
80

工学ジャーナル　第 7 巻

2008 年 3 月

Annual Journal of Eng.,
Ehime Univ., VII, Mar., 2008

平成 19 年 8 月 31 日 受付 , 平成 20 年 1 月 23 日 受理

 
**  
**  Department of Computer Science, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, 

Matsuyama, Ehime 790-8577, Japan. 
email: sigematu@cs.ehime-u.ac.jp 

 

Temporal and Operant Learning Models by Neural System 

** 
Yukifumi Shigematsu** 

Abstract: Brain or central nerve system is a kind of information processing system which is differ from artificial 
computer one. A computer system has been made good progress by using the high-speed LSI technology and 
mass storage, however a nerve system has a slow-speed processing neuron and nonlinear element which can 
treats real-time information processing.  In this paper, we discuss about some dynamic or predictive functions 
in a nerve system , and propose models of a pulse neuron model, a temporal learning rule and a operant learning 
method of a neuron network. By using these rule and method, we proposed a temporal sequence associative 
memory network and an optimal action learning process.  

Keyword:  Synaptic Plasticity,  Temporal Learning Rule, Operant Learning,  Value Factor Controlling.  
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Fig.1 Waveform of input, V(t), output and 
accumulated pulse train 
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Fig.2  Weight modification of  STDP 
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Fig.3 Recalling of a temporal associative memoryFig.3 Recalling of a temporal associative memory
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Fig.5 Enhanced direction after this learning process
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