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Chapter 1:  Introduction 

 

 

1.1 Research background 

 The main cause of energy problem is the world‟s dependency on fossil fuels as 

primary energy source. All fossil fuels used today are formed from plants and 

animals that lived up to hundreds of millions of years ago, during the same time 

period when dinosaurs lived. The time span required to make fossil fuels therefore 

exceeds the relatively short time scale of the human race. As a result, fossil fuels are 

considered non-renewable natural resources. On the other hand, economic growth 

and population increase necessitate an even higher energy demand in the future. The 

energy challenge is to address the future energy demand with limited supplies of 

fossil fuels. 

 

 

Fig. 1.1 World energy consumption,   Fig. 1.2 Total non-OECD energy,   

1980-2030 [1]     1980-2030[1] 
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 Despite a limit in fossil supplies, its demand is expected to grow. Currently, 85% 

of the world‟s energy consumption comes from fossil fuels, and this dependency is 

expected to continue in the next several decades [1].  Fig. 1.1 shows the total energy 

consumption from 1985 to 2030 in quadrillion (10
15

) Btu per year (1 Btu = 1054 J) 

[1]. In 1980, the energy consumption was below 300 quadrillion Btu, but it expected 

to reach 700 quadrillion Btu in 2030. These data substantiate the energy problem-the 

world continues to depend on non-renewable fossil fuel supplies.  

 In addition to population growth, economic growth also contributes in the 

increasing energy demand. In Fig. 1.2, the histogram, is divided into two groups: 

countries in the Organization for Economic Co-operation and Development (OECD) 

and those outside of OECD. The rate of energy consumption increase for non-OECD 

countries for the past several decades and this trend is expected to continue in the 

next several decades.  

 These predictions of significant increase in energy demand as shown in Fig. 1.1 

and Fig. 1.2 will likely occur unless countries around the world drastically alter their 

energy consumption habits. However, primary energy sources still remain finite. Fig. 

1.3 – 1.5 show proven reserves of oil, natural gas, and coal as of 2015 [2]. Even 

though finding more fossil fuel reserves is a possibility, the fact remains that fossil 

fuels are limited to finite quantities. This calls for urgent actions to reduce global 

energy consumption, to become less dependent on fossil fuels, and to find alternative 

sources of energy. This figures of proven reserves further illustrate an uneven 

distribution of current global energy supplies. The Middle East has most of the oil 

reserves and a large part of the natural gas reserves. Europe has a large share of the 

natural gas and coal. North America and Asia Pacific has a large share of coal. For 
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those countries that have direct access to reserves of fossil fuels from their own land 

mass or within their water boundary, finding alternative energy sources will ensure 

future energy security. For countries without a direct access to reserves of fossil fuels 

and therefore have to import them, finding alternative sources of energy has 

immediate economic and political benefits.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 Distribution of proven reserves of oil at the end of 2015  

        in billion barrels [2] 
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Fig. 1.4 Distribution of proven reserves of natural gas at the end of 2015 

     in trillion cubic meters [2] 

Fig. 1.5 Distribution of proven reserves of coal at the end of 2015  

       in billion tons [2] 
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1.2 Greenhouse effect 

 In addition to the energy challenge, the world also currently faces an equivalently 

grave problem-the climate challenge. There is still a few skeptics who attribute the 

recent observed global warming to the climate‟s natural cycle, but ample evidence 

has linked climate change to increased anthropogenic (man-made) CO2 emissions. To 

understand this link, the greenhouse gas effect is examined.  

 Fig. 1.6 shows Kiehl and Trenberth‟s estimate of the energy balance [3]. 

Approximately 31% of the incoming solar radiation-mostly long wavelength in the 

infrared range is reflected by clouds, aerosol, atmospheric gases, and the surface. The 

atmosphere absorbs 19% of the radiation and earth‟s surface absorbs the rest of the 

49% of the solar radiation, mostly short wavelength in the visible spectrum. Earth 

maintains an energy equilibrium by radiating infrared radiation. Without greenhouse 

gases, the radiation would be lost to space and earth‟s temperature would be 

approximately 30K colder [4]. Therefore, greenhouse gases have a vital role in nature 

to maintain a comfortable range of temperature on this planet, making it a habitable 

place for human beings.  

 Since the industrial revolution, an increased use of fossil fuels has resulted in a 

significant increase in CO2 emission in the atmosphere. In fact, CO2 makes up the 

largest portion of anthropogenic greenhouse gas. The sharp increase in the world‟s 

CO2 emissions from fossil fuels is shown in Fig. 1.6. Even though greenhouse gases 

exist in nature and are needed to maintain a comfortable temperature range on earth, 

an increased concentration creates an energy imbalance and causes climate change. 
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Fig. 1.6 Annual global energy balance [3] 

 

 In addition to CO2, other greenhouse gases include H2O, O3, CH4, NO and a trace 

amount of other gases [5]. In any combustion process of fossil fuels (hydrocarbon), 

the reaction takes place [6]: 

 

heatOH
2

CO)O
4

(HC 222 
mm

n nmn     (1) 

 

 The burning of fossil fuels necessarily emits CO2, which explains why CO2 is the 

largest anthropogenic greenhouse gas emissions. As the earth‟s surface radiates long 

wavelength radiation back to space, CO2 and other greenhouse gases absorb the 

infrared radiation and become vibrationally excited. When they relax, the total 

energy absorbed is released as infrared radiation in all directions, some is lost to 

space and some is directed back to earth, thus warming it.  

 In conclusion, the world‟s dependence on fossil fuels as the primary energy 

source presents a problem that two points. Firstly, fossil fuels are available in finite 
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supplies, and they cannot address increasing future energy demand. Secondly, 

burning of fossil fuels has an indirect consequence of causing climate change through 

the emission of CO2. Therefore, to solve both the energy and climate challenges, the 

world must alter our energy consumption habits and must get rid of our dependency 

on fossil fuels.   

Hydrogen is one of the most abundant elements in the universe and can be found 

nearly everywhere including in waste materials. It is an energy source that could 

provide for the energy needs in countries with low carbon fuel resources and solve 

the environmental problems in those with high energy usage. However, fundamental 

issues such as storage and transportation must be addressed [7–9]. Hydrogen is not a 

primary energy source like coal, oil, and natural gas that exist in nature. Rather, it is 

an energy alternative that can be obtained by processing a primary energy source. 

Hydrogen can be a viable alternative energy source if its production costs can be 

reduced to a competitive level [10, 11]. 

Recycling of waste from organic and non-organic materials such as garbage, 

waste oil, or plastics can protect the environment by reducing waste, pollution, and 

green house effects. Processing organic and non-organic materials to produce 

hydrogen gas is a challenging task and has been the focus of much research [12–14]. 

In the past, clean hydrogen was mostly produced through electrolysis of water. 

However, since water is an extremely stable material, creating hydrogen from it 

requires a large amount of energy. Steam reforming of natural gas is another method 

that has been commercially used for generating large amounts of hydrogen [15–17]. 

This method, though, has the drawback of carbon dioxide being released in the final 

stage of the steam reforming reaction, which requires methods for capturing and 
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storing of the CO2 [18, 19]. If the energy required to solidify the carbon is taken into 

consideration, this method may actually require as much, if not more, energy as the 

electrolysis method. Thermal plasma decomposition of methane gas is another 

method that has been developed to extract hydrogen without carbon dioxide 

emission. However, this method is not efficient because the amount of energy 

required for thermal cracking is approximately the same energy amount as the 

produced hydrogen [20]. For the thermal cracking method to gain popularity as a 

commercially viable system, the processing costs must be reduced and secondary 

value-added products should also be produced. 

In-liquid plasma is created by the application of microwaves or other high-

frequency waves. The gas temperatures of in-liquid plasma can exceed 3000 K at 

atmospheric pressure [21–24]. Under these conditions, nearly all organic and non-

organic materials can be decomposed and any existing hydrogen in the processed 

materials (e.g., hydrocarbons) can be extracted. The amount of hydrogen that can be 

produced from hydrocarbons can be equivalent to the amount produced from water, 

but the amount of energy consumed is much lower [25]. Moreover, carbon 

components can be simultaneously solidified using the in-liquid plasma method. 

Therefore, the in-liquid plasma technology solves the problems associated with both 

electrolysis and steam reforming. 

It has already been determined that hydrogen with a purity of 66% to 81% can be 

created by using plasma to decompose organic solvents and waste oils [25, 26].This 

technology can also be applied for the collection of hydrogen from methane hydrides 

in sea beds [27–29]. In this research, it is proposed that a continuous flow, 

microwave-based in-liquid plasma device could be used as a method for continuously 
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producing hydrogen through the decomposition of waste oil. The effects of the 

pressure inside the device and the shape of the electrode on the hydrogen production 

rate were investigated.  

 

1.2 The outline of the study 

The dissertation comprises six chapters including two journal publications. The 

outlines of the chapter are as follows: 

Chapter 1: It discusses the research background and also it describes shortly the 

influence of the fossil fuel for the green house effect.  

Chapter 2: It gives a technical background and discuss the technologies available for 

synthesis gas production, specifically from reactor aspects. Further various plasma 

technologies are discussed.  

Chapter 3: It is hydrogen production literature review. The purpose of this paper is 

to provide a brief summary of significant current and developing hydrogen 

production technologies. The areas to be examined include: hydrogen production 

using fuel processing technologies and, hydrogen from alternative resources such as 

waste oil. 

Chapter 4: It provides information for the first journal publication. The in-liquid 

plasma method is a technology in which plasma of several thousand degrees Kelvin 

is generated within bubbles in a liquid. The purpose of this study is to enhance the 

hydrogen production rate from waste oils by using in-liquid plasma. Two types of 

microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a 

conventional microwave (MW) oven, the other is a microwave generator with a 

waveguide to apply the in-liquid plasma steam reforming method in n-dodecane. 
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Chapter 5: It provides information for the second journal publication. The aim of 

this study is to analyze the effect of steam reforming on the hydrogen production rate 

from n-dodecane using microwave in-liquid plasma method. A steam feeding system 

was introduced into an in-liquid plasma reactor, and steam reforming of n-dodecane 

was carried out within the reactor vessel. The liquid medium used for plasma 

generation, was n-dodecane, a type of commercial reagent oil. The tip of a single 

electrode was positioned in the bottom center of the reactor vessel. The produced gas 

was trapped in a water filled container, and the gas production rate was measured. 

The gas was collected and analyzed using a gas chromatograph. The gas production 

rate by plasma with steam feeding was 1.4 times greater than that by plasma without 

steam feeding. The maximum hydrogen production efficiency indicated by the ratio 

of the enthalpy difference of the chemical reactions to the input energy was 

approximately 12%. At the optimal efficiency of hydrogen generation using 2.45 

GHz of microwave plasma, the product gas is approximately 73% to 82% hydrogen, 

which means that the hydrogen production efficiency with this method is improved 

approximately 59% over that by alkaline water electrolysis for the same power 

consumption. The energy payback ratio（EPRH2）of hydrogen production was also 

calculated in order to determine the hydrogen production efficiency. 

Chapter 6: The general summary of all chapters is concluded and future works for 

the research is added.   
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Chapter 2: Synthesis Gas 

 

2.1 Introduction  

Synthesis gas (Syngas), a mixture of carbon monoxide and hydrogen, is 

important intermediate for various synthesizing chemicals and environmentally clean 

fuels, such as ammonia, methanol, methyl formate, acetic acid, dimethyl ether 

(DME), and methyl-tert-butyl ether (MTBE) and for the increasingly important 

production of synthesis liquid fuels [1]. Syngas with the desired composition ranging 

from the 3:1 mixture of hydrogen and nitrogen used for production of ammonia to 

the 1:1 mixture of hydrogen and carbon monoxide is preferred for production of 

DME, acetic acid or methyl formate [2]. Syngas can be produced from NG, 

petroleum coke, naptha, residual oil, coal and biomass, and even from organic 

wastes. Though significant quantities of syngas are being made from coal  [3], NG is 

the largest source of syngas at present and its use for this purpose is growing because 

of its lowest cost routes and good environment performance [4]. In the recent years, 

the interest in the conversion of biomass derived resources to syngas and bio-oils has 

been increasing. These resources are currently being recognized as attractive options 

due to their renewable, reliable and CO2-neutral features. 

There are several processes available for syngas production depending on the 

feed stock, such as steam reforming, partial oxidation, autothermal reforming (ATR), 

gasification and a combination of them, which result in different H2/CO ratio. 
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2.2 Steam reforming  

Steam reforming is the conversion of hydrocarbons (HCs) with steam into a 

mixture of carbon monoxides, hydrogen, methane and unconverted steam. Steam 

reforming is carried out in several different types of reactors. Each of these may be 

optimized for specific applications [2]. The reactions taking place for the steam 

reforming process are given in Table 2.1 along with the enthalpy of reaction. 

Reaction 1 (R1) and 3 (R3) in Table 2.1 are the steam and CO2-reforming reactions, 

respectively, for methane and reaction 2 (R2) is the water gas shift (WGS) reaction, 

which takes place simultaneously. Reaction 4 (R4) is the steam reforming reaction of 

higher HCs. The enthalpy is given for steam reforming of n-heptane [2]. 

 

Table 2.1. Key reaction in steam reforming [2] 

 

 

The overall steam reforming is highly endothermic and it is carried out at high 

temperature (1173 K) and at pressure between 15 and 30 bar [5] over a Ni/Al2O3 

catalyst [6]. However, higher H2/CO ratio comes at the expense of high temperature 

requirements; methane is the most stable HC and requires energy input to react with 

steam. Methane steam reforming is thermodynamically favored at high temperatures 

and at high molar steam-to-carbon (S/C) ratios in the feed. Thermodynamic 
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predictions estimate 90% methane conversion at ca. 923 K, 1 bar and at a S/C ratio of 

3, and complete conversions are estimated at temperatures in excess of 1073 K [7]. 

Steam can be partially substituted by carbon dioxide to perform CO2- reforming 

reaction (R3). This reduces the H2/CO ratio in the product gas, which in cases may 

be more economical, especially if a source of low-cost carbon dioxide is available. 

Steam (and CO2) reforming is always accompanied by the WGS reaction (R2) which 

is generally fast and may be considered in equilibrium at most conditions [8]. 

However, low S/C ratios lead to high methane concentration in the outlet. To 

compensate this, a higher temperature can be used [9]. In addition, carbon formation 

is a challenge in steam reforming processes. The potential for carbon formation is 

highest when S/C ratio is lower or under CO2-reforming. In steam reforming 

processes carbon formation is avoided through proper design of the catalyst and 

specific process conditions [2]. 

 Steam reforming can be described by a first-order reaction, irrespective of 

pressure. At high temperatures the overall rate can be limited by pore diffusion, but 

at lower temperatures the molecular diffusion rate is much higher than the reaction 

rate so that the catalyst activity can be fully used [10]. The overall rate in steam 

reforming is typically limited by the rate of heat transfer through the tubes, the rate of 

heat transfer through the gas film surrounding the catalyst pellets and mass transport 

restrictions including film and pore diffusional effects. The commercial Ni-catalysts 

are often in the form of thick walled Raschig rings, with 16 mm in diameter and 

height, and a 6-8 mm hole in the middle. If the heat load per unit area is too high, the 

limits of such catalyst will be reached, and hence small particles will be necessary in 
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order to make use of more of the catalyst. Smaller particle will however lead to 

increase pressure drop [10]. 

 

2.3 Catalytic partial oxidation 

The production of syngas based on heterogeneous catalytic reactions is normally 

referred to as CPO. The principle of CPO is illustrated in Fig. 2.1. The HC feed and 

the oxidant are mixed in an inlet zone upstream the catalyst bed. Syngas production 

via the CPO route proceeds through coupled exothermic oxidative reactions and 

endothermic reforming reactions in the same catalyst bed. This simultaneous 

occurrence of exothermic and endothermic reactions makes this process attractive 

since it offers the advantage of vastly reduced energy requirements. Possible 

reactions for methane CPO are summarized in Table 2.2. 

 

 

 

 

Fig. 2.1 CPO principle [2] 
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Table 2.2 Reactions in the HC partial oxidation system [11] 

 

 

Partial oxidation reaction (R6) in Table 2.2 can be seen as an example of direct route 

to syngas, and the question of whether it is possible to catalyze only R6 has been a 

keynote in the research on methane partial oxidation. Considering only R6, it is 

theoretically possible to produce pure syngas at all temperatures where methane and 

oxygen are activated. It is, however, typically observed that the remaining 10 overall 

reactions (R1-R3, R5, R8-R12) in Table 2.2 play important roles in the CPO of 

methane and the product composition is therefore governed by or limited by the 

global thermodynamic equilibrium of all possible species [11]. In the indirect 

mechanism, at the top of the bed, all oxygen is consumed by the exothermic reaction 

with a portion of the methane in the feed. This region can be on the order of 10% of 

the total bed and is controlled by the O/C ratio and temperature. A temperature spike 

as well as localized hot spots promotes the formation of combustion products. The 

remaining methane is converted in the bottom portion of the catalyst bed through 

endothermic secondary reforming reactions with the unreacted methane and water 
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produced in the first region [12]. Gas compositions indicating higher conversions 

than thermodynamic equilibrium most likely reflects the temperature of the catalyst. 

