
Comparative Study of Explicit Solutions
to Wave Dispersion Equation

Masataka YAMAGUCHI* and Hirokazu NONAKA**

The dispersion equation in the Airy wave theory is a transcendental equation, which usually requires an iterative

technique to obtain a numerically exact solution of wave length for a given wave period and water depth. As an 

alternative, various kinds of approximate and explicit solutions (AESs ) have been proposed. This paper presents the 

results of a comparative study on errors of 30 AESs, including 10 new ones. The conclusions are that in case of the 

AESs valid for a whole range of water depth conditions, one of the AESs proposed in this study has an maximum error 

of around ± 0.0001 %, which is more proper than the others in its accuracy and compactness of solution, and that 

neither of the AESs applicable only to a restricted water depth condition may be recommended for use due to 

inconvenience associated with a restrictive condition.  
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1. Introduction

The relationship between wave length L  and wave period T  associated with water depth h  in the Airy wave 

theory is described by the well-known dispersion relation. Since this is a transcendental equation, an iterative technique 

like the Newton method has been used to obtain a highly accurate estimate of the wave length, that is a numerically 

exact solution for any given wave period and water depth. However, this method is inconvenient to use not only from a 

practical but also from an educational point of view. This is probably the reason why many AESs have been proposed 

to estimate the wave length thus far. In this study, the errors of 30 AESs, including 10 new ones are investigated. As a 

result, an AES to compute the wave length with high level or middle level accuracy respectively is recommended, 

taking account of magnitude of error and compactness of expression.

2. Equation for computation of wave length and numerical method

The relationship between wave length L  and wave period T  associated with water depth h is given as 

follows.
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where subscript ‘0’ means deep water and g  the acceleration of gravity. Eq.(1) is rewritten using the wave numbers 

Lk π2=  and 00 2 Lk π=  as
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khkhhk tanh0 ⋅= (2)

To arrive at a high-accuracy numerical solution to the dispersion relation of Eq.(1), we use a Newton method. Taking 

( ) ( ) 2
00 22 hgTLhhk ππα === (3)

we can replace Eq.(2) with
kh,khkh =⋅=⋅= βββα tanhtanh     (4)

The equation to be used in the computation then becomes:
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where superscript ‘ ' ’ means differentiation and ‘n ’ the n -th iteration. As an initial value, 
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can be employed. Goda[1], [2] recommends using the following equation to avoid the appearance of an inflection point in 

the first equation of Eq.(5) (with ( ) 191020011tanh0 0 .Lh,.,,''f =≈=⋅= ββββ ).

( ) nnnf βαββ coth⋅−= (7)

Alternatively, Eq.(5) can be rewritten to avoid the appearance of an inflection point as:

( ) nnnf ββαβ tanh−= (8)

Numerical computation based on the first equation of Eq.(5) or Eq.(7) or Eq.(8) within the range of 0Lh =10-6 ~1 

(with increment of ( )0LhΔ =10-6) yielded the same answer within 7 or 8 digits, and gave no numerical problems.

3. Explicit equations for approximate computation of wave length and their accuracy

AESs that have been published so far can be divided into 2 groups : I AESs applicable for a full range of water 

depth conditions 0Lh  and II AESs valid for a limited range of 0Lh . Each group can be sub-classified into 

AESs with simple form but lower accuracy and AESs with complicated or lengthy form but higher accuracy. Also, 

AESs of group II  can be separated into i) shallower water use and ii) deeper water use (see Table 1). No AESs of 

group II  for deeper water use have been published. 

For the present study, the numerical computations are conducted for the range of 0Lh =10-4~1 with an increment 

of ( )0LhΔ =10-4. The error of each AES relative to the exact solution ε~  is defined as: 

( ) 1001 ×−= exaa LL~ε (9)

where the subscript 'a' means an approximated wave length, calculated with an AES and the subscript 'exa' means the 

exact wave length, computed numerically with the dispersion relationship of Eq.(1), using the Newton method.

Each of the AESs classified into group I  (valid for all water depths, simple expression, low accuracy) and its 

range of relative error are given below in sequence of increasing accuracy. Any of the cited AESs reduces to the exact 

solution in the limits of deep water ( ∞→α ) and very shallow water( 0→α ) respectively.

Table 1 Grouping of approximate and explicit solutions

Simple, low accuracy Complicated or lengthy, high accuracy 

Newton method
Full range of depth I

Padé approximation

Limited range of depth II Shallower water (i) Deeper water (ii) Shallower water (i)
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1) The Eckart[3] solution (Eckart)

( ) ( ){ } ( ) 21

0

21

00

21

00 tanh2tanhtanh απ LLhLhkLLa ===                      (10)

or

( ) 21
cothααβ == aa hk aa Lk π2= (11)

ε~ =0 5.24 0Lh =0.111 % (12)

The term in parenthesis in Eq.(12) indicates a value of 0Lh  where positive or negative maximum error is produced.

