordination. IR spectra of 

(cullet+Eu)–xP2O5 glasses indicate the presence of metaphosphate (Q2) chains at A/P ratio ≤ 

1 such as (cullet+Eu)-45P2O5. The presence of the metaphosphate chains increases with 

increasing phosphate content indicated by increasing absorption intensity (1200–1260 cm-1) 

Since metaphosphate chains and Eu–O–P coordination are present in the same condition, A/P 

ratio ≤ 1, it is estimated that metaphosphate chains coordinate with significant amounts of 

Eu3+ ions. The metaphosphate chains in the condition of A/P ratio ≤ 1 might promote 

recovery efficiency of europium due to their weak durability in aqueous solutions. Therefore, 

by controlling A/P ratio ≤ 1, optimum condition can be obtained to recover rare earth 

elements from glass-polishing sludge with high efficiency. 

In conclusion, I believe that these findings will contribute to the internal recycling 

process of pearl oyster farming companies and glass industries as well as the development of 

waste recycling technology inter-industries. In addition, the development of these findings 

should be supported by further intensive investigations to provide and demonstrate best 

practice and progress of converting the industrial wastes towards functional materials.  

 