CPO has been investigated extensively for many years. Before 1992, most studies 

were carried out at moderate or low-space velocities at a residence time of 1s or 

above [13]. However, during the later years CPO has been carried out at least in the 

laboratory at very short contact times between 0.1 and 10 ms in some cases without 

preheating the feedstock and with no steam addition. Additional information 

regarding research, mainly of fundamental nature, can be found for example in a 

series of paper by Nogare et.al., [14, 15]. Both air and oxygen may in principle be 

used as oxidant in a CPO reactor. Experiments with CPO and air as oxidant have 

been conducted at the Topsoe pilot plant in Huston, Texas. In all cases, the methane 

conversion corresponds closely to the equilibrium of the methane steam reforming 

reaction [2].  

 

2.4 Autothermal reforming  

 ATR has received a considerable attention. Lower capital cost, relative 

compactness, greater potential for economies of scale and its flexibility with respect 

to the product composition made ATR a very good alternative to steam reforming. 

From last decades, hydrogen-rich and carbon monoxide-rich syngas has been 

produced using ATR. Autothermal reformers were used to produce synthesis gas for 

ammonia production and methanol in 1950s and 1960s [2]. Low S/C ratio is 

beneficial for the production of carbon monoxide-rich syngas as feed for e.g., 

methanol or FT synthesis. S/C operation with a ratio of 0.6 has been demonstrated on 

pilot and industrial scale [2]. ATR is an adiabatic reactor where combined 
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combustion and catalytic process is carried out as illustrated in Fig. 2.2. The ATR 

reactor consists of a burner, a combustion chamber and a catalyst bed, all of which 

are contained in a refractory lined pressure shell. NG and steam mixture is partially 

converted by pressurized combustion in the combustion chamber under fuel-rich 

conditions. The temperature is about 1100- 1300 °C in the combustion chamber near 

the catalyst bed and more than 2500 °C in the flame core depending upon the process 

conditions [2]. Due to high temperature, steam reforming and WGS reactions also 

take place non-catalytically in the combustion chamber including radicals and 

combustion reactions. General reaction which are often used to represent the 

combustion chamber are shown in Table 2.3. 

 

 

 

Fig. 2.2 Illustration of ATR reactor [16] 
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Table 2.3 Simplified reactions in the combustion chamber of ATR [2] 

 

 

Combustion reactions quantitatively consume the oxygen. However, the methane 

conversion is incomplete in the combustion chamber and final conversion takes place 

in the catalyst bed according to described reactions (R1) and (R2) in Table 2.3. The 

syngas is at chemical equilibrium and leave the ATR reactor typically around 850-

1100 
o
C [2]. There  are three zones in the reactor: (a) combustion zone, (b) thermal 

zone and (c) catalytic zone. Mixing and burning of the feed streams take place in a 

turbulent diffusion flame in combustion zone. ―Mixed is burnt‖ principal is valid, 

since the combustion reactions are exothermic and very fast. Combustion is sub-

stoichiometric with overall oxygen to HC ratio of 0.55-0.6 in ATR but presented as a 

one-step model in a simplified way. Single reaction of CH4 to CO and H2O with an 

O2/CH4 ratio of 1.5 (reaction (R13) in Table 2.3) take place in the flame zone. The 

local stoichiometry will vary from very fuel-lean to very fuel-rich in the flame zone 

[2]. The conversion of HCs takes place via homogeneous gas-phase reactions in 

thermal zone. Homogeneous gas-phase steam methane reforming and shift reaction 

(R1 and R2 in Table 2.3) are the main overall reactions taking place in the thermal 

zone. The methane steam reforming reaction (R1) does not proceed to equilibrium in 

the thermal zone [2]. HCs are finally converted via heterogeneous catalytic reactions 

in fixed-bed catalytic zone. Gas mixture will be in equilibrium with respect to steam 
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methane reforming (R1) and shift reaction (R2) at the exit temperature and pressure 

of the catalytic zone. ATR operation is soot-free under normal circumstances. The 

fuel rich combustion takes place in a turbulent diffusion flame and intensive mixing 

is required to prevent soot formation. The exit gas contains only methane as HC. 

Soot formation is avoided which would reduce the carbon efficiency of the process 

whereas soot particles would need to be removed from the syngas [2].  

 

2.5 Gasification  

 Gasification is one of the most promising technologies for converting coal and 

biomass into an easily transportable and usable fuel. Transformation of biomass fuels 

into high quality energy carriers and other commercial products can be efficiently 

achieved via either biological or thermochemical processes [17]. Among various 

biomass conversion technologies within thermochemical and biochemical platforms, 

biomass gasification has received the highest interest since it offers high conversion 

efficiency and significant environmental benefits. In addition, it also increases 

options for combination with various high efficiency power generation systems using 

gas engines, gas turbines and fuel cells. Gasification is the formation of syngas from 

carbonaceous materials like coal and biomass by reaction with a gasifying agent like 

H2O, H2 or CO2 [5, 18]. The main gasification reactions are endothermic and the heat 

required to sustain the gasification is typically supplied by combustion of part of the 

carbonaceous material (so-called autothermic gasification) [5]. In the known 

processes converting solid, carbonaceous feedstocks into fuel chemicals, the 

production and conditioning of the syngas does in fact constitute the dominant part of 

the plant cost. For the production of synthetic diesel fuel from coal in the fischer 
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tropsch (FT) process, the systems for syngas production entering the reactor compose 

70% of the plant investment cost [8]. Tables 2.4 and 2.5 summarize, respectively, the 

dominant heterogeneous and homogeneous reactions taking place in the gasifiers. 

 For the reactions in Table 2.4 the carbonaceous material is simply represented 

as ―C‖. In addition to the reactions in Tables 2.4 and 2.5, thermal gas phase cracking 

of tar (larger HCs) and small HCs will also occur in the reactor [18]. These cracking 

reactions will to some extent be facilitated by the gasification agent  [18].  During 

biomass gasification, several parameters such as gasifiers type, reaction temperature, 

biomass fuels properties, bed materials and gasifying agent have a substantial 

influence on product gas composition, carbon conversion efficiency and tar 

formation. 

 

Table 2.4 Major heterogeneous reactions taking place in the gasifiers [5, 18]

 

 

Table 2.5 Major homogeneous reactions taking place in the gasifiers [5, 18, 19]  
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 The reactors used for biomass gasification are quite diverse of which the design 

ultimately determines other parameters such as gasification temperature and the 

properties of the biomass used [20]. The most important gasifier types are: (a) fixed-

bed (updraft or downdraft fixed-beds), (b) fluidized bed and (c) entrained flow 

gasifiers.  

 Fixed-bed gasifiers have been in use since the beginning of the gasification 

industry. Somewhat confusingly, these gasifiers are sometime also referred to as 

moving bed gasifiers. The solid feed moves downward through gasifiers but the 

various zones within the gasifiers are ―fixed‖ in locations. These gasifiers have 

maintained a strong position in the broad range of reactor types used for coal 

gasification [8]. They are suitable for small scale applications and generally operated 

at temperature around 1000 °C [21]. The size of the fixed-bed reactors are below 1 

MW in most designs. Increasing the reactor diameter might cause problems in 

establishing the required high temperature zones to crack the tar content in the 

product gas [22]. These reactors are further classified according to the flow direction 

of the gasification agent into updraft, downdraft and crossdraft gasifiers. 

 The entrained flow type of gasifiers is the most widely used design [8]. The 

gasifiers are co-current, plug flow reactors. Finely ground feed, in the case of solids, 

or liquid feed is introduced into the gasifiers along with the oxidant and steam or 

liquid water as moderator. Coal or biomass and gasses flow co-currently at high 

speed. As a result, very short gas residence times are experienced, and the 

gasification yields high temperatures in the gasifiers (1600 to 2200 K). The coal or 

biomass has to pulverized at high temperatures to ensure high carbon conversion. In 

addition, the fuel feeding allows for high pressure gasification and large capacities (> 
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100 MW). All entrained flow gasifiers are of the ash slagging type [8]. Typical 

operating parameters of these gasifiers are provided in Table 2. 6.  

 

 Table 2.6 Comparison of typical operating for the three types of gasifiers, used    

  for coal  gasification [8] 

 

 

 

2. 6 Plasma reforming 

 The above-mentioned well-established process were investigated under different 

operating conditions in the presence of various catalysts, and it would appear that 

almost all of the combinations have been evaluated and most of the strategies 

examined [23]. The shortcomings of the conventional reformers concern size, large 

investments, limitations on rapid response, the extreme operating conditions that 

limit the lifetime of a reactor, heat management (during the front end of the catalyst 

bed as the methane undergoes total oxidation), as well as safety and operability [24]. 

The alternative novel plasma reforming option could provide original responses to 

these drawbacks in terms of reactivity, compactness, and efficiency. Recently, 

plasmas have been investigated for their potential to exhibit catalytic effects 

primarily because of complex interactions of their excited species (electrons, ions, 

radicals) in fuel conversion reactions. Some evidence has been found for the plasma 

catalysis effect in lowering the required ignition temperatures for combustion 
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systems; however, more work is needed to elucidate the catalytic effects in fuel-rich 

syngas production systems [25]. 

 Plasma is often described as the fourth state of matter and this refers to the 

chemical, thermal or electrical breakdown of a gas, often forming a luminous ionized 

state comprised of a mix of particles: positive and negative ions, electrons, radicals 

and neutral gas atoms and molecules [25]. Plasma reforming is electrically assisted 

reforming of fuel in which electrical energy is dissipated directly in the process gas 

through a specific high-voltage discharge [25]. Depending on the energy, 

temperature and ionic density, plasma reactors are classified as thermal or non-

thermal (cold). A thermal plasma in a local thermodynamic equilibrium has an 

electron temperature (>10,000 K) in each small volume of plasma that is equal to the 

gas temperature, excluding the radiation temperature. In a non-thermal plasma, the 

electron temperature is not in the local thermodynamic equilibrium, and the electrons 

can reach a temperature of 104 to 105 K, while the temperature of the gas can be as 

low as room temperature (300 to 3000 K) [25]. 

 Different paths have been investigated for the last two decades using various 

plasma technologies such as gliding arc [26–28], dielectric barrier discharge (DBD) 

[29], corona [25] and microwave (MW) [30–32] to reform HCs such as methane 

[24], [33], diesel [34] and bio fuels [35]. 

 

2.6.1 Dielectric barrier discharge  

 The DBD is a well known type of non-thermal plasma discharge. It is commonly 

used to generate the low-temperature plasma at atmospheric pressure, which has been 

successfully used to many industrial process related to the surface treatments of 



Chapter 2:Synthesis Gas 

 

27 
 

materials such as polymers and textiles [36], ozone generation [37] and air 

sterilization in heating, ventilation and air conditioning (HVAC) systems [38]. In 

addition, some recent publications discuss the influence of DBD on pure methane 

[39] and mixtures of methane with air, oxygen and carbon dioxide [40], and aim 

mainly on the production of syngas, methanol or higher HCs. Furthermore, some 

basic studies dealing with methane steam reforming using DBD have been 

performed. 

 DBD plasmas have a layered electrode structure in which two metal electrodes 

are separated by a thin layer of dielectric material, often made from ceramic, quartz, 

or glass (Fig. 2.3). The dielectric barrier acts to limit current flow once the plasma 

discharge is ignited and prevents the discharge from transitioning into a plasma 

spark, which can result in much higher gas temperatures, shock waves and noise. 

DBD plasmas typically operate with either an AC frequency (0.5-500 kHz) or in a 

pulsed DC mode and most often have a non-uniform, filamentary structure consisting 

of a series of micro discharges. DBD plasmas are often used in basic research studies 

because they are weakly ionized, yet strongly non-equilibrium, and are relatively 

easy to construct [41].  

 The conversion of reactants was reported low and also the selectivity of the main 

products such as carbon monoxide and hydrogen was low compared to the 

conventional catalysis method [40, 42]. This mainly because of their low power 

density due to their limited current and low gas temperature. Since CPO and steam 

reforming reactions require an elevated initial temperature to proceed (800 to 1100 

K), non-thermal DBD systems usually require additional energy to be spent for 
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Fig. 2.3 Dielectric barrier discharge plasma [29] 

 

reactant preheating in order to be effective. In addition, the irregular structure of 

DBD plasmas is not ideal for uniform gas treatment within fuel conversion systems 

[41]. However, many reports showed that the discharge can effectively lower the 

temperature range of the optimum catalyst performance [43]. 

 

2.6.2 Corona discharge  

 The corona discharge is another type of strongly non-equilibrium, yet weakly 

ionized plasma that can be found in nature during electrical storms near sharp edges, 

points, or thin wires (i.e., near regions of high electric field strength) [41]. They are 

actively studied in connection with their possible use for various plasma chemical 

applications such as ozone generation from air and oxygen, removal of toxic agents 

from flue gases and polluted air [44].  

    Corona discharge as shown in Fig 2.4 is inhomogeneous discharge with low 

current density [45]. It could be generated at atmospheric pressure and has high 

electric field intensity for ionizing or decomposing feed gas particles. Corona  
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Fig. 2.4 Schematic diagram of corona discharge reactor [46] 

 

discharge usually involves two asymmetric electrodes; one high curvature, such as a 

plate or a cylinder. When a voltage applied exceeds a certain value, the electric 

breakdown is caused near the high curvature electrode locally, and the corona 

discharge is brought on. The electron temperature of corona plasma is in the range of 

3.5 to 5 eV while the gas temperature is less than 400 K and the electron density is 

about 10
15

 to 10
19

 m
-3

 [45]. However, high electron density mainly occupies the 

region around the high curvature electrode. The corona discharge can become 

unstable if additional voltage or current is applied causing breakdown between 

electrodes and forming a strong plasma channel, known as a spark. Spark formation 

should be avoided because it causes local overheating of the gas as well as non-

uniformity of treatment, which is undesirable for many applications [41].  
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2.6.3 Microwave discharge  

 MW discharges offer significant advantages as plasma sources. When properly 

designed, they are very stable and efficiency of MW power transfer to plasma can 

achieve almost 100%. They allow obtaining plasma of high purity. As a rule, MW 

plasmas are characterized by high density of electrons and active species, such as 

ions and free radicals [47]. Due to these features MW plasmas find applications in 

spectroscopy, technological process like surface treatment, carbon nano tubes 

synthesis and sterilization [48]. Special interest find MW discharges in different kind 

of gas processing, such as purification of gases, abatement of gases containing 

fluorinated compounds, decontamination of chemical warfare agents [49].  

 Fig. 2.5 shows the configuration of MW plasma reactor. These reactors have the 

unique advantage that the plasma does not need to be in direct contact with the 

electrodes. Electrode-less operation is often preferred for extremely high temperature 

reforming applications because it can eliminate the need for complicated electrode 

cooling. Initiating high-frequency plasma is more challenging than DC plasma 

because they require complex and somewhat more expensive power supplies that 

include a high frequency generator. More importantly, the plasma must be coupled 

and matched as a load in the power circuit [41]. In MW plasmas, the wavelengths are 

very small, on the order of centimeters and approach the dimensions of the reactor 

itself. Often, waveguides are used to collect and concentrate the electromagnetic 

waves in within the reactor. Not all of the wave power is dissipated in the discharge; 

however, typical about half is absorbed, a quarter of it is transmitted through the 

discharge and another quarter is reflected. The benefit of using complex discharges 

such as MW plasmas, is that the high degree of coupling between the, 
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Fig. 2.5 Schematic diagram of microwave plasma reactor [49] 

 

electromagnetic field and discharge creates conditions that are strongly non-

equilibrium with a high degree of ionization. This is much better than the other non-

thermal plasmas, where energy density is low and ionization is weak, with only a 

small fraction of high energy electrons created. MW plasmas can be operated in a 

wide range of pressure from milliTorr to near atmospheric; however, at high 

pressures, the discharge tends to contract and behave similar to thermal plasma [41]. 

 

2.6.4 Gliding arc discharges 

 The principal of the GlidArc  discharge was developed by Czernichowski [23]. 

Fig. 2.6 shows the consists of two or more diverging metallic electrodes. The 

electrical are form between the two knives is powered by a single-phase transformer; 

the discharges are formed at the closest points of the electrodes, has a very short 

contact time and are spread by gliding along the edges of electrodes. The arc  
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Fig. 2.6 Schematic of the planar gliding arc showing how the discharge is pushed 

and elongated by the gas flow, causing a transition from equilibrium to non-

equilibrium state [41] 

 

disappears at the end of the knives and a new discharge immediately re-formed at the 

initial locations. The high-voltage, self-maintained discharges struck directly across 

the gas flow. The electrodes are not cooled, so all of the electrical energy is directly 

and completely transferred to the process gas.  