2) The Iwagaki[4] solution (Iwagaki)

( ){ }παααβ 21coth 2121 +⋅=a  (13)

−=ε~ 3.05 0Lh =0.287 3.14 0Lh =0.023 % (14)

3) The Carvlho[5] 14th solution (Carv14)

( ) 4121 −+= ααβa (15)

−=ε~ 2.45 0Lh =0.366 3.28 0Lh =0.068 % (16)

The above AES is named here after the solution number given by Carvlho[5]. The same type of numbering is used 

below. Carvlho[5] collects 17 AESs for which the absolute value of the maximum relative error ranges from 0.012 % to 

5.24 %. As his AESs with higher accuracy are based on successive substitutions of lower AES into the dispersion 

equation, the argument of hyperbolic tangent function becomes more and more complicated with increasing accuracy 

of the AES. In spite of his efforts, the accuracy cannot be labeled high due to the minimum of the maximum relative 

error of 0.012 % in his AESs. For this reason, his AESs with higher accuracy are not attractive but Eq.(15) and the 3 

AESs mentioned below draw attention because of their simple forms.

4) The Fenton and MacKee[6] solution(FM)

( ) mm

a

12cothααβ = m =1.5 (17)

−=ε~ 1.39 0Lh =0.321 1.66 0Lh =0.054 % (18)

5) The Yamaguchi and Nonaka 1st solution(YN1), which is a modified Fenton and MacKee solution 

( ) mm

a

12cothααβ = m =1.485 (19)

−=ε~ 1.52 0Lh =0.315 1.55 0Lh =0.052 % (20)

This is basically the same as Eq.(17), but the power m  is adjusted so that positive and negative maximum errors take 

almost the same absolute value.

6) The Carvlho[5] 9th solution(Carv9)

( )21sinhcoth ααβ ⋅=a      (21)

−=ε~ 1.12 0Lh =0.237 0 % (22)

7) The Guo[7] solution (Guo)

( ){ } mm

a

12exp1 ααβ −−= m =2.4901 (23)

−=ε~ 0.75 0Lh =0.284 0.75 0Lh =0.043 % (24)

Guo[7] gives both m =2.4908 and m =2.4901. The latter value is used here because the positive and negative 

maximum errors are then nearly equal (in an absolute sense).

8) The Yamaguchi and Nonaka 2nd solution(YN2), which is a combination of the modified Fenton and MacKee 

solution Eq.(19) and the dispersion equation Eq.(4). 

Fa βαβ coth⋅= ( ) mm

F

12cothααβ = m =1.378          (25)

−=ε~ 0.73 0Lh =0.029 0.73 0Lh =0.187 % (26)

This aims at improving accuracy in the wave length computation by substitution of the YN1-based estimate into the 

dispersion relationship. The same method is used by Carvlho[5]. The maximum error reduces to nearly half the 

maximum error produced by the FM formula or the YN1 formula. The power m  is adjusted here to obtain almost the 
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same positive and negative maximum errors (in an absolute sense). Repetition of the same procedure complicates the 

computation and is inefficient as it does not significantly improve the result.

9) The Carvlho[5] 5th solution(Carv5)

( )2121coth ααβ α ⋅⋅= .a (27)

−=ε~ 0.21 0Lh =0.278 0.27 0Lh =0.063 % (28)

10) The Carvlho[5] 4th solution(Carv4)

( ) ( ){ }[ ]{ }212141
sinhtanhtanh αααβ ⋅=a                               (29)

−=ε~ 0.12 0Lh =0.198 0.20 0Lh =0.423 % (30)

The Carv5 formula has a simpler form than the Carv4 formula but gives a slightly larger error.

Each of the above-mentioned 10 AESs reduces to the exact solution in the limit of deep water( ∞→α ) or very 

shallow water ( 0→α ) respectively. Figs. 1 and 2 show the relation between the relative error ε~  and 0Lh for all 

of the AESs. The global behavior of the error with 0Lh  in each solution becomes clear from the figures.

The Carv5 formula with its error below 0.3 % in the above-mentioned AESs is recommended for a full range use 

of 0Lh , taking into account the magnitude of error and simplicity of the solution form.