 

  

2.7 Conclusion 

 

 Steam reforming is the conversion of hydrocarbons (HCs) with steam into a 

mixture of carbon monoxides, hydrogen, methane and unconverted steam. Steam 

reforming is carried out in several different types of reactors. Steam reforming can be 

described by a first-order reaction, irrespective of pressure. At high temperatures the 

overall rate can be limited by pore diffusion, but at lower temperatures the molecular 

diffusion rate is much higher than the reaction rate so that the catalyst activity can be 

fully used. The production of syngas based on heterogeneous catalytic reactions is 
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normally referred to as CPO. The HC feed and the oxidant are mixed in an inlet zone 

upstream the catalyst bed. ATR has received a considerable attention. Lower capital 

cost, relative compactness, greater potential for economies of scale and its flexibility 

with respect to the product composition made ATR a very good alternative to steam 

reforming.  

 Gasification is one of the most promising technologies for converting coal and 

biomass into an easily transportable and usable fuel. Transformation of biomass fuels 

into high quality energy carriers and other commercial products can be efficiently 

achieved via either biological or thermochemical processes. Plasma reforming is 

electrically assisted reforming of fuel in which electrical energy is dissipated directly 

in the process gas through a specific high-voltage discharge. A thermal plasma in a 

local thermodynamic equilibrium has an electron temperature (>10,000 K) in each 

small volume of plasma that is equal to the gas temperature, excluding the radiation 

temperature. DBD plasmas typically operate with either an AC frequency (0.5-500 

kHz) or in a pulsed DC mode and most often have a non-uniform, filamentary 

structure consisting of a series of micro discharges.  

 Corona discharge is inhomogeneous discharge with low current density. It 

could be generated at atmospheric pressure and has high electric field intensity for 

ionizing or decomposing feed gas particles. Corona discharge usually involves two 

asymmetric electrodes; one high curvature, such as a plate or a cylinder MW 

discharges offer significant advantages as plasma sources.  Electrode-less operation 

is often preferred for extremely high temperature reforming applications because it 

can eliminate the need for complicated electrode cooling. Initiating high-frequency 

plasma is more challenging than DC plasma because they require complex and 
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somewhat more expensive power supplies that include a high frequency generator. In 

GlidArc, the arc disappears at the end of the knives and a new discharge immediately 

re-formed at the initial locations. The high-voltage, self-maintained discharges struck 

directly across the gas flow.  
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Chapter 3: Background of Hydrogen Production 

 

3.1 Introduction 

Light vehicles are responsible for a significant amount of carbon dioxide and 

volatile organic compound (VOC) emissions, and a majority of carbon monoxide and 

nitrogen oxide (NOX) emissions produced in the U.S [1]. To deal with these issues, 

there has been an effort to diversify our energy supply particularly for the 

transportation sector and to find cleaner fuels. But alternative fuels are not available 

everywhere—one location may prefer ethanol, another may be dominated by 

biodiesel, or gasoline, or methane. Most of these fuels require a different engine 

technology for efficient operation. However, hydrogen can be produced from all of 

these feedstock as well as many others making it a universal fuel. Recently there has 

been international attention on the development of new hydrogen technologies as a 

potential solution to the current fears and to increase energy and economic security. 

The targeted hydrogen cost is $2–4 kg.l (energy equivalent of 1 gallon of gasoline) 

delivered [2]. In addition to using the hydrogen from these processes as energy 

directly in fuel cells, the hydrogen rich streams can be used for the production of 

gasoline, methanol, ethanol, and other high value chemicals. Fig. 3.1 shows the 

conceptual flow sheet of hydrogen production technologies.  

The purpose of this paper is to provide a brief summary of significant current and 

developing hydrogen production technologies. The areas to be examined include: 

hydrogen production using fuel processing technologies and, hydrogen from 

alternative resources such as waste oil.  
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3.2 Fuel processing  

Fuel processing technologies convert a hydrogen containing material such as 

gasoline, ammonia, or methanol into a hydrogen rich stream. Fuel processing of 

methane is the most common hydrogen production method in commercial use today. 

Most hydrocarbon fuels contain at least some amount of sulfur which poisons the 

fuel processing catalyst. This presents perhaps the biggest challenge to reforming. As 

a result, desulfurization will also be discussed. In addition, hydrocarbon reforming, 

plasma reforming, aqueous reforming, and pyrolysis will also be presented.  

 

Fig. 3.1 Fuel processing of gaseous, liquid, and solid fuels for hydrogen production [2] 
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3.2.1 Hydrocarbon reforming  

There are three primary techniques used to produce hydrogen from hydrocarbon 

fuels: steam reforming, partial oxidation (POX), and auto thermal reforming (ATR). 

Table 3.1 summarizes the advantages and challenges of each of these processes. The 

reforming process produces a gas stream composed primarily of hydrogen, carbon 

monoxide and carbon dioxide. Endothermic steam reforming of hydrocarbons 

requires an external heat source. Steam reforming does not require oxygen, has a 

lower operating temperature than POX and ATR, and produces the reformate with a 

high H2/CO ratio (3:1) which is beneficial for hydrogen production. However, it does 

have the highest emissions of the three processes. Partial oxidation converts 

hydrocarbons to hydrogen by partially oxidizing (combusting) the hydrocarbon with 

oxygen. The heat is provided by the ‗‗controlled‘‘ combustion. It does not require a 

catalyst for operation, has minimal methane slip, and is more sulfur tolerant than the 

other processes. The process occurs at high temperatures with some soot formation 

and the H2/CO ratio (1:1 to 2:1) is favored for the feeds to hydrocarbon synthesis 

reactors such as Fischer-Tropsch. Auto thermal reforming uses the partial oxidation 

to provide the heat and steam reforming to increase the hydrogen production 

resulting in a thermally neutral process. Auto thermal reforming is typically 

conducted at a lower pressure than POX reforming and has a low methane slip. Since 

POX is exothermic and ATR incorporates POX, these processes do not need an 

external heat source for the reactor. However, they require either an expensive and 

complex oxygen separation unit in order to feed pure oxygen to the reactor or the 

product gas is diluted with nitrogen. Steam reforming is typically the preferred 

process for hydrogen production in industry [3]. Since all three processes produce 
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large amounts of carbon monoxide, one or more water-gas-shift (WGS) reactors – 

typically a high temperature reactor and low temperature reactor – are used. The high 

temperature (larger than 350°C) reactor has fast kinetics, but is limited by 

thermodynamics to the amount of carbon monoxide that can be shifted. Therefore, a 

lower temperature reactor (210–330°C) is used to convert the carbon monoxide to a 

lower level. High temperature WGS reactors commonly use an iron catalyst, and 

lower temperature reactors often use a copper catalyst [3]. 

 

a.  Hydrocarbon reforming reactions  

The reforming, WGS, and oxidation reactions can be generalized as follows for 

hydrocarbon and methanol fuels [4]:  

Steam reforming  

22
1

2 )H(COOHHC nmmmnm 
     

 

H = hydrocarbon dependent, endothermic     (2) 

2223 H3COOHOHCH     H = +49 kJ/mol  (3) 

Partial oxidation  

22
1

22
1 H2COOHC nmmnm     

H = hydrocarbon dependent, exothermic      (4) 

2222
1

3 H2COOOHCH     H = -193.2 kJ/mol  (5) 

Autothermal reforming  

22
1

2
1

24
1

22
1 H)(COOOHHC nmmmmnm   

H = hydrocarbon dependent, thermally neutral     (6) 

2222
1

23 H11CO4OOH3OHCH4   H = 0    (7) 
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Carbon (coke) formation 

2x2nxmnm xHHCxCHC    

H = hydrocarbon dependent       (8) 

2COCCO2      H = +172.4 kj/mol  (9) 

OHCHCO 22          (10) 

Water-gas-shift  

222 HCOOHCO     H = -41.1 kj/mol  (11) 

OHCOHCO 222  (RWGS)      (12) 

CO oxidation  

22 COOCO      H = +283 kj/mol  (13) 

OHOH 222
1

2      H = -242 kj/mol  (14) 

 

The enthalpies are reported at ambient temperature and pressure with reactants 

and products in the gas phase. Table 3.1 shows the comparison of reforming 

technology using steam reforming, autothermal reforming and oxidation. 

Fuel processing reactors are designed to maximize hydrogen production (Eqs. 

(2)–(7) and (11)–(13)) and minimize carbon formation (Eq. (8)–(10)) using 

appropriate operating conditions (temperature, pressure residence time, etc.) and 

catalysts [7, 13]. Table 3.2 lists the minimum reaction temperatures required for 

minimizing carbon formation, using iso-octane reforming as an example.  
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Table 3.1 Comparison of reforming technologies [9, 10]  

Technology Advantages Disadvantages  

Steam reforming Most extensive industrial experience  Highest air emissions 

 Oxygen not required  

 Lowest process temperature  

 
Optimal H2/CO ratio for H2 

production 
 

Autothermal 

reforming 
Lower process temperature than POX Limited commercial experience  

 Low methane slip Requires air or oxygen  

Partial oxidation  Decreased desulfurization requirement  Low H2/CO ratio 

 No catalyst required 
Very high processing 

temperatures 

 Low methane slip 
Soot formation/handling adds 

process complexity 

 

Table 3.2 Minimum reaction temperatures required for avoiding coke formation   

       during iso-octane reforming at thermodynamic equilibrium [7, 11, 12] 

 

Reactants Technology 
Oxygen/carbon 

ratio 

Minimum temperature to 

avoid coke formation (°C) 

C8H18+4(O2+3.76N2) POX 1 1180 

C8H18+2(O2+3.76N2)+4H2O ATR 1 1030 

C8H18+8H2O SR 1 950 

C8H18+4(O2+3.76N2)+8H2O ATR 2 575 

C8H18+8H2O SR 2 225 

 

 

 Steam reforming.  

Fuel processing requires modest temperatures (180°C for methanol, DME, and 

other oxygenated hydrocarbons that can be readily activated, and 500°C for most 

conventional hydrocarbons) [7, 13]. The catalysts can be divided into two types: non-

precious metal (typically nickel) and precious metals from Group VIII elements 

(typically platinum or rhodium based). Due to severe mass and heat transfer 

limitations, conventional steam reformers are limited to an effectiveness factor for 

the catalyst which is typically less than 5%. Therefore, kinetics and thus the activity 

of the catalyst are rarely the limiting factors with conventional steam reformer 



Chapter 3:Background of Hydrogen Production 

 

45 
 

reactors, so less expensive nickel catalysts are used almost universally in industry. 

The mass and heat transfer limitations have been shown to be overcome by 

employing micro channel-based reactors, enabling intrinsic kinetics of steam 

reforming to be exploited [10]. In these systems, the noble Group VIII metals, 

particularly Rh [11], are preferred since they exhibit much higher specific activities 

than nickel catalysts [13, 16]. However, the high cost of Rh is driving some 

researchers to develop alternative catalysts such as Co-based catalysts [17, 18]. 

Intermediate and high temperatures required for steam reforming may promote 

carbon formation, and steam to carbon ratios (2.5 or higher) higher than 

stoichiometry are required to gasify coke when a nickel-based catalyst is used. Coke 

formation is much less over the noble Group VIII metals. Promoters, such as 

magnesia or potassium or other alkaline components, are added to the catalyst 

support to minimize the coke formation. Steam reforming is commonly used in 

industry for the production of hydrogen from methane where high thermal 

efficiencies of up to approximately 85%, based on the higher heating values, have 

been achieved.  

 

 Partial oxidation  

Partial oxidation (POX) of hydrocarbons and catalytic partial oxidation (CPOX) 

of hydrocarbons have been proposed for use in hydrogen production for automobile 

fuel cells and some commercial applications [19–21]. The non-catalytic partial 

oxidation of hydrocarbons in the presence of oxygen typically occurs with flame 

temperatures of 1300–1500 °C to ensure complete conversion and to reduce carbon 

or, in this case, soot formation [12]. Catalysts can be added to the partial oxidation 
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system to lower the operating temperatures. However, it is proving hard to control 

temperature because of coke and hot spot formation due to the exothermic nature of 

the reactions [19, 20, 22, 23]. For natural gas conversion, the catalysts are typically 

based on Ni or Rh; however, nickel has a strong tendency to coke and Rh cost has 

increased significantly. Krummenacher et al. [16] have had success using catalytic 

partial oxidation for dodecane, hexadecane, and diesel fuel. The high operating 

temperatures (800°C - 1000°C) [16] and safety concerns may make their use for 

practical, compact, portable devices difficult due to thermal management [20]. 

Typically the thermal efficiencies of POX reactors with methane fuel are 60–75%, 

based on the higher heating values [20].  

 

 Autothermal reforming.  

Autothermal reforming adds steam to catalytic partial oxidation. It consists of a 

thermal zone where POX or CPOX is used to generate the heat needed to drive the 

downstream steam reforming reactions in a catalytic zone [11, 12]. Therefore the 

temperature profile in the reactor is characterized by a sharp rise in the thermal zone, 

and then the temperature steadily decreases in the catalytic zone due to the 

endothermic reactions. The heat from the POX negates the need for an external heat 

source, simplifying the system and decreasing the start-up time. A significant 

advantage for this process over SR is that it can be stopped and started very rapidly 

while producing a larger amount of hydrogen than POX alone. For ATR to operate 

properly both the oxygen to fuel ratio and the steam to carbon ratio must be properly 

controlled at all times in order to control the reaction temperature and product gas 

composition while preventing coke formation [11, 12]. There is some expectation 
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that this process will gain favorability with the gas–liquids industry due to favorable 

gas composition for the Fischer-Tropsch synthesis, ATR‘s relative compactness, 

lower capital cost, and potential for economies of scale [6]. For methane reforming 

the thermal efficiency is comparable to that of POX reactors 60–75%, based on the 

higher heating values, and slightly less than that of steam reformers [21].  

 

 Preferential oxidation and water-gas-shift 

 The reforming process produces a product gas mixture with significant amounts 

of carbon monoxide, often 5% or more [18]. To increase the amount of hydrogen, the 

product gas is passed through a water-gas-shift reactor to decrease the carbon 

monoxide content while increasing the hydrogen content. Typically, a high 

temperature is desired in order to achieve fast kinetics, but results in high equilibrium 

carbon monoxide selectivity and decreased hydrogen production. Therefore, the high 

temperature WGS reactor is often followed by a low temperature reactor to decrease 

CO content to 1% or less. TeGrotenhuis et al. [22] have demonstrated the potential of 

using micro reactors to build a gradient temperature WGS reactor that contains the 

high temperature WGS and low temperature WGS in a single unit. The most 

common catalyst for WGS is Cu based [18], although some interesting work is 

currently being done with molybdenum carbide [23], platinum-based catalysts [24], 

and Fe–Pd alloy catalysts [25]. To further reduce the carbon monoxide, a preferential 

oxidation reactor or a carbon monoxide selective methanation reactor can be used 

[18]. Sometimes the term selective oxidation is used in place of preferential 

oxidation, but this is misleading. Selective oxidation refers to carbon monoxide 

reduction within a fuel cell, typically a PEMFC; whereas preferential oxidation 
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occurs in a reactor external to the fuel cell. The POX and methanation reactors each 

have their advantages and challenges. The preferential oxidation reactor increases the 

system complexity because carefully measured concentrations of air must be added 

to the system [18]. However these reactors are compact and if excessive air is 

introduced, some hydrogen is burned. Methanation reactors are simpler in that no air 

is required; however, for every carbon monoxide reacted, three hydrogen molecules 

are consumed. Also, the carbon dioxide reacts with the hydrogen, so Table 3.2 

Minimum reaction temperatures required for avoiding coke formation during 

isooctane reforming at thermodynamic equilibrium [7, 12, 13, 22] Reactants 

Technology Oxygen/ carbon ratio Minimum temperature to avoid coke formation 

(8C) C8H18 + 4(O2 + 3.76N2) POX 1 1180 C8H18 + 2(O2 + 3.76N2) + 4H2O ATR 

1 1030 C8H18 + 8H2O SR 1 950 C8H18 + 4(O2 + 3.76N2) + 8H2O ATR 2 575 

C8H18 + 8H2O SR 2 225 J.D. Holladay et al. / Catalysis Today 139 (2009) 244–260 

247 careful control of the reactor conditions need to be maintained in order to 

minimize unnecessary consumption of hydrogen. Currently, preferential oxidation is 

the primary technique being developed. The catalysts for both these systems are 

typically noble metals such as platinum, ruthenium, or rhodium supported on Al2O3 

[18]. Alternatively, a membrane (ceramic or more commonly a palladium alloy) or 

pressure swing adsorption can be used to produce high purity (99.999%) hydrogen.  