Next, the more highly accurate AESs belonging to group I ( valid for all water depths, complicated or lengthy 

expressions, high accuracy) are classified into 2 families. The first family is based on the first iterative solution of the 

dispersion equation obtained with the Newton method, with one of the AESs 1) to 10) applied as an initial value( as 

proposed by Fenton[8]). The second family is based on using a Padé approximation. Each of the AESs of the first family 

and their range of relative error is written in order of accuracy as follows. Any of the cited AESs reduces to the exact 

solution in the limits of deep water ( ∞→α ) and very shallow water ( 0→α ) respectively. A solution can be written 

as
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11-1) The Fenton[8] solution(Fenton), which is an iterative solution to the Eckart equation Eq.(11)
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Fig. 1 Relation between relative error and 0Lh (1).    Fig. 2 Relation between relative error and 0Lh (2).
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−=ε~ 5.1 10-2
0Lh =0.070 8.4 10-3

0Lh =0.218 %                      (33)

Since the Newton method is the same for all other AESs in this family, the following description is limited to the 

solution for aβ  and the error range. The former takes the same form as the solution mentioned previously, but in 

some cases the power m  is different from the previous result. 

11-2) The Yamaguchi and Nonaka 3rd solution (YN3), which is an iterative solution to the Iwagaki equation Eq.(13).

( ){ }παααβ 21coth 2121 +⋅=a                          (34)

−=ε~ 4.0 10-2
0Lh =0.019 1.2 10-2

0Lh =0.289 %                        (35)

11-3) The Yamaguchi and Nonaka 4th solution (YN4), which is an iterative solution to the Carvlho 14th equation 

Eq.(15).

( ) 4121 −+= ααβa                         (36)

−=ε~ 2.9 10-2
0Lh =0.053 6.7 10-3

0Lh =0.335 %                      (37)

11-4) The Yamaguchi and Nonaka 5th solution (YN5), which is an iterative solution to the modified Fenton and 

MacKee equation Eq.(19).

( ) mm

a

12cothααβ = m =1.434                               (38)

−=ε~ 4.9 10-3
0Lh =0.036 4.9 10-3

0Lh =0.296 %                        (39)

When the Fenton and MacKee[6] equation is used as an initial value, the error ranges from -8.5 × 10-3 to 2.3 × 10-3. The 

accuracy is worse than this Eq.(38)-based approximation. 

11-5) The Yamaguchi and Nonaka 6th solution (YN6), which is an iterative solution to the Carvlho 9th equation 

Eq.(21).

( )21sinhcoth ααβ ⋅=a                                 (40)

−=ε~ 4 10-4
0Lh =0.101 1.4 10-3

0Lh =0.264 %                      (41)

11-6) The Yamaguchi and Nonaka 7th solution (YN7), which is an iterative solution to the modified Guo equation. 

( ){ } mm

a

12exp1 ααβ −−= m =2.445                       (42)

−=ε~ 1.2 10-3
0Lh =0.030 1.2 10-3

0Lh =0.278 %                          (43)

11-7) The Yamaguchi and Nonaka 8th solution (YN8), which is an iterative solution to the Yamaguchi and Nonaka 

2nd equation Eq.(25). 

( ) mm

FFa ,
12cothcoth ααββαβ =⋅= m =1.310                     (44)

−=ε~ 9 10-4
0Lh =0.112 8 10-4

0Lh =0.223 %                        (45)

11-8) The Yamaguchi and Nonaka 9th solution (YN9), which is an iterative solution to the modified Carvlho 5th 

equation.

( )21coth ααβ α ⋅⋅= ma m =1.1965                          (46)

−=ε~ 1.1 10-4
0Lh =0.044 1.1 10-4

0Lh =0.274 %                     (47)

11-9) The Yamaguchi and Nonaka 10th solution (YN10), which is an iterative solution to the Carvlho 4th equation. 

( ) ( ){ }[ ]{ }212141
sinhtanhtanh αααβ =a                        (48)

−=ε~ 7 10-6
0Lh =0.056 4 10-5

0Lh =0.401 %                       (49)

The power m  in 11-4), 11-6), 11-7) and 11-8) is adjusted so that almost the same positive and negative 
maximum errors (in an absolute sense) is obtained. Naturally, the higher the accuracy of an initial estimate is, the 
higher the accuracy of the iterative solution becomes. 

The second family of this first group, which uses a Padé approximation is based on the equations of Hunt [9].

12) The Hunt[9] 5th order approximate solution(Hunt1)

( ) ({ ) }15422 067500864046220652201
−

+++++= αααααα ....hka                (50)

−=ε~ 7.0 10-2
0Lh =0.532 7.8 10-2

0Lh =0.288 %                (51)

13) The Hunt [9] 9th order approximate solution(Hunt2)
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ααα

αααααααα

...