 

       3.2.2  Desulfurization  

Current hydrogen production comes primarily from processing natural gas, 

although with the substantial advances in fuel cells there is increased attention to 

other fuels such as methanol, propane, gasoline, and logistic fuels such as jet-A, 
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diesel, and JP8 fuels. With the exception of methanol, all of these fuels contain some 

amount of sulfur, with the specific sulfur species dependent on the fuel type and 

source. The typical approaches to organo-sulfur removal can be categorized as 

chemical reaction technologies and adsorptive technologies. Chemical reaction 

approaches include hydrodesulfurization (HDS) and alkylation. Most commercial 

large-scale applications use HDS; therefore, substantial process and catalyst 

optimization has occurred. In this process, HDS catalysts partially or completely 

hydrogenate the sulfur-bearing molecules, resulting in a release of sulfur as H2S [30–

32]. The second chemical reaction approach, selective alkylation of organo-sulfur 

molecules, has been demonstrated at the pilot scale, but to date it has not been 

implemented on a large commercial scale. This technology increases the molecular 

weight of the sulfur bearing molecules which increases their boiling point. This 

enables distillation approaches to remove the sulfur. This approach does not require 

high-pressure hydrogen, which is a potential advantage over HDS. However, the 

olefin content in the fuel will vary, and it may be necessary to intentionally add 

olefins (or alcohols) to the fuel to convert all the sulfur-bearing molecules and to 

achieve the desired physical and chemical characteristics of the fuel. There is some 

evidence that alkylation process may occur on a limited basis in the course of HDS 

operation [31, 32]. As the name implies, adsorptive approaches employ adsorbents 

for sulfur removal from the fuel. Most often this is achieved by (1) adsorption of the 

entire sulfur containing molecule in activated carbon, modified zeolites or other 

materials or (2) adsorption onto metal surfaces such as nickel, wherein nickel sulfide 

is formed, and the remainder of the hydrocarbon is recovered [30–32]. The former 

approach is conceptually quite simple to operate, as it can in principle be carried out 
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at ambient temperature and pressure using conventional fixed-bed equipment. The 

other approach is more complicated, requiring a fluid bed operating at elevated 

temperatures and pressures. Adsorptive approaches suffer from limited capacity of 

the material. Adsorbent implementation to hydrocarbon fuels with high levels of 

sulfur such as JP-8 and diesel would require significant quantities of adsorbent, dual 

beds (to allow simultaneous adsorption and regeneration) with switching between 

beds, as well as significant logistical issues associated with disposal of spent 

adsorbents. For low sulfur fuels (50 ppm sulfur) such as natural gas, adsorbent 

technologies can make sense depending on the adsorbent capacity and the reactor‘s 

capacity. For gas phase sulfur, such as contained in natural gas, activated carbon is 

the absorbent of choice [26]. Finally, the sorbent materials tend to be very selective 

to the types of sulfur containing molecules they adsorb. Therefore, a cocktail 

approach may be necessary to ensure that all the sulfur is removed. 

 

3.2.3 Pyrolysis 

Pyrolysis is another hydrogen-producing technology where the hydrocarbon is 

decomposed (without water or oxygen present) into hydrogen and carbon [29]. 

Pyrolysis can be done with any organic material [30] and is used for the production 

of hydrocarbons and carbon nano tubes and spheres [31]. Since no water or air is 

present, no carbon oxides (e.g., CO or CO2) are formed, eliminating the need for 

secondary reactors (WGS, POX, etc.). Consequently, this process offers significant 

emissions reduction. However, if air or water is present, for example the materials 

have not been dried, and then significant CO2 and CO emissions will be produced. 

Among the advantages of this process are fuel flexibility, relative simplicity and 
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compactness, clean carbon by-product, and reduction in CO2 and CO emissions [33, 

34, 36–38]. The reactions can be written in the following form [29]: 

 

22
1 HCHC mnmn         (15) 

 

One of the challenges with this approach is the potential for fouling by the carbon 

formed, but proponents claim this can be minimized by appropriate design. Since it 

has the potential for lower CO and CO2 emissions and it can be operated in such a 

way as to recover a significant amount of the solid carbon which is easily sequestered 

[33, 37, 38], pyrolysis may play a significant role in the future. 

 

3.2.4.  Plasma reforming  

In plasma reforming the overall reforming reactions are the same as conventional 

reforming; however, energy and free radicals used for the reforming reaction are 

provided by a plasma typically generated with electricity or heat [39–44]. When 

water or steam is injected with the fuel, H, OH, and O radicals in addition to 

electrons are formed, thus creating conditions for both reductive and oxidative 

reactions to occur [41]. Proponents maintain that plasma reforming overcomes many 

limitations of conventional techniques such as cost and deterioration of the catalysts, 

size and weight requirements, sluggish response, and limitations on hydrogen 

production from heavy hydrocarbons [40, 44]. In addition, they can also be 

configured to operate at lower temperatures than traditional reforming [40, 44, 46]. In 

the cases where no catalysts are used to assist the reforming, the process is highly 

sulfur tolerant [40, 44, 46]. The main reported disadvantages include the electrical 
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requirements and high electrode erosion at elevated pressures [40]. Plasma reforming 

technologies have been developed to facilitate POX, ATR and steam reforming, with 

the majority of the reactors being POX and ATR [38]. There are essentially two main 

categories of plasma reforming: thermal and non-thermal [38]. In thermal plasma 

reforming a high electric discharge is used. A great deal of power is consumed in 

raising both the electrons and the neutral species to a very high temperature (5000–

10,000 °C). Even more power is required to cool the electrodes to stop the metals 

from vaporizing at these high temperatures [42, 44]. Fig. 2 shows methane 

conversion as a function of power input for a thermal plasma reactor [40]. This 

technology has been demonstrated in pyrolysis processes, and (with and without 

catalysts) in steam reforming, ATR and POX processes [40]. Conventional reforming 

catalysts (nickel-based with alumina support) have been explored [40]. Reduction in 

power consumption is a significant challenge for this technology [38].  

In non-thermal plasmas, only the electron temperatures are increased to high 

temperatures (5000°C), while the bulk species temperature does not increase 

significantly [39, 40, 42, 44, 47]. Since only the electrons are directly excited, only a 

few hundred watts of power are required [38]. Four types of non-thermal plasma 

reformers have been described in the literature: gliding arc plasma, dielectric barrier 

discharge (DBD), microwave plasma, and corona discharge [39, 40, 42, 47]. 

The first three use dynamic discharge to create the plasma (Fig. 3.2 of sliding arc 

discharge example), while the corona discharge generates the plasma with a static 

discharge [38]. The chief differences between these technologies is how the current 

and discharge power are controlled via the power supply, flow rate and design. In the  
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Fig. 3.2 Methane conversion as a function of power input. Empty reactor: plasmatron 

air = 0.4 g/s, fuel = 0.27 g/s, additional air = 0.7 g/s. In the case of water addition, 

0.2-0.5 g/s H2O added. Catalytic case: plasmatron air = 0.35 g/s, fuel = 0.25-0.5 g/s, 

additional air = 0.5-1 g/s. In the case of water addition, 0.5-0.8 g/s water. [40] 

 

gliding arc plasma the reactor has two diverging electrodes down the length of the 

reactor [42, 44]. An arc is formed where the gas enters by applying a high voltage. 

The gas pushes the arc down the length of the reactor. As the gas reaches the end of 

the reactor the arc is turned off, and another arc is formed at the gas entrance [38]. 

The advocates of this reactor claim that it is a flexible technology able to operate 

over a wide range of gas flow rates, the discharge power can be controlled by acting 

on the electrode or the voltage, it operates with AC or DC currents, and has a simpler 

power supply compared to the corona and microwave plasma reactors [38]. The DBD 

reactor is typically an annular configuration. The gases flow in a millimeter gap 

between the high voltage electrode encased in a non-conductive material such as 

quartz, with the outer shell being the ground electrode [39, 48]. This process has been 

used to create hydrogen and in hydrocarbon synthesis (C2, C3, and C4) using 

methane as the feed gas. It was found that when a pure methane feed was used, 

carbon black and a plasma polymerized carbon film were produced [39, 48]. 
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Therefore co-feeds such as water, carbon monoxide and carbon dioxide were used as 

well as catalysts. Carbon dioxide is particularly interesting since the process could be 

used to eliminate a „„green house‟‟ gas as well as produce useful hydrocarbons [44]. 

Unlike the gliding arc and DBD plasma, the microwave plasmas does not use an 

electric arc. It uses, as its name indicates, microwaves [41]. This technique produces 

electrons with temperatures from 4000 to 6000 °C, while heavier particles have 

temperatures closer to 2000 K [41]. However, some researchers indicated that this 

process requires more electric energy than the hydrogen generated can produce with 

a fuel cell, suggesting that further improvements may be necessary. The corona 

plasma technique is similar to the gliding arc in set up, but not in operation. In the 

gliding arc the plasma is pushed down the length of the reactor, but in the corona the 

plasma is generated between the electrodes through the length of the reactor [45]. 

The plasma is created using fast rising electric pulses (i.e. 10 ns rise time and 100 ns 

pulse) [45].  An advantage of this technique is that the length of the electric pulses is 

shorter than the time between pulses, resulting in relatively low power being 

consumed compared to other plasma technologies [45]. For example, operating the 

reactor with a 10 ns rise time and 100 ns pulse duration at 2000 Hz results in 

electricity only being used approximately 0.02% of the time. This technology has 

been used to crack hydrocarbon streams prior to them entering traditional reforming 

reactors, or as the reformer themselves both with and without catalysts [45]. Paulmire 

et al. [38] compared the efficiency of several plasma reactors. They used the 

following equation to define efficiency in their case [38]: 
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where nCO and nH2 are the molar flows of carbon monoxide and hydrogen, 

respectively, which when multiplied by the lower heating value of hydrogen (HH2) 

is the energy in the outlet stream (assuming all the carbon monoxide is converted to 

carbon dioxide in WGS reactor). The outlet energy is divided by the input energy 

(nfuel is the molar flow of the fuel multiplied by the lower heating value of the fuel, 

Hfuel, plus electric power for the plasma generation, Pelec) to find the efficiency of 

the cases investigated, a gliding arc non-thermal plasma appeared to be the most 

efficient (Table 3.3). 

 

Table 3.3 Plasma Reformer Efficiencies [38] 

Technology Fuel 

Experimental Conditions Products (dry vol.%) Reformate 

Temperature 

(K) 

η Chem. 

Reaction 

Air 

Ratio 

S/C H2 CO CO2 CH4 

Gliding arc 

non-

thermal 

Diesel ATR 0.4 1.8 23 17 6.2 1.2 1000-1300 85 

Corona 

discharge + 

catalyst 

Iso-

octane 
ATR 0.28 1 46 16 16 - 900-1100 55 

Gliding arc 

thermal 

Iso-

octane 
POX 0.25 - 22 15 2 3 1200 9 

Gliding arc 

thermal 
Diesel POX 0.25 - 23.5 23 0.1 0.03 1200 9 

Microwave Hexane SR - 2 66 25 4 - - - 

 

 

 

 

 



Chapter 3:Background of Hydrogen Production 

 

56 
 

3.2.5  Aqueous phase reforming  

Aqueous phase reforming (APR) is under development to process oxygenated 

hydrocarbons or carbohydrates to produce hydrogen [2, 50–52]. These reactors often 

operate at pressures up to 25–30 MPa and temperatures ranging from 220 to 270 °C. 

The reforming reactions are rather complex (see the reaction pathways for hydrogen 

production from oxygenated hydrocarbons in Fig. 3.3(a)), but can be summarized to 

follow the reaction pathways in Eq. (2) for reforming followed by Eq. (12) for the 

WGS [49]. Most research to date has been focused on supported Group VIII 

catalysts, with Pt-containing catalysts having the highest activity. Even though they 

have lower activity, nickel based catalysts have been evaluated due to nickel‘s low 

cost [49]. The advantages of APR reactors include elimination of the need to 

vaporize water and feedstock which eliminates a system component and also enables 

fuels that cannot be vaporized such as glucose to be processed without first degrading 

them. 

APR occurs at low temperatures which favors WGS to increase the hydrogen 

yield while suppressing CO. Thus the reforming and WGS occur in a single step 

eliminating multiple reactors (Fig. 3.3(b)) [46]. The advocates of this technology 

claim that this technology is more amiable to efficiently and selectively converting 

biomass feedstocks to hydrogen. Aqueous feed concentrations of 10–60% were 

reported for glucose and glycols. Catalyst selection is important to avoid 

methanation, which is thermodynamically favorable, along with Fischer Tropsch 

products such as propane, butane, and hexane [2, 53, 54]. Finally, due to moderate 

space time yields, these reactors tend to be somewhat large. 
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Fig. 3.3 (a) Reaction pathways for aqueous reforming of oxygenated hydrocarbons. 

(b) Summary of thermodynamic and kinetic consideration for aqueous phase                   

reforming [46] 

 

  However, this may be improved through the use of micro reactor technology 

[20]. Improving catalyst activity and durability is an area where significant progress 

can be made. 2.6. Ammonia reforming Ammonia reforming has been proposed 

primarily for use with fuel cells for portable power applications [24, 55–58]. It is an 

inexpensive fuel that, due to its use in fertilizer production, has an extensive 

distribution system including thousands of miles of pipeline. Pure ammonia has an 

energy density of 8.9 kWh/kg, which is higher than methanol (6.2 kWh/kg), but less 

than diesel or JP-8 (13.2 kWh/kg) [55]. Proponents quickly point out that ammonia‘s 

strong odor makes leak detection simple, reducing some of the risk [54]. Another 

challenge is that PEM fuel cells require ammonia levels to be reduced below ppb 
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levels to ensure long life, since exposure of ammonia to the acidic PEM electrolyte 

causes severe and irreversible loss in performance. The losses are cumulative since 

the ammonia will build up in the electrolyte.  However, for SOFC, ammonia can be 

fed directly to the fuel cell without any reforming [57, 58]. Ammonia cracking is 

endothermic and is regarded as the reverse of the synthesis reaction. In industry, 

ammonia synthesis occurs at approximately 500°C and 250 atm, and its synthesis is 

represented by the following reaction [54] : 

 

)g(NH2)g(H3)g(N 322     H = -92.4 kj/mol  (17) 

 

Typical catalysts used in both ammonia synthesis and cracking include iron 

oxide, molybdenum, ruthenium, and nickel. Ammonia cracking operates at 

temperatures around 800 to 900 °C, and unlike ammonia synthesis, low pressures are 

preferred [54]. The high temperatures can be obtained by either burning some of the 

hydrogen produced by ammonia cracking or carrying a second fuel such as propane 

or butane which is combusted.  

 

3.3  Non-reforming hydrogen production 

  Hydrogen is produced by many methods other than reforming. A brief 

description of some of the biomass-based approaches, along with production of 

hydrogen from water, is induced here. Although chemical hydrides are typically 

considered hydrogen storage materials, a very brief review will also be provided.  
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3.3.1  Hydrogen from biomass 

  In the near term, biomass is the most likely renewable organic substitute to 

petroleum. In the modern.  Biomass is available from a wide range of sources such as 

animal wastes, municipal solid wastes, crop residues, short rotation woody crops, 

agricultural wastes, municipal solid wastes, crop residues, short rotation herbaceous 

species (i.e., switch grass), waste paper, corn, and many more [1, 59–63]. For 

hydrogen generation, the current biomass technologies include: gasification 

pyrolysis, conversion to liquid fuels by supercritical extraction, liquefaction, 

hydrolysis, etc. followed in some cases by reformation, and biological hydrogen 

production. A brief description of gasification and biological hydrogen production 

will be given here. Conversion to liquid fuels is beyond the scope of this paper.  

 

a.   Biomass gasification 

Gasification technology, commonly used with biomass and coal, is very mature 

and commercially used in many processes. It is a variation of pyrolysis and, 

therefore, is based upon partial oxidation of the materials into a mixture of hydrogen, 

methane, carbon monoxide, carbon dioxide, and nitrogen known as a producer gas. 

Since pyrolysis and steam reforming have been described previously, only a brief 

examination of the salient differences occurs here. The gasification process typically 

suffers from low thermal efficiency since moisture contained in the biomass must 

also be vaporized [56]. It can be done with or without a catalyst [60] and in a fixed 

bed or fluidized bed reactor, with the fluidized bed reactor typically yielding better 

performance [60]. Addition of steam and or oxygen to the gasification process results 

in steam reforming and produces a syngas stream (H2 to CO ratio of 2:1), which can 
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be used as the feed to a Fischer-Tropsch reactor to make higher hydrocarbons, or to a 

WGS for hydrogen production [34, 62]. Superheated steam (900 °C) has been used to 

reform dried biomass to achieve high hydrogen yields as seen in Fig. 3.4 [56].    