......hka     (52)

−=ε~ 8.2 10-3
0Lh =0.603 5.4 10-3

0Lh =0.324 %                      (53)

The maximum errors in the Hunt1 and Hunt2 formulae are around 0.1 % and 0.01% respectively. The accuracy of 

either of the formulae is not so high compared to any of the iterative solutions by the Newton method given from 11-4)

to 11-9).

Each solution from 11-1) to 13) converges to the exact solution in both limits of 0Lh  as well as the individual 

case from 1) to 10). Fig. 3 illustrates the relation between the relative error ε~  and 0Lh  for the AESs 11-1), 11-2),

11-3), 11-4), 12) and 13), and Fig. 4  for the high-accuracy AESs from 11-5)to 11-9).

Taking account of the positive-negative symmetry of error, accuracy and the compactness of an initial solution, 

we may say that the iterative solution to the Yamaguchi and Nonaka 9th solution (YN9), or the modified Carvlho 5th 

equation is the best of all the candidate AESs for wave length computation.

The AESs of group II (valid for limited ranges of water depth) and their relative error ranges are indicated below. 
Each of these AESs satisfies the long wave condition in the limit ( →0Lh 0). A common characteristic is that with 

0Lh increasing from zero to higher values, the error of each of these AESs either increases to a maximum, followed 

by a drastic decrease, or (the mirror image, see Fig. 5) decreases to a minimum, followed by a drastic increase. The 
value of 0Lh where the maximum (or minimum) error is attained again in the drastic decrease (or increase) is 

indicated with an asterisk ( *
Lh 0 ).

For the sub-group II (i) (simple, low accuracy, valid for shallower water), the results are given below.

14) The Nielsen [10] 1st solution(Niel1)

( ){ }απα 85121 +=hka ≤*
Lh 0 0.192                            (54)

−=ε~ 0.74 0Lh =0.075 0.74
*

Lh 0 =0.192 %                       (55)

15) The Nielsen [10] 2nd solution(Niel2)

( ) ( ){ }221 36011611 ααα ++=hka ≤*
Lh 0 0.401                     (56)

−=ε~ 0.44
*

Lh 0 =0.401) 0.44 0Lh =0.268 %                       (57)

16) The Venezian [11] 1st solution(Vene1)

( )6121 αα −=hka ≤*
Lh 0 0.165                               (58)

−=ε~ 4.8 10-2 *
Lh 0 =0.165 4.8 10-2

0Lh =0.104 %                      (59)
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17) The Wu and Thornton [12] 1st solution(WT1)

⎭
⎬
⎫

⎩
⎨
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⎟
⎠
⎞

⎜
⎝
⎛ ++=

5
1

6
121 αααhka ≤*

Lh 0 0.219                           (60)

−=ε~ 3.4 10-2 *
Lh 0 =0.219 0 →0Lh 0 %                       (61)

The accuracy of the Vene1 or WT1 AESs is fairly good in spite of the simple form of the expressions. Fig. 5

shows the relation between the relative error ε~  of these above 4 AESs and 0Lh . The rapid increase or decrease of 

the error above the critical *
Lh 0  value is obvious.

The simple AESs with low accuracy belonging to group II (ii) which are applicable only to deeper water are

written as follows.

18) The Nielsen [13] 3rd solution (Niel3)

( ){ }αα 2exp21 −+=hka ≥*
Lh 0 0.300                             (62)

−=ε~ 0.55
*

Lh 0 =0.300 0 ∞→0Lh %           (63)

The limiting condition is taken as 0Lh >0.3. The error drastically increases below the range( 0Lh <0.3) . 

19) The Wu and Thornton [12] 2nd solution(WT2)

( ){ } ( ){ }ααα 84126112exp,121 .

a e.ttthk
−+−=++=  , 19500 .Lh

* ≥            (64)

−=ε~ 2.5 10-2
0Lh =0.252 2.5 10-2 *

Lh 0 =0.195 %                    (65)

The accuracy of the AES is rather high but it has a slightly more complicated form than the other AES. 

Fig. 6  shows the relation between the relative error ε~  of the above AESs and 0Lh . In shallower water, a rapid 

increase of negative error can be seen.

For the sub-group II (i) (complex or lengthy expression, high accuracy, valid for shallower water), the results are 

given below.