Gasification, even at high temperatures of 800–1000 °C, produces a significant 

amount of tar in the product gas (Fig. 3.4). Therefore, a secondary reactor, which 

utilizes calcined dolomite or nickel catalysts, is used to catalytically clean and 

upgrade the product gas [60]. Ideally, oxygen should be used in these plants; 

however, oxygen separation unit operations are cost prohibitive for small-scale 

plants. This limits the gasifiers to the use of air resulting in significant dilution of the 

products as well as the production of NOX. Low cost, efficient oxygen separators are 

needed for this technology. For hydrogen production, a WGS process can be 

employed to increase the hydrogen concentration, and then a separation process used 

to produce pure hydrogen [58]. Several processes have been proposed to decrease the 

amount of tar produced in the gasification reactor. For example, the employment of 

an Rh/CeO2/M (M = SiO2, Al2O3, and ZrO2) catalyst for use in the gasification 

process has been found to reduce the tar formation [60].  

Much cheaper catalysts would be required to make such an approach viable. 

Typically, gasification reactors are built on a large scale and require massive amounts 

of material to be continuously fed to them. One of the problems with this technology 

is that a tremendous amount of resources must be used to gather the large amounts of 

biomass to the central processing plant. Currently, the high logistics costs typically 

limit the gasification plants to be located. Development of smaller efficient 

distributed gasification plants may be required for this technology for cost effective 

hydrogen production using this technology. 



Chapter 3:Background of Hydrogen Production 

 

61 
 

 

Fig. 3.4 Production yield for thermal decomposition and superheated 

steam reforming [56] 

 

 

 

b. Biological hydrogen  

Due to increased attention to sustainable development and waste minimization, 

research in bio-hydrogen has substantially increased over the last several years [64–

67]. The main bioprocess technologies used for bio-hydrogen production include: 

photolytic hydrogen production from water by green algae or cyano bacteria (also 

known as direct photolysis), dark-fermentative hydrogen production during the 

acidogenic phase of anaerobic digestion of organic material, photo-fermentative 

processes, two stage dark/fermentative, and hydrogen production by water-gas shift 
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[66, 68, 69]. It should be noted that only a small fraction of naturally occurring 

microorganisms have been discovered and functionally characterized. In addition, the 

known organisms are being modified to improve their characteristics. The feeds for 

biological hydrogen are water for photolysis processes and biomass for fermentative 

processes. Brief descriptions with their advantages and limitations will be presented 

here. There are several recent Fig. 3.4. Production yield for thermal decomposition 

and superheated steam reforming [56]. J.D. Holladay et al. / Catalysis Today 139 

(2009) 244–260 251 review articles that provide in-depth descriptions of the reaction 

pathways and types of enzymes being used in bio-hydrogen production and the 

interested reader is referred to them for more details [66, 68, 70]. 

 

 Direct photolysis 

 

Photosynthesis user solar energy to convert carbon dioxide and water to 

carbohydrates and oxygen. For some organisms, excess solar energy is ‗‗vented‘‘ by 

production of hydrogen via direct photolysis of water. Researchers are trying to 

engineer algae and bacteria so the majority of the solar energy is diverted to 

hydrogen production, with enough diverted to carbohydrate production to solely 

maintain life. Direct photolysis of water is done in two ways. First it can use green 

algae‘s photosynthesis capabilities to generate oxygen and hydrogen ions. The 

process occurs along the thylakoid membrane where two photosystems are located 

(Fig. 3.5). The first step is the splitting of water into oxygen using solar radiation. 

The hydrogen in this reaction is bound in the plastiquinone (pqH2) molecule. The  
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Fig. 3.5 Direct photolysis process [69] 

 

     pqH2 is conveyed down the membrane to the cytochrome b6f which transfers the  

stored energy from pqH2 to plastocyanin (pc). The pq is recycled back to 

photosystem II. Additional solar radiation is absorbed in photosystem I which is used 

to transfer the chemical energy in pc to ferredoxin (fd). The fd is used to convert the 

NADP to NADPH2. The NADPH2 by means of the Benson-Bass Ham-Calvin Cycle 

converts CO2 to carbohydrates. However, under anaerobic conditions or when too 

much energy is captured in the process some organisms vent the excess electrons by 

using a hydrogenase enzyme which converts the hydrogen ions in the fd to hydrogen 

gas [69]. The advantage of this technology is that the primary feed is water, which is 

inexpensive and available almost everywhere [67]. Currently, this process requires a 

significant surface area to collect sufficient light. Unfortunately, these 

microorganisms in addition to producing hydrogen, produce oxygen, which, when 

sensed by the organism, causes it to cease hydrogen production [69, 72]. Therefore 
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work is being done to either, identify or engineer less oxygen sensitive organisms, 

separate the hydrogen and oxygen cycles, and/or change the ratio of photosynthesis 

(oxygen production) to respiration (oxygen consumption) in order to prevent oxygen 

buildup. The addition of sulfate to the solution has been found to depress oxygen 

production and sensitivity; however, the hydrogen production mechanisms are also 

suppressed [69]. Since oxygen and hydrogen are co-produced in a mixed gas, 

significant safety and separation issues occur. Recent innovative research has 

resulted in substantially increased light utilization efficiency of up to 15% compared 

to the previous utilization of 5%  [71]. For photosynthetic to biomass, efficiency is as 

high as 2% on coral reefs, but averages 0.2% globally. This translates into a 

maximum theoretical efficiency for photosynthetic hydrogen production of about 1% 

[69]. Proponents of photolytic hydrogen production claim that 10–13% is achievable 

by engineering the organisms to better utilize the solar power [69]. Another challenge 

is achieving continuous hydrogen production under aerobic conditions. This 

technology has significant promise, but also tremendous challenges.  

 

 Dark fermentation.  

Dark fermentation uses primarily anaerobic bacteria, although some algae are 

also used, on carbohydrate rich substrates grown, as the name indicates, in the dark 

[66, 69, 72]. For fermentative processes, the biomass used needs to be biodegradable, 

available in high quantities, inexpensive, and have a high carbohydrate content [59], 

[67]. Pure, simple sugars, which are easily biodegradable such as glucose and lactose 

are preferred, but are not readily available in high quantities and/or are relatively 

expensive [67]. Major biomass wastes which can be readily utilized for bio-hydrogen 
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are listed in Table 3.4. The pathways are dependent on the type of bacteria used. 

Standard fermentative pathway has a theoretical maximum production of 4 moles of 

hydrogen per mole of glucose. Currently fermentative processes produce 2.4 to 3.2 

mole of hydrogen per mole glucose [70]. However, it may be possible to change the 

fermentative pathway using molecular engineering with the objective to increase 

hydrogen production‘s theoretical maximum to 12 moles hydrogen per mole glucose. 

The gas produced is a mixture of hydrogen, carbon dioxide, methane, carbon 

monoxide, and some hydrogen sulfide [64]. Therefore a separation step is required to 

produce high purity hydrogen. For dark fermentation processes, the partial pressure 

of hydrogen is a factor; as the hydrogen pressure increases the hydrogen production 

decreases [64]. The obvious solution to this limitation is to remove the hydrogen as it 

is generated. The fermentation process produces acetic, butyric and other organic 

acids, which is a more significant problem. These acids can depress hydrogen yield 

by diverting the metabolic pathway toward organic chemical production. In addition, 

their production requires subsequent wastewater treatment which adds cost and 

complexity to the system. This pathway either needs to be eliminated to maximize  

 

Table 3.4 Biomass waste that is readily utilized for bio-hydrogen production [66, 69] 

 
Biomass material Comments 

Starch agricultural and food industry waste 

Must by hydrolyzed to glucose or maltose, 

followed by conversion to organic acids and 

finally hydrogen  

Cellulose agricultural and food industry waste 
Must be finely ground and go through 

delignification, then is processed as starch  

Carbohydrate rich industrial waste 

May require pretreatment for removal of 

undesirables and for nutritional balancing, then it 

is processed as starch  

Waste sludge from waste water treatment 

plants 

May require pretreatment, the converted to 

organic acids and finally converted to hydrogen 
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hydrogen production and simplify the process or it needs to be taken advantage of by 

the integrated multi-step processes described below [21]. 

 

 Photo-fermentative processes.  

Photo-fermentative processes, also called photosynthetic bacterial hydrogen 

production, capitalize on the nitrogenase functionality of purple non-sulfur bacteria 

to evolve hydrogen. In this process light harvesting pigments such as chlorophylls, 

carotenoids, and phycobilins scavenge light energy which is transferred to membrane 

reaction centers similar to those in photolytic organisms (algae). Sunlight converts 

water into protons, electrons, and O2. The nitrogenase catalyst is used to react the 

protons and electrons with nitrogen and ATP to make ammonia, hydrogen and ADP. 

Since oxygen inhibits the nitrogenase, cyanobacteria separate nitrogen fixation and 

oxygen generation either spatially or temporally. In nature the bacteria use the 

hydrogen by-product to fuel other energy requiring processes via the uptake 

hydrogenase enzyme. Therefore, researchers are trying to genetically modify the 

bacteria to suppress this enzyme. The process is done in deficient nitrogen conditions 

using primarily infrared light energy and, preferably, reduced organic acids although 

other reduced compounds can be used [66, 69, 72]. The advantages of this process 

are that oxygen does not inhibit the process, and that these bacteria can be used in a 

wide variety of conditions (i.e. batch processes, continuous cultures, and 

immobilized in carrageenan, agar gel, porous glass, activated glass, or polyurethane 

foam) [66, 69, 72]. The disadvantages are the limited availability of organic acids, 

the nitrogenase enzyme is slow, the process requires a relatively high amount of 

energy, and hydrogen re-oxidation [69, 72]. To increase the nitrogenase activity and 
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decrease the energy requirements, the proper ratio of carbon to nitrogen nutrients 

must be maintained. Enzyme engineering approaches are under development to 

decrease the nitrogenase sensitivity to high levels of nitrogen nutrients. In addition, 

hydrogen re-oxidation is being addressed by micro engineering to deactivate 

hydrogenase enzymes in the bacteria. The hydrogenase enzymes recycle the 

hydrogen produced by the nitrogenase to support cell growth.  

 

 Microbial electrolysis cells 

Microbial aided electrolysis cells (MEC), also called bio electrochemically 

assisted microbial reactor (BEAMR), use electro hydrogenesis to directly convert 

biodegradable material into hydrogen [74–76]. The MEC is a modified microbial fuel 

cell. In a microbial fuel cell, exoelectrogens (special microorganisms), decompose 

(oxidize) organic material and transfer electrons to the anode. The electrons combine 

at the cathode, after traveling through an external load, with protons and oxygen 

forming water. A MEC operates in anaerobic state (no oxygen at the cathode) and an 

external voltage is applied to the cell rather than generated by it. The added energy is 

required since acetate substrate decomposition is not spontaneous under standard 

conditions  [74–76]. Hydrogen production occurs at the cathode via Eq. (18). 

 

   2H
+
 + 2e

-
            H2      (18) 

 

 

The theoretical potential for hydrogen production in neutral pH (pH 7) is 0.61 V, 

VCat vs. Ag/AgCl [74]. Exoelectrogens generate an anode potential of 

approximately Van = 0.5 V. Therefore the minimum applied potential (Vapp = Van 
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VCat) is 0.11 V [74]. For acetate, the actual applied voltage is larger than 0.3 V due 

to electrode over potentials and ohmic resistance [74].  

The design of MEC systems initially used similar components as used in PEM 

fuel cells [74]. However, flat electrode designs limited the surface area for the 

exoelectrogens and the membranes increased the ohmic resistances so alternative 

designs were developed. The most recent design uses a graphite brush for the 

exoelectrogen substrate (anode) and no membrane separator [72]. This design 

succeeded to decrease the applied voltage from 1.0 V using a gas diffusion 

membrane and 0.5 V with a Nafion membrane to 0.4 V in the membrane less design. 

The efficiency is a function of the lower heating value of the hydrogen divided by the 

lower heating value of the organic material plus the electrical energy provided [72]. 
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where I is the current, Eap the applied voltage, t(s) the time increment for n data 

points measured during the batch cycle, and Rex is an external resistance which was 

10 V by Call and Logan [72]. Using Eq. (19), the efficiency was raised from 23% 

with a gas diffusion membrane and 53% with a Nafion membrane to 76% in the 

membrane less reactor [72]. Under these conditions a hydrogen production rate of 

3.12 m
3
 H2/(m

3
 reactor day) [72]. However, the methane production rates also 

increased to an average of 3.5% methane in the production gas [72]. To control the 

methanogensis in these reactors, strategies involving intermittent draining and air 

exposure or in situ air-sparging have been proposed [72]. However, these strategies 
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will result in more complex systems with significantly increased operations and 

maintenance requirements, translating into more expensive systems. In addition to 

methane suppression, continuous operation, decreasing the pH, operating under 

carbon limited conditions, increasing the microorganisms tolerance to impurities, and 

examining other feedstocks are all issues to be addressed. 

 

 

 Multi-stage integrated process 

Multi-stage hydrogen production has been implemented to maximize the 

hydrogen production from the feed [67]. Initially, the process consisted of two stages, 

dark fermentation followed by photo fermentation [67]. but three or even four stages 

have since been proposed in different configurations (Fig. 3.6) [21]. In this process, 

the biomass material is first fed to a dark fermentation reactor where the bacteria 

decompose the feedstock to hydrogen and an organic acid rich effluent. Since the 

effluent has organic acids in it, this eliminates the challenge of developing a supply 

of organic acids for the photo-fermentative process. Since the photo-fermentative 

process uses primarily infrared light, the sunlight is first filtered through a direct 

photolysis reactor where the visible light is utilized, but the infrared light is not [21]. 

The fourth stage is the use of a microbial electrolysis cells which produces hydrogen, 

not electricity [21]. This cell utilizes the same organic acids, but does not require 

light. Therefore, it can operate during the night or other times of low light [21]. The 

effluent from the first stage contains ammonia, which inhibits the second stage, so 

some dilution and neutralization to adjust the pH to 7 is required prior to feeding it to 

the second stage [67]. Integration of multiple processes produces significant 

challenges for the reactor engineering, system design, process control, and operation  
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Fig. 3.6 Multi-stage integrated biohydrogen system [21] 

 

and maintenance. The challenges with the coproduction of hydrogen and oxygen 

from photolytic hydrogen production include: 

 Photosynthetic and respiration capacity ratio. Green algae and cyanobacteria 

become anaerobic when their photosynthesis/ respiration (P/R) capacity ratio is 

1 or less. Under such anaerobic conditions, photosynthetic water oxidation 

produces H2 instead of starch, and the oxygen evolved by photosynthesis is 

consumed by respiration, to produce CO2. Currently, this process is achieved by 

nutrient deprivation, with the drawback that the resulting P/ R  1 ratio is 

achieved by partially decreasing the quantum yield of photosynthesis. 

Alternative mechanisms to bring the P/R ratio to 1 need to be investigated, 

particularly those methods that focus on achieving a P/R ratio of 1 without 

changing the quantum yield of photosynthesis. Two further issues will need to 
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be investigated under these conditions: (1) rate limitations due to the non-

dissipation of the proton gradient and (2) the ability of the culture to take up a 

variety of exogenous carbon sources under the resulting anaerobic conditions 

[21].  

 Co-culture balance. To extend the adsorption spectrum of the H2- photo 

producing cultures to the infrared (700 to 900 nm), the possibility of co-

cultivating oxygenic photosynthetic organisms with anoxygenic photosynthetic 

bacteria that absorb light in the visible (400 to 600 nm), thus potentially 

competing with green algae for these latter wavelengths. Strategies need to be 

devised to either maintain the appropriate biomass ratio of the two organisms as 

suspensions in the same cultures. The competition for organic carbon substrates 

between two organisms in the same medium also needs to be investigated [21].  

 Concentration and processing of cell biomass. In an integrated system, cell 

biomass from either green agae/cyanobacteria or photosynthetic bacteria can 

serve as the substrate for dark fermentation. The green algal and cyanobacterial 

cell walls are made mostly of glycoproteins (sugar-containing proteins), which 

are rich in sugars like arabinose, mannose, galactose, and glucose. Purple 

photosynthetic bacterial cell walls contain peptidoglycans (carbohydrate 

polymers cross-linked by protein, and other polymers made of carbohydrate 

protein and lipid). Pretreatment of cell biomass may be necessary to render it 

more suitable for dark fermentation. Methods for cell concentration and 

processing will depend on the type of organism used and how the biological 

system is integrated [21]. 
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 Water-gas shift 

Finally, certain photoheterotrophic bacteria in the family Rhodospirllacae have 

been found which can grow in the dark by feeding only upon CO [64]. The oxidation 

of the CO to CO2 was determined to follow the WGS reaction (Eq. (11)), but uses 

enzymes rather than metal to catalyze the process. Since it occurs at low 

temperatures and pressures, thermodynamics favor a high conversion of CO to CO2 

and H2  [64]. Its conversion rate is actually relatively high compared to other 

biological processes, but it does require a CO source and darkness  [64]. 