20) The You [13] solution (You)

( ) ( ) ( ){ } 213221 94516454311 αααα +++=hka ≤*
Lh 0 0.179                  (66)

−=ε~ 5.4 10-3 *
Lh 0 =0.179) 5.4 10-3

0Lh =0.133 %     (67)

 21) The Olson[14] solution (Olson)

( ) ( ) ( ){
} 186000002265400000713910

000044892000077601401891451311
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2176

543221

.Lh,..
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(68)
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−=ε~ 3 10-5 *
Lh 0 =0.186 3 10-5

0Lh =0.162 %                         (69)

This solution includes the Niel2 solution Eq.(56) and the You solution Eq.(66) in the sense that it adds higher order 

term (in α ) to these AESs. 

22) The Venezian[11] 2nd solution(Vene2)
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(70)

−=ε~ 2 10-4 *
Lh 0 =0.159 6 10-6

0Lh =0.030 %                       (71)

Eq.(70) with its complicated form, has a very high accuracy within its applicability range. If a limit of -0.005 % is 

taken as a critical value of the error, the applicability range of Eq.(70) becomes 0Lh <0.235, which is fairly wide. 

Fig. 7 shows the relation between relative error ε~  based on each of 20), 21) and 22) and 0Lh . Similar 

behavior as in Fig. 5 is found.

The combination of one equation in 14) to 17) or in 20) 

to 22) and any equation of 18) and 19) yields an

approximate solution applicable for wave length

computation for all values of 0Lh . Examples are the

suggestions of Wu and Thornton [12] and You [13]. Wu and 

Thornton [12] use Eqs.(60) and (64) but at the critical

condition of 0Lh =0.2, a discontinuity in the error appears 

at a discontinuity of the estimated wave length. This

discontinuity problem at the connection value of 0Lh  is 

not solved and more attention should be paid to combining 

formula without such discontinuity.

Table 2 gives a summarized list of relative error range for each of the investigated approximate solutions.

4. Conclusions

The conclusions of the present study of 30 AESs to the dispersion relation, may be summarized as follows. Of the 

21 AESs valid for all values of water depth,

the YN9 equation, which is an iterative solution to the modified Carvlho 5th equation

( ){ } ( ){ }aaaaaa hk βββββα 222 tanh1tanhtanh1 −+−+=

( )21coth ααβ α ⋅⋅= ma m =1.1965 02 Lhπα =
   yields a very highly accurate estimate of wave length with an error less than 0.0001% and 

the Carvlho solution Eq.(27) 

( ) 0
21 221coth Lh,.hka πααα α =⋅⋅=

is a simple equation for a quick estimate of wave length with an error from -0.21 % to 0.27 %.

The study of the remaining 9 AESs for either shallower water or deeper water, indicates the following results.

Each of the solutions with complicated or lengthy terms like the Venezian 2nd solution (applicable only in

shallower water) has generally a very high accuracy within its range of applicability but beyond this range, the 

accuracy deteriorates rapidly.

It is not easy to find a consistent formula with high accuracy for all water depths by combining two of these AESs 

(for shallower and deeper water). The problem is the appearance of a discontinuity at the connection point of 
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Table 2 Error range of the investigated approximate solutions.

No. formula relative error % No. formula relative error %

1) Eckart 0 5.24 11-6) YN7 1.2 10-3 1.2 10-3

2) Iwagaki 3.05 3.14 11-7) YN8 9 10-4 8 10-4

3) Carv14 2.45 3.28 11-8) YN9 1.1 10-4 1.1 10-4

4) FM 1.39 1.66 11-9) YN10 7 10-6 4 10-5

5) YN1 1.52 1.55 12) Hunt1 7.0 10-2 7.8 10-2

6) Carv9 1.12 0 13) Hunt2 8.2 10-3 5.4 10-3

7) Guo 0.75 0.75 14) Niel1 0.74
*

Lh 0 0.192

8) YN2 0.73 0.73 15) Niel2 0.44
*

Lh 0 0.401

9) Carv5 0.21 0.27 16) Vene1 4.8 10-2 *
Lh 0 0.165

10) Carv4 0.12 0.20 17) WT1 3.4 10-2 0
*

Lh 0 0.219

11-1) Fenton 5.1 10-2 8.4 10-3 18) Niel3 0.55 0
*

Lh 0 0.300

11-2) YN3 4.0 10-2 1.2 10-2 19) WT2 2.5 10-2 *
Lh 0 0.195

11-3) YN4 2.9 10-2 6.7 10-3 20) You 5.4 10-3 *
Lh 0 0.179

11-4) YN5 4.9 10-3 4.9 10-3 21) Olson 3 10-5 *
Lh 0 0.186

11-5) YN6 4 10-4 1.4 10-3 22) Vene2 2 10-4 6 10-6 *
Lh 0 0.159

0Lh (both in the wave length and the error). For practical applications, such a single solution valid for all depths 

would be preferable. 
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