 

 Production rates comparison 

Although there have been some advances since Levin et al. published their 

findings in 2004, the table does provide order of magnitude estimates for the 

approximate size of the reactors for hydrogen production. One of the major 

challenges to this technology is the slow hydrogen production rate. For example, a 5 

kW PEM fuel cell, sufficient to provide residential power, requires approximately 

119.5 mol H2/h (95% H2 utilization, 50% efficiency). Therefore a bioreactor ranging 

from 1 to 1700 m
3
 would be required to provide the hydrogen  [64]. The complete 

system with controls and balance of plant equipment is not included in the size 

estimate. 

 

3.3.2 Hydrogen from water  

There has been a great deal of research in splitting water to make hydrogen and 

oxygen; in fact its commercial uses date back to the 1890s [21]. Water splitting can 

be divided into three categories: electrolysis, thermolysis, and photoelectrolysis. 
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a.  Electrolysis 

Water splitting in its simplest form uses an electrical current passing through two 

electrodes to break water into hydrogen and oxygen. Commercial low temperature 

electrolyzers have system efficiencies of 56–73% (70.1–53.4 kWh/kg H2 at 1 atm 

and 25°C) [69]. It is essentially the conversion of electrical energy to chemical 

energy in the form of hydrogen, with oxygen as a useful by-product. The most 

common electrolysis technology is alkaline based, but more proton exchange 

membrane (PEM) electrolysis and solid oxide electrolysis cells (SOEC) units are 

developing [77, 78]. SOEC electrolyzers are the most electrically efficient, but are 

the least developed of the technologies. SOEC technology has challenges with 

corrosion, seals, thermal cycling, and chrome migration. PEM electrolyzers are more 

efficient than alkaline, do not have the corrosion and seals issues that SOEC, but cost 

more than alkaline systems. Alkaline systems are the most developed and lowest in 

capital cost. They have the lowest efficiency so they have the highest electrical 

energy costs. 

Electrolyzers are not only capable of producing high purity hydrogen, but 

recently, high-pressure units (pressures larger than 1000 psig) are being developed 

[77]. The advantage of high-pressure operation is the elimination of expensive 

hydrogen compressors. Currently, electrolysis is more expensive than using large-

scale fuel processing techniques to produce hydrogen. And, if nonrenewable power 

generation is used to make the electricity for electrolysis, it actually results in higher 

emissions compared to natural gas reforming. However, it should be noted, that if the 

hydrogen must be shipped in cylinders or tankers, then on site production via 

electrolysis may be less expensive. Several different approaches have been proposed 
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to address these short comings. These include using renewable sources of energy 

such as solar, wind, and hydro, to produce the electricity [77], or excess power from 

existing generators to produce hydrogen during off-peak times [78], and high 

temperature electrolysis. There have been several studies on the cost of using 

renewable energy for electrolysis, all reaching the conclusion that as the cost of 

natural gas increases renewable energy will become economically competitive at 

central production facilities as well as at distributed generation points especially if 

carbon dioxide and other pollutants are included in the analysis [79]. 

 

 Alkaline electrolyzer  

Alkaline electrolyzers are typically composed of electrodes, a microporous 

separator and an aqueous alkaline electrolyte of approximately 30 wt% KOH or 

NaOH [25, 71]. In alkaline electrolyzers nickel with a catalytic coating, such as 

platinum, is the most common cathode material. For the anode, nickel or copper 

metals coated with metal oxides, such as manganese, tungsten or ruthenium, are 

used. The liquid electrolyte is not consumed in the reaction, but must be replenished 

over time because of other system losses primarily during hydrogen recovery. In an 

alkaline cell the water is introduced in the cathode where it is decomposed into 

hydrogen and OH [21]. The OH travels through the electrolytic material to the anode 

where O2 is formed. The hydrogen is left in the alkaline solution [21]. The hydrogen 

is then separated from the water in a gas liquid separations unit outside of the 

electrolyser [21]. The typical current density is 100–300 mA cm
2
 and alkaline 

electrolyzers typically achieve efficiencies 50–60% based on the lower heating value 

of hydrogen [69]. The overall reactions at the anode and cathode are:  
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Anode: 

OH2OOH4 22 
        (20) 

Cathode: 

  OH2He2OH2 22        (21) 

Overall: 

22
1

22 OHOH    H = -288 kj/mol    (22) 

 

 Proton exchange membrane electrolyzer 

 PEM electroyzers build upon the recent advances in PEM fuel cell technology 

[20]. PEM-based electrolyzers typically use Pt black, iridium, ruthenium, and 

rhodium for electrode catalysts and a Nafion membrane which not only separates the 

electrodes, but acts as a gas separator [71, 77]. In PEM electrolyzers water is 

introduced at the anode where it is split into protons and oxygen [20]. The protons 

travel through the membrane to the cathode, where they are recombined into 

hydrogen [20]. The O2 gas remains behind with the unreacted water. There is no need 

for a separations unit. Depending on the purity requirements a drier may be used to 

remove residual water after a gas/liquid separations unit. PEM electrolyzers have low 

ionic resistances and therefore high currents of 1600 mA cm
2
 can be achieved while 

maintaining high efficiencies of 55 to 70% [69]. The reactions at the anode and 

cathode are: 

 

Anode: 

  e4H42OO2H2        (23) 
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Cathode: 

2H2e4H4  
        (24) 

Overall is the same as for alkaline electrolyzers: 

22
1

22 OHOH    H = -288 kj/mol    (25) 

 

  Solid oxide electrolysis cells 

 Solid oxide electrolysis cells (SOEC) are essentially solid oxide fuel cells 

operating in reverse. These systems replace part of the electrical energy required to 

split water with thermal energy, as can be seen in Fig. 3.7 [80]. The higher 

temperatures increase the electrolyzer efficiency by decreasing the anode and 

cathode over potentials which cause power loss in electrolysis [81, 82]. For example, 

an increase in temperature from 375 to 1050 K reduces the combined thermal and 

electrical energy requirements by close to 35% [81]. A SOEC operates similar to the 

alkaline system in that an oxygen ion travels through the electrolyte leaving the 

hydrogen in unreacted steam stream [20]. The reactions are shown in Eqs. (17)–(19). 

Other advantages for high temperature electrolysis  with a solid oxide based 

electrolyzer include: the use of a solid electrolyte which, unlike KOH for alkaline 

systems, is non-corrosive and it does not experience any liquid and flow distribution 

problems [24, 81]. Of course the high temperature operation requires the use of 

costly materials and fabrication methods in addition to a heat source [20]. The 

materials are similar to those being developed for solid oxide fuel cells (SOFC), 

yttria stabilized zirconia (YSZ) electrolyte, nickel containing YSZ anode, and metal 

doped lanthanum metal oxides [24, 81], and have the same problems with seals 
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which are being investigated. High temperature electrolysis efficiency is dependent 

on the temperature and the thermal source. The efficiency as a function of electrical 

input alone can be very high with efficiencies 85–90% being reported [20]. However, 

when the thermal source is included the efficiencies can drop significantly. For 

example, SOEC operating from advanced high temperature nuclear reactors may be 

able to achieve up to 60% efficiency. In addition to using conventional combustion 

or nuclear energy to produce the high temperature source, solar energy is under 

development and may result in higher efficiencies [81–84]. Combining SOEC with a 

SOFC for co-generation of hydrogen and electricity has been proposed [84]. In this 

hybrid system a SOFC and SOEC are manifolded into the same stack and fed the 

same fuel, such as natural gas. Hydrogen is then produced by the SOEC and 

Fig. 3.7 Energy demand for water and steam electrolysis [80] 
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electricity is produced by the SOFC. Proof-of-concept short stacks have been 

demonstrated with efficiencies of up to 69% [84]. However, the fuel utilization is still 

relatively low at approximately 40% and coking is a serious issue in addition to the 

other challenges faced by SOEC [84]. 

 

b.   Thermochemical water splitting  

In thermochemical water splitting, also called thermolysis, heat alone is used to 

decompose water to hydrogen and oxygen [24, 86]. It is believed that overall 

efficiencies of close to 50% are achievable using these processes [86]. It is well 

known that water will decompose at 2500°C, but materials stable at this temperature 

and also sustainable heat sources are not easily available [20]. All of the processes 

have significantly reduced the operating temperature from 2500°C, but typically 

require higher pressures. Three example cycles are:  

 

Ispra Mark-10 [20] : 

4443222 SO2)NH(INH2NH4ISOOH2    T = 50°C (26) 

2234 IHNH2NH2       T = 630°C (27) 

 

3272242424 NH2OHOSNaSONaSO)NH(   T = 400°C (28) 

423722 SONaSOOSNa       T = 550°C (29) 

22
1

23 OSOSO        T = 870°C (30) 

Sulfuric acid decomposition [86] : 

22
1

2222 OSOOHOHSO        (31) 
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HBr2SOHSOBrOH2 42222       (32) 

22 HBrHBr2          (33) 

22222 HISOIOH2         (34) 

ZnO/Zn [20] : 

22
1 OZnZnO        T = 1800°C (35) 

2)s(2 HZnOOHZn       T = 475°C (36) 

 

In choosing the process there are five criteria which should be met [20]. (1) 

Within the temperatures considered, the DG of the individual reactions must 

approach zero. This is the most important criterion. (2) The number of steps should 

be minimal. (3) Each individual step must have both fast reaction rates and rates 

which are similar to the other steps in the process. (4) The reaction products cannot 

result in chemical-by-products, and any separation of the reaction products must be 

minimal in terms of cost and energy consumption. (5) Intermediate products must be 

easily handled [20]. Currently, there are several processes which meet the five 

criteria, such as the Ispra-Mark 10, 11, 13, 15, UT-3 process, and the sulfuric acid 

decomposition process; however, they are still not competitive with other hydrogen 

generation technologies in terms of cost and efficiency which is the major focus of 

research in those processes [24, 87]. In addition, these processes require large 

inventories of highly hazardous corrosive materials. The combination of high 

temperatures, high pressures, and corrosion results in the need for new materials. 

Finally, several of them such as the hybrid sulfur Ispra-Mark 11 process require 

inefficient electrochemical steps which need to be improved [24, 87]. It is believed 
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that scaling up the processes may lead to improved thermal efficiency overcoming 

one of the principle challenges faced by this technology [86]. In addition, a better 

understanding of the relationship between capital costs, thermodynamic losses, and 

process thermal efficiency may lead to decreased hydrogen production costs [86]. 

The current processes all use four or more reactions, and it is believed that an 

efficient two reaction process may make this technology viable [86].  

 

c. Photoelectrolysis  

Photoelectrolysis uses sunlight to directly decompose water into hydrogen and 

oxygen, and uses semiconductor materials similar to those used in photovoltaics. In 

photovoltaics, two doped semiconductor materials, a p-type and an n-type, are 

brought together forming a p–n junction [20]. At the junction, a permanent electric 

field is formed when the charges in the p-type and n-type of material rearrange. 

When a photon with energy greater than the semiconductor material‘s bandgap is 

absorbed at the junction, an electron is released and a hole is formed. Since an 

electric field is present, the hole and electron are forced to move in opposite 

directions which, if an external load is also connected, will create an electric current 

[24, 71]. This type of situation occurs in photoelectrolysis when a photocathode, type 

material with excess holes, or a photo anode, n-type of material with excess 

electrons, is immersed in an aqueous electrolyte, but instead of generating an electric 

current, water is split to form hydrogen and oxygen (Fig. 3.8) [20, 69, 79]. The 

process can be summarized for a photoanode-based system as follows: (1) a photon 

with greater energy than the bandgap strikes the anode creating an electron–hole pair.  
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(2) The holes decompose water at the anode‘s front surface to form hydrogen ions 

and gaseous oxygen, while the electrons flow through the back of the anode which is 

electrically connected to the cathode. (3) The hydrogen ions pass through the 

electrolyte and react with the electrons at the cathode to form hydrogen gas [20, 69, 

79]. (4) The oxygen and hydrogen gasses are separated, for example by the use of a 

semi-permeable membrane, for processing and storage.  

Various materials have been investigated for use in photoelectrodes such as thin-

film WO3, Fe2O3 and TiO2, as well as nGaAs, n-GaN, CdS, and ZnS for the 

photoanode; and CIGS/Pt, p-InP/ Pt, and p-SiC/Pt for the photocathodes [180,187–

189]. 

The materials for the photoelectrodes and the semiconductor substrate determine 

the performance of the system. The hydrogen production efficiency is generally 

limited by imperfections in the crystalline structure, bulk and surface properties of 

the photoelectrodes, the material‘s resistance to corrosion from the aqueous 

Fig. 3.8 Energetic of n-type  semiconductor photoelectrochemical cells [20, 

69, 79] 
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electrolytes, and the ability to drive the water decomposition reactions [20, 69, 79]. 

In order to maximize the efficiency of this process, the energetics of the 

electrochemical reaction must be harmonized with the solar radiation spectrum, 

which is a non-trivial problem. A mismatch of the solar radiation and materials can 

produce photo-generated holes that can cause surface oxidations leading to either a 

blocking layer on the semiconductor surface or corrosion of the electrode via 

dissolution [20, 69, 79]. 

Current photoelectrodes used in PEC that are stable in aqueous solutions have a 

low efficiency for using photons to split water to produce hydrogen. The target 

efficiency is  larger than 16% solar energy to hydrogen. This encompasses three 

material system characteristics necessary for efficient conversion: (1) the band gap 

should fall in the range sufficient to achieve the energetics for electrolysis and yet 

allow maximum absorption of the solar spectrum. This is 1.6–2.0 eV for single 

photoelectrode cells, and 1.6–2.0 eV/0.8–1.2 eV for top/bottom cells in stacked 

tandem configurations; (2) have a high quantum yield (> 80%) across its absorption 

band to reach the efficiency necessary for a viable device; (3) straddle the redox 

potentials of the H2 and O2 half reactions with its conduction and valence band edges, 

respectively. The efficiency is directly related to the semiconductor band gap (Eg), 

i.e., the energy difference between bottom of the conduction band and the top of the 

valence band, as well as the band edge alignments, since the material or device must 

have the correct energy to split water. The energetics are determined by the band 

edges, which must straddle water‘s redox potential with sufficient margins to account 

for inherent energy losses. Cost efficient, durable catalysts with appropriate Eg and 

band edge positions must be developed. To achieve the highest efficiency possible in 
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a tandem configuration, ‗‗current matching‘‘ of the photoelectrodes must be done. 

Electron transfer catalysts and other surface enhancements may be used to increase 

the efficiency of the system. These enhancements can minimize the surface over-

potentials in relationship to the water and facilitate the reaction kinetics, decreasing 

the electric losses in the system. Fundamental research is on-going to understand the 

mechanisms involved and to discover and/ develop appropriate candidate surface 

catalysts for these systems [83, 87–92]. In addition to semiconductor devices for 

photoelectrolysis, it is possible to use suspended metal complexes in solution as the 

photochemical catalysts.  

 

3.4  Conclusion  

There is a tremendous amount of research being pursued in the development of 

hydrogen generation systems. Currently, the most developed and most used 

technology is the reforming of hydrocarbon fuels. In order to decrease the 

dependence on fossil fuels, significant development in other hydrogen generation 

technologies from renewable resources such as biomass and water is being done. 

Table 6 summarizes the technologies, along with their feedstocks and efficiencies. 

How the efficiency is calculated depends on the technology. The most mature 

technologies are reforming and gasification. Electrolysis coupled with renewable 

energy is near term low emission technology. Longer term technologies include 

biohydrogen, thermochemical water splitting, and photoelectrolysis. While 

significant progress has been made in development of these alternative hydrogen 

production systems, more technical progress and cost reduction needs to occur for 

them to compete with traditional large scale reforming technologies at this time. 
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However, for smaller scale hydrogen production at distributed facilities the 

technologies, particularly electrolysis, may be cost competitive. In addition, it is 

important to note that hydrogen can be produced from a wide variety of feed stocks 

available almost anywhere. There are many processes under development which will 

have a minimal environmental impact. Development of these technologies may 

decrease the world‘s dependence on fuels that come primarily from unstable regions. 

An often over-looked impact is that by producing and using hydrogen internal to 

one‘s country keeps money and jobs from being exported. The ‗‗in house‘‘ hydrogen 

production may increase both national energy and economic security. The ability of 

hydrogen to be produced from a wide variety of feedstocks and using a wide variety 

of processes makes it so that every region of the world may be able to produce much 

of their own energy. It is clear that as the technologies develop and mature, hydrogen 

may prove to be the most ubiquitous fuel available. 

 

Table 3.5 Technology summary list [24, 42, 71, 74] 

Technology Feedstock Efficiency (%) Maturity 

Steam reforming Hydrocarbons 70-85 Commercial 

Partial oxidation Hydrocarbons 60-75 Commercial 

Autothermal reforming Hydrocarbons 60-75 Near term 

Plasma reforming Hydrocarbons 9-85 Long term 

Aqueous phase reforming Carbohydrates 35-55 Medium term 

Ammonia reforming Ammonia NA Near term 

Biomass gasification Biomass 30-50 Commercial 

Photolysis Sunlight + water 0.5 Long term 

Dark fermentation Biomass 60-80 Long term 

Photo fermentation Biomass + sunlight 0.1 Long term 

Microbial electrolysis cells Biomass + electrolysis 78 Long term 

Alkaline electrolyzer H2O + electricity 50-60 Commercial 

PEM electrolyzer H2O + electricity 55 – 70 Near term 

Solid oxide electrolysis cells H2O + electricity + heat 40 – 60 Medium term 

Thermochemical water splitting H2O + heat NA Long term 

Photoelectrochemical water 

splitting 
H2O + sunlight 12.4 Long term 
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Chapter 4: A Novel Method for Producing Hydrogen                     

from Hydrocarbon Liquid using Microwave 

in-Liquid Plasma 

 

 

4.1. Introduction 

In recent years, energy consumption driven by economic growth has increased 

dramatically, resulting in degradation to the environment. Therefore, sources of clean 

energy are becoming increasingly important in order to protect the environment 

while maintaining an ample energy supply. Recycling of waste from organic and 

non-organic materials such as household garbage, waste oil, or plastics can protect 

the environment by reducing the amount of waste and mitigating the effects of 

greenhouse gasses. Processing organic and non-organic materials to produce 

hydrogen gas is a challenging task and has been studied by several researchers [1–3]. 

The main reason that hydrogen used as fuel is water could be its source and hydrogen 

has enormous potential energy per unit mass than any other fuel  [4,  5].   

However, hydrogen is not a primary energy source like coal, oil, and natural gas, 

which exist in nature. Rather, it is a secondary energy source that is obtained by 

processing a primary energy source. Accordingly, a relatively large amount of energy 

is needed to extract and capture hydrogen [6–8]. 

  Electrolysis of water is the dominant method for manufacturing clean hydrogen. 

However, since water is an extremely stable material, creating hydrogen from this 

material would be required tremendous amount of energy. Steam reforming of  



Chapter 4:A novel Method for Producing Hydrogen from  

Hydrocarbon Liquid using Microwave in-Liquid Plasma  

 

94 
 

natural gas is another method that has been commercially used for generating large 

amounts of hydrogen [9–11]. However, in the steam reforming method, carbon 

dioxide is released in the final stage of the reaction, so provisions for capturing and 

storing the CO2 are required [12, 13].  

One method for extracting and capturing hydrogen from waste materials that has 

been studied in recent years is the in-liquid plasma process [14–17]. This process can 

produce hydrogen gas and solidified carbon simultaneously without emitting CO2 

[18–21]. However, this method is only focus on hydrogen production, which is not as 

productive as other methods.  

Based on the previous study [19], a conventional microwave (MW) oven is used 

to irradiate at 2.45 (GHz) with the ability to circulate the liquid. The power output of 

the conventional MW oven is 1260 W with the magnetron using 750 W to generate 

plasma from the total power of MW oven. The microwaves were irradiated and 

received at the tip of each antennas used to generate plasma inside the bubbles. Six 

antennas were arranged on a copper plate and placed on a Teflon platform. The 

device could be applied as a method for continuous production. The configuration 

includes an effective bubble control plate [19, 22–24] which is selected based on gas 

production rate.  

Additionally, in-liquid plasma steam reforming, which is plasma fed by steam  

created in hydrocarbon liquid. The power supplied into the vessel reactor for each 

experiment was varied from 150 to 330 W. The microwaves were irradiated through 

a waveguide in order to prevent loss of energy to the reactor vessel. This method is 

investigated to accelerate the in-liquid plasma reaction [25–28]. The chemical 
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reactions of discharge in water are used for purification of polluted water [29–31]. In 

general, the process of discharge in a liquid is a more complicated phenomenon than 

that in a gas, because discharges in a liquid are unstable and involve phase 

transitions. When discharge occurs in a liquid, in most cases, bubbles appear. There 

have been many reports which focused on bubbles in relation to the generation of 

plasma in a liquid by a variety of methods [32–35]. The behavior of bubbles and 

plasma generated by high frequency waves and microwaves is observed using a high 

speed camera [36–39]. Microwave plasma is generated when the electrode is heated 

to the saturation temperature of n-dodecane [33, 40] .    

The main reason for conducting this study is to compare the hydrogen gas 

production efficiency of the in-liquid plasma steam reforming method when using a 

conventional MW oven and microwave generator with a waveguide as the power 

supply and n-dodecane as the source material. It is expected to offer the most 

efficient hydrogen production rate with a method that is both simple and 

environmentally friendly.  

 

4.2. Plasma decomposition experiment in conventional MW oven 

Fig. 4.1 shows the schematic diagram of a conventional MW oven used in this 

experiment. Not only can the MW oven easily generate microwaves, but also it 

becomes commonplace in most households, so there is much anticipation that they 

will be able to be used as a distributed-type hydrogen generator. 

Fig. 4.2(a) shows a curve-shaped antenna unit.  By applied the curved antenna, 

the tips of the electrodes are closer to each other and it appears that the generation of  
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Fig. 4.1 Experimental setup of hydrogen production using a conventional MW oven. 
 

plasma usually occurs near the center of the antenna, which makes the volume of the 

generated plasma larger. While the reason for this cannot be confirmed at this time, 

with the curved antenna, since the tips of the electrodes are closer to each other, the 

electric field breakdown occurs near the center of the antenna, which makes for an 

increased volume of the generated plasma [38] .    

Experiments were conducted to investigate the optimal shape of the curve-shaped 

antenna unit by changing the length of the antenna L and distance between the tips of 

the electrodes d and measuring the decomposition gas rate. The length of the antenna 

is adjusted according to the type of liquid in order to optimize the generation of gas. 

The length of the antenna is approximately one-fourth of the microwave wave length 

(λ) [33, 41]. The optimal value of gas rate was 33 (ml/s) when d was 8 to 12 (mm). It 

was determined that the optimal antenna shape is comprised of L=21 (mm) and d=10 



Chapter 4:A novel Method for Producing Hydrogen from  

Hydrocarbon Liquid using Microwave in-Liquid Plasma  

 

97 
 

(mm). In order to generate plasma, a 550 (ml) heat-resistant glass container was 

placed in a MW oven to be used as a cracking furnace. 

Fig. 4.2(b) shows the reactor platform and piping that were made of heat-

resistant glass and silicone rubber to avoid energy absorption from any internal 

energy reaction. The decomposition furnace was connected to an aspirator. A bubble 

plate is introduced because use of the plate enhances continues generation of the 

plasma [27, 36]. 

A pressure gauge was setup from the reactor pipe in order to control the air 

pressure from the MW oven. Experiments were carried out by depressurizing the 

reactor using an aspirator. The liquid was circulated by a pump from a reservoir tank. 

The liquid was heated before being introduced to the reaction field, with the liquid 

temperature set at 80 °C in heating case, and at 25 °C for that without heating.  Prior 

to generating the plasma and collecting gas, the air inside the device was replaced 

with argon or helium gas, which was then exchanged by the gas generated by the 

plasma. A thermal conductivity detector was used as the detector for the gas 

chromatography for analyzing the generated gas. Helium was used as the carrier gas. 

For the analysis of the gas composition, a gas chromatograph (GC-8A, Shimadzu) 

equipped with thermal conductivity detector (TCD) was utilized and Argon gas was 

used as a carrier. With n-dodecane there is ratio of 58% to 90% hydrogen in the gas 

generated by plasma decomposition. Low-grade flammable hydrocarbon gases, such 

as C2H2, C2H4, and CH4 were also generated. Simultaneously, a large quantity of 

graphite is synthesized in the vessel.  
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Fig. 4.3 shows the effect of the concentration of graphite generated by plasma on 

the hydrogen yield. The hydrogen concentration in the production gas decreases as 

 

 

(a) Schematic dimensions of receiving antenna 

 

 

 

(b) Position of receiving antenna for MW 

Fig. 4.2 Position tip of receiving antenna for microwave. 
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Fig. 4.3 Hydrogen yield of produced gas 

 

the graphite concentration increases in the liquid, with the effect of the liquid 

temperature becoming negligible. It is highly probable that a reaction of H2 with the 

graphite is promoted as graphite density increases leading to the production of the 

hydrocarbons such as C2H2.  

Fig. 4.4 shows the experimental results for using a bubble control plate. By using 

the bubble control plate, the gas production rate can be increased up to 1.3 times. 

Vapor filled the gap replacing the gas due to the plate, so the gas production rate 

improves. However, when the gap is increased, the bubble continuously changed in 

shape in the gap, eventually making the plate ineffective.  
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Fig. 4.4 Effect of the bubble control bubble plate 

 

4.3. In-liquid plasma steam reforming 

Fig. 4.5 shows the schematic diagram for the steam reforming method, including 

the gas flow that would be reacted in the vessel reactor. The experiment was 

conducted under predetermined conditions in which the pressure was at 101.3 (kPa). 

The water was heated to approximately 60 °C and then the steam was supplied into 

the vessel through the control valve. A reaction  container made of a glass pipe of 

250 (ml) was set up in a wave guide. The microwave irradiation was supplied from a 

microwave generator to the antenna in the reaction container, with the plasma then 

generated at the antenna tip where the electric field concentrates.  

The antenna was made of a copper material with an outside diameter of 3 (mm) 

and inside diameter of 2 (mm). After plasma was generated, the valve was opened 

and steam began to flow into the reaction container from the water tank through the 
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Fig. 4.5 Schematic of hydrogen production in-liquid plasma using the steam 
reforming method  
 

 

electrode. The steam temperature was varied by changing the temperature T of the 

thermostatic bath. The pressure in the reaction container was depressed by an 

aspirator. The mixture of the gas generated and the water flowing through the 

aspirator was then separated at a water reservoir tank. Measurement of gas generation 

rate υ and analysis of the compositions of the gas generated was conducted.  

Fig. 4.6 shows the rate gas generation for that with steam and without steam using 

MW. The figure also shows that by using steam, the gas production rate was 

increased 1.4 times over that without using steam. In steam reforming, the alkaline 

water temperature was kept constant at 60 °C in order to produce steam while plasma 

was generated. The input P power was varied between 100 (W) and 325 (W).  
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The higher the input power supplied, the greater the rate of generated gas. 

However, in order to avoid the excessive steam pressure in the reactor, the optimal 

input power was limited to 325 (W). 

 

 

Fig. 4.6 Rate of generated gas between steam and without steam in the MW 
reforming method 
 
 
Fig. 4.7 shows the gas yield using steam and without steam. At input power of 

300 (W), the gas yield from decomposition of n-dodecane with steam reforming was 

H2 (82.0%), CO (6.5%), CH4 (1.5%), C2H2 (6.7%) and C2H4 (3.2%). On the other 

hand, the gas yield from decomposition of n-dodecane without steam reforming was 

H2 (82.5%), CH4 (3.1%), C2H2 (10.5%) and C2H4 (3.9%). The obtained results 

obviously show that the steam supplied into the process caused production of carbon 

monoxide (CO) and reduced other hydrocarbon gases yields. The reduction of 

hydrocarbon gases yield was suggested due to the reaction of oxygen atoms from 

steam with carbon atoms from n-dodecane for production of carbon monoxide.  
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Fig. 4.7 Gas yield for hydrogen production in MW steam reforming: (a) without 
using steam, (b) using steam reforming method. 
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4.4. Conclusion 

Plasma was generated within the bubble in-liquid. Two types of microwave in-liquid 

plasma apparatus are adopted for hydrogen production. One is a conventional MW 

oven, the other is a microwave generator with a waveguide to apply the in-liquid 

plasma steam reforming method in n-dodecane. A conventional microwave (MW) 

oven is used to irradiate at 2.45 (GHz) within liquid. The conventional MW oven has 

an output of 1260 W with only 750 W being used by the magnetron to generate 

plasma. Furthermore, in a separated system, 150 – 330 W of energy power was used 

by the steaming reforming method to generate plasma in the vessel reactor.  For the 

experimental results of the MW oven, the hydrogen proportion of the generated gas 

was affected by the graphite concentration. Hydrogen was dominant in the gas 

produced, with the ratio around 58-90% of the total gas. By using a bubble control 

plate, the gas production rate could be increased up to 1.3 times. The gas production 

rate using steam reforming could be increased up to 1.4 times over that without using 

steam reforming. This indicates that steam reforming method was effective in 

producing hydrogen gas since the rate of hydrogen gas production is higher than that 

of using a conventional MW oven. 
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Chapter 5: Hydrogen Production from n-dodecane 

using Steam Reforming in-Liquid Plasma Method 
 

  

5.1 Introduction 

Hydrogen is not a primary energy source like coal, oil or natural gas, which freely 

exist in nature. Rather, it is a secondary energy that can only be obtained by processing a 

primary energy source [1–3]. Accordingly, energy is required to extract and capture 

hydrogen produced from these processes. Electrolysis of water is the dominant method 

for manufacturing clean hydrogen [4, 5]. However, since water is an extremely stable 

material, creating hydrogen from it requires a large amount of energy. Water electrolysis 

can be used to generate hydrogen by using toluene in an exothermic hydrogen reaction to 

produce methyl cyclohexane [33]. Steam reforming of natural gas is another method for 

manufacturing large amounts of hydrogen that is seeing commercial application [7–9]. 

However, the greenhouse gas, carbon dioxide, is released in the final stage of the steam 

reforming reaction so there is a need for some method to capture and store it [10–12]. If 

we take into account the energy required for solidifying the carbon, this method may 

actually be less energy efficient than the electrolysis method [13-15]. In order to make 

hydrogen energy a viable alternative energy source, the development of a low-cost 

hydrogen manufacturing method that does not produce carbon dioxide is necessary. 

While thermal plasma decomposition of methane gas to extract hydrogen is one method 

that does not release carbon dioxide, this method is not practical because the amount of 

energy required for thermal cracking is approximately the same as the amount of the 

resulting hydrogen energy [16].  
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In previous research, in-liquid plasma was first conducted by Nomura and Toyota for 

the purpose of depositing diamond-like carbon on to a variety of surface materials. By 

using the plasma method, the reaction was 9,000 times faster than that of gas-phase 

plasma[18, 19]. The bubbles created in n-dodecane were irradiated simultaneously by 

microwaves and ultrasonic waves. Recently, hydrogen production using non-thermal 

plasma technologies have been examined due to their relatively low energy 

requirements. Also, they have the capability to induce physical and chemical reactions 

under low temperature conditions because of their non-equilibrium properties [19–21].  

In-liquid plasma is created by the application of microwaves or high-frequency 

waves to a liquid medium. The temperature of plasma within the liquid exceeds 3000 K 

at atmospheric pressure, enabling decomposition of nearly any waste product and 

extractions of any existing hydrogen in the processed material (e.g. hydrocarbons) [22–

26]. By definition, hydrocarbon liquids contain large amounts of hydrogen. Therefore, 

lesser energy is required for their decomposition and release of the hydrocarbon. In 

previous studies, the amount of energy needed to produce hydrogen using several 

methods, water electrolysis, steam reforming, methane hydrothermal, and in-liquid 

plasma efficiency ratios for hydrogen production were found to be 286, 41.3, 37.5, 27 

kJ/mol in respectively [57]. The required change in enthalpy for creating 1 mole of 

source material to produce hydrogen from water is       286 kJ/mol, whereas for 

hydrocarbon, it is         351 kJ/mol [19]. An additional benefit of using the in-liquid 

plasma process is that the carbon components can be solidified simultaneously. 

Therefore, in-liquid plasma technology solves the problems associated with electrolysis 

and steam reforming. Previous research has indicated that hydrogen with a purity of 66% 

to 81% can be produced by using plasma to decompose organic solvents and waste oils 

2HH

2HH
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[28, 29]. This technology can also be applied for the collection of hydrogen from 

methane hydrates in sea beds [16, 17, 30]. In this research, it is proposed that a 

continuous steam flow, microwave-based in-liquid plasma device could be used as a 

method for continuously producing hydrogen through the decomposition of n-dodecane. 

 

5.2 Experimental Setup 

The experiment was conducted on the n-dodecane liquid at a pressure of 101.3 kPa as 

measured by pressure gauge. Fig. 5.1 shows the experimental setup including the gas 

flow direction in the vessel. The mass balance was measured by filling 20 cm
3
 of n-

dodecane into the reactor vessel to which microwave input power in range from 150 W 

to 300 W with 200 V was applied to produce plasma. The temperature of the n-dodecane 

was 21°C at a room temperature. The reaction container consisted of a 25 cm
3
 glass pipe 

and a waveguide was set up consisting of aluminum rectangular tubes to guide 

electromagnetic waves to propagate a minimal loss of energy. Microwave energy was 

supplied from a standard power supply to the electrode in the reaction container where 

plasma was generated by the electric field concentrated at the electrode tip as shown in 

Fig. 5.2 .  

The electrode was made of copper. The electrode had an outside diameter of 3 mm, 

an inside diameter of 2 mm and a length of 22 mm. The copper electrode was connected 

to the bottom of water tank immersed in a thermostatic bath. After plasma generation, a 

valve was opened to introduce steam with a 1 cm
3
/s flow rate at a temperature of under 

60 °C into the reaction container through the copper pipe of the electrode from a water 

tank. The steam temperature can be varied by changing the temperature T of the 

thermostatic bath. The pressure in the reaction container was reduced by an aspirator. 
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Fig. 5.1 Experimental setup for hydrogen production using the steam reforming method 

 

 

 

 

 

 

 

 

Fig. 5.2  Reactor vessel with a single electrode for creating plasma placed in the bottom   

         center of reactor: (a) Actual reactor vessel, (b) Single tip electrode 

 

 

The generated gas was mixed with water streaming from the aspirator and then 

separated in a water reservoir tank and finally gathered by water substitution.  

(a)  Reactor vessel (b) Electrode 
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Measurement of the gas generation rate υ and composition analysis of the generated gas 

was performed. For the analysis of the generated gas, a gas chromatograph (GC-8A, 

Shimadzu) was used. The detector was a thermal conductivity detector (TCD) and argon 

gas was used as a carrier.  

 

5.3  Results and Discussion 

Experiments were conducted to investigate the effect of steam reforming on n-

dodecane using microwave in-liquid plasma method. The following formula shows the 

decomposition reaction of n-dodecane with the vapor : 

 

 aC12H26 + bH2O      nH2H2 + nCOCO + nCH4CH4 + nC2H2C2H2 + nC2H4C2H4 + cC(s) (1) 

  

where 

a = (2nH2  + 4nCH4 + 2nC2H2 + 4nC2H4 – 2b) / 26             (2) 

b = nCO                                    (3) 

c = 12a - (nCO  + nCH4 + 2nC2H2 + 2nC2H4) / 26     (4) 

 

The reaction enthalpy formula for the chemical reaction of Eq. (1) using the law of the 

conservation of energy (Hess's law) is as follows. 

 

H = -aHC12H26 - bHH2O +nCOHCO + nCH4HCH4 + nC2H2HC2H2 + nC2H4HC2H4  (5) 

 

This can be used to find the enthalpy change of the reaction per 1 mole of gas in the 

chemical reaction in Eq. (1). ΔH is shown in Table 5.1. 
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The following formula shows energy efficiency, which is the ratio of the energy 

consumed in the chemical reaction per unit time in relation to the power Pnet input. 

 

                           (6) 

 

where, V is the standard mole volume (22.4 L/mol), υ is the gas generation rate generated 

by plasma breakdown. ε is ranged between 6.8% and 12.2%. For the electrolysis of 

alkaline water, the required amount of the enthalpy change to produce 1 mol of hydrogen 

from water is approximately 286 kJ/mol (H2O        H2 + 1/2 O2). In addition, the required 

amount of energy to create 1 mole of hydrogen is approximately 360 kJ/mol which is 

around 80% of energy conversion ratio to generate hydrogen using electrolysis method 

[19]. The amount of hydrogen production efficiency per input energy is a multiple of the 

hydrogen ratio for gas generated by v/P. The values for the ratio of hydrogen generation 

efficiency η as shown in Table 5.1 using Eq.(7) as follow.  

 

   
6.27P

υn
η 2H

                (7) 

 

The hydrogen production efficiency      mm
3
/J can be calculated by multiplying the gas 

generation rate v with the hydrogen ratio     per input energy as shown in Eq.(8). 

Therefore, the gas generation rate and hydrogen ratio should be large due to improve 

hydrogen production efficiency.   

 

                         (8) 
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     The required change in enthalpy         to create 1 mol of hydrogen from water is 286 

kJ/mol.  This is much larger than the changes in enthalpy shown in Table 5.1. In order to 

industrialize the production of hydrogen from n-dodecane, the production of microwave 

in-liquid plasma decomposition process must be considered. Therefore, the energy 

payback ratio of hydrogen            which is the ratio of hydrogen production to 

microwave input power is governed by Eq. (9). The maximum            for this experiment 

is found to be 47% which was when the input power reaches 225 W and 250 W and the 

gas generation rate reaches 10.5 cm
3
/s and 12.5 cm

3
/s.   

  

                           (9) 

 

     The mass balance is calculated to evaluate the performance process. The operating 

condition for mass balance are determined by measuring the gas composition and the 

total volume of hydrogen gas produced at each experimental time. The following shows 

the mass balance equation. 

 

                          (10) 

 

   Where        and         are the amount of hydrogen gas volume at the current (t) and 

previous (t-1) at each experimental time,      and        are the total gas production in the 

current and previous experimental time,        and         are the fractions of hydrogen gas 

produced in the current and previous experimental time, respectively [3]. The amounts of 

hydrogen contained in trace by-products such as CO, CH4, C2H2, and C2H4 in the product 

gas at a reaction time of around 5 to 8 minutes were found to be 82.00, 6.51, 1.54, 6.71, 
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and 3.19 (%) respectively when input power is 300 W. The carbon balance is found to be 

between 40% and 60%.   

 

5.3.1 Optimization of the steam temperature 

The temperature was varied from 40°C to 80°C at a constant power supply of 250W. In 

order to improve the hydrogen production, steam was injected through the valve into the 

reactor vessel. As shown in Fig. 5.3, which shows the effect of temperature on the gas 

generation rate at 60°C, the gas generation rate became 12.5 cm
3
/s. At temperature 

higher than 60°C, the steam distributed to the reaction container became excessive 

causing some steam to fail to undergo reaction which then condensed and remained as 

water at the bottom of the reaction container.  

The gas generation rate was decreased because the remaining water absorbed 

microwave energy which impeded the reaction. The rate can be increased by increasing 

 

 

      Fig. 5.3 Effect of temperature on gas generation rate when P = 250W 
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the temperature. However, increased temperatures can cause the electric field breakdown 

that occurs near the center of the electrode. The n-dodecane itself was heated by the 

microwave energy to temperatures between 40°C and 80°C. Then, the heat of the n-

dodecane was released into the vessel reactor and to the surrounding atmosphere.  

 

5.3.2 Effect of the steam reforming method 

In this experiment the input power P was varied from 150 W to 325 W at 60°C. 

Fig. 5.4(a) shows the hydrogen production efficiency with and without the supply of 

steam. The steam contains H2O which  decomposed into H and O2 gases in the reactor 

vessel. Therefore, the hydrogen production efficiency with using supplied steam is more 

effective than without one.  

The maximum efficiency for the steam reforming method is 37 mm
3
/J when 225 W 

of input power is supplied. The reason for this is because both of the amount and the rate 

of H2 gas are relatively large. Due to the steam supply, the rate of the generated gas 

increased linearly to P when P is from 150 W to 250 W, and then became constant after 

P exceeded 250 W. When steam was injected at the same power consumption, the gas 

generation rate increased 1.4 times in comparison to the case without steam supply. Fig. 

5.4 (b) and (c) show the compositions of gas analyzed from the plasma in-liquid using 

the steam reforming method. The contents of produced gas are shown in Table (5.1-5.4) 

where the steam supply and P were varied. By injecting steam, the contents of hydrogen 

the in generated gas ranged between 73% and 82% of the total produced gas. Whereas in 

comparison with no steam supply, it seemed that there was no significant effect on the 

contents of hydrogen in generated gas. Moreover, when conducting the steam reforming 

method, carbon monoxide was produced and the ratio of hydrocarbons was decreased. 
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Fig. 5.4 Efficiency and composition of generated gas for hydrogen production 

using in-liquid plasma method 
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Table 5.1 Composition of H2 gas efficiency in using steam and without steam 
 

 

 

 

 

 

 

 

 

 

Table 5.2 Composition gas yield without steam 

 
Input power, 

P [W] 

H2 

(%) 

CO 

(%) 

C2H4 

(%) 

CH4 

(%) 

C2H2 

(%) 

Total gas 

composition(%) 

150 76.8 0 4 3 16.2 100 

175 73 0 3.6 2.3 21.1 100 

200 76.6 0 8.4 5.3 9.6 100 

225 68.3 0 4.3 2.8 24.7 100 

250 79.4 0 2.6 3.9 14 100 

300 82.5 0 3.9 3.1 10.5 100 

 

 

Table 5.3 Composition gas yield with steam 

 

 

 

 

 

 

 

 
 
 

Table 5.4 Composition gas and component reaction for hydrogen generation using 
  microwave with varying input power  
 

Method P 

(W) 

v         

(cm3/s) 

Contents of produced gas (%) ΔH 

(kJ/mol) 

ε      

(%) 

η  

(%) 

QH2                    

(mm3/J) 

EPRH2    

(%) H2 CO CH4 C2H2 C2H4 

Without 

steam 

reforming 

150 

175 

200 

225 

250 

300 

3.24 

5.26 

6.82 

7.95 

8.75 

10.50 

76.80 

73.00 

76.60 

68.30 

79.45 

82.50 

0 

0 

0 

0 

0 

0 

3.00 

2.30 

5.30 

2.80 

3.89 

3.10 

16.20 

21.10 

9.63 

24.70 

14.03 

10.50 

4.00 

3.62 

8.37 

4.26 

2.63 

3.90 

65.40 

76.70 

53.10 

85.00 

30.28 

52.50 

6.30 

10.30 

8.10 

13.40 

4.73 

8.20 

26.50 

40.00 

41.70 

38.50 

44.30 

46.00 

16.60 

21.90 

26.10 

24.10 

27.80 

28.90 

21 

28 

33 

31 

36 

37 

Steam 

reforming 

150 

175 

200 

225 

250 

300 

4.35 

7.41 

8.33 

10.50 

12.50 

12.50 

76.60 

74.70 

75.40 

79.30 

73.77 

82.00 

10.80 

8.81 

13.60 

4.63 

12.99 

6.51 

2.50 

2.30 

2.10 

1.70 

2.46 

1.54 

6.90 

10.60 

6.50 

10.70 

6.83 

6.71 

3.24 

3.55 

2.40 

3.69 

3.94 

3.19 

52.30 

59.60 

53.20 

57.00 

54.50 

49.00 

6.80 

11.30 

9.89 

11.90 

12.20 

9.12 

35.40 

50.40 

50.10 

59.20 

58.80 

54.50 
 

22.20 

31.60 

31.40 

37.00 

36.90 

34.20 

28 

40 

40 

47 

47 

44 

Input power, 

P [W] 

Steam Without 

Steam 

150 22.2 16.6 

175 31.6 21.9 

200 31.4 26.1 

225 37 24.1 

250 36.9 27.8 

300 34.2 28.9 

Input power, 

P [W] 

H2 

(%) 

CO 

(%) 

C2H4 

(%) 

CH4 

(%) 

C2H2 

(%) 

Total gas 

composition(%) 

150 76.6 10.8 3.2 2.5 6.9 100 

175 74.7 8.8 3.6 2.3 10.6 100 

200 75.4 13.6 2.4 2.1 6.5 100 

225 79.3 4.6 3.7 1.7 10.7 100 

250 73.8 13 3.9 2.5 6.8 100 

300 82 6.5 3.2 1.5 6.7 100 
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This decrease in hydrocarbons was due to the oxygen atoms in the steam supplied to the 

reaction container reacting with carbon atoms in the n-dodecane. 

 

5.4 Conclusion 

The steam feeding method when using in liquid plasma for decomposition of  n-

dodecane oil to produce hydrogen was significantly effective in increasing the hydrogen 

production rate over the method without steam. A single electrode positioned in the 

bottom center of a reactor vessel was utilized to generated plasma at its tip. The 

produced gas was measured and the composition of the produced gas was analyzed. The 

gas production rate using plasma by injecting steam at the same power consumption 

showed an increase of 1.4 times over that without using steam. Hydrogen production was 

dominant in the experimental results and amounted to 73% to 82% of the product gas. 

The maximum hydrogen production efficiency determined by the ratio of the enthalpy 

difference of the chemical reactions to the input energy was approximately 12%. The 

optimal           is found to be 47% when the input power reaches 225 W and 250 W as 

well as when the gas generation rate reaches 10.5 cm
3
/s and 12.5 cm

3
/s. The hydrogen 

production efficiency using 2.45 GHz of microwave plasma can provide an improvement 

of 59% over that by alkaline water electrolysis for the same power consumption. This 

indicates that at present, the manufacturing costs remain high when used solely for 

hydrogen production. 
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Fossil fuels are still the most used until today where they are formed from plants and 

animals that lived up to hundreds of millions of years ago. By the time, the fossil fuels 

reserve have been reduced drastically since the industrial revolution era that consume the 

most of fuels. As a result, fossil fuels are considered non-renewable natural resources. 

Since the highest demand on the fuels, the alternative energy is needed to anticipate the 

limited supplies of fossil fuels. Currently, 85% of the world‟s energy consumption comes 

from fossil fuels, and this dependency is expected to continue in the next several decades 

[1].  

In addition to the energy challenge, the world also currently faces problem on the 

climate challenge which caused by the pollution affect. The recent observed global 

warming shows that the increased CO2 emissions as the exhaust gas has influenced the 

greenhouse affects. As the earth‘s surface radiates long wavelength radiation back to 

space, CO2 and other greenhouse gases (H2O, O3, CH4, NO, etc [2]) absorb the infrared 

radiation and become vibrationally excited. Approximately 31% of the incoming solar 

radiation-mostly long wavelength in the infrared range is reflected by clouds, aerosol, 

atmospheric gases, and the surface. The radiation of 19% and 49% of the solar radiation 

have absorbed in the atmosphere and the earth‟s surface, respectively [3]. 

Hydrogen is one of the most abundant elements in the universe and can be found 

nearly everywhere including in waste materials. It is an energy source that could provide 

for the energy needs in countries with low carbon fuel resources and solve the 

environmental problems in those with high energy usage. However, fundamental issues 
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such as storage and transportation must be addressed [4–6]. Hydrogen is not a primary 

energy source like coal, oil, and natural gas that exist in nature. Rather, it is an energy 

alternative that can be obtained by processing a primary energy source. Hydrogen can be 

a viable alternative energy source if its production costs can be reduced to a competitive 

level [7, 8]. In-liquid plasma is created by the application of microwaves or other high-

frequency waves. The gas temperatures of in-liquid plasma can exceed 3000 K at 

atmospheric pressure [9–12]. Under these conditions, nearly all organic and non-organic 

materials can be decomposed and any existing hydrogen in the processed materials (e.g., 

hydrocarbons) can be extracted. It has already been determined that hydrogen with a 

purity of 66% to 81% can be created by using plasma to decompose organic solvents and 

waste oils [13, 14]. 

Synthesis gas (Syngas), a mixture of carbon monoxide and hydrogen, is important 

intermediate for various synthesizing chemicals and environmentally clean fuels, such as 

ammonia, methanol, methyl formate, acetic acid, dimethyl ether (DME), and methyl-tert-

butyl ether (MTBE) and for the increasingly important production of synthesis liquid 

fuels [15]. There are several processes available for syngas production depending on the 

feed stock, such as steam reforming, partial oxidation, autothermal reforming (ATR), 

gasification and a combination of them, which result in different H2/CO ratio. Steam 

reforming is the conversion of hydrocarbons (HCs) with steam into a mixture of carbon 

monoxides, hydrogen, methane and unconverted steam. On the other hand, partial 

oxidation occurs while the hydrocarbons feed and oxidant are mixed in an inlet zone 

upstream the catalyst bed. The ATR was used to produced synthesis gas for ammonia 

production and methanol where combined combustion and catalytic process in an 

adiabatic reactor. Another syngas method is gasification which is one of the most 



Chapter 6: General Summary 

 

128 
 

promising technologies for converting coal and biomass into an easily transportable and 

usable fuel. The main gasification reactions are endothermic and the heat required to 

sustain the gasification is typically supplied by combustion of part of the carbonaceous 

material (so-called autothermic gasification) [16]. During biomass gasification, several 

parameters such as gasifiers type, reaction temperature, biomass fuels properties, bed 

materials and gasifying agent have a substantial influence on product gas composition, 

carbon conversion efficiency and tar formation. 

Recently, plasmas reforming have been investigated for their potential to exhibit 

catalytic effects primarily because of complex interactions of their excited species 

(electrons, ions, radicals) in fuel conversion reactions. Different paths have been 

investigated for the last two decades using various plasma technologies such as gliding 

arc [17–19], dielectric barrier discharge (DBD), corona and microwave (MW) to reform 

HCs such as methane, diesel and bio fuels. 

 The DBD is well known type of non-thermal plasma discharge. Two metal 

electrodes are separated by a thin layer of dielectric material in the DBD device which 

acts to limit current flow once the plasma discharge is ignited. DBD plasmas typically 

operate with either an AC frequency (0.5-500 kHz) or in a pulsed DC mode and most 

often have a non-uniform, filamentary structure consisting of a series of micro 

discharges. The next plasma method is corona discharge which usually involve two 

asymmetric electrodes, one high curvature, such as a plate or a cylinder. The electron 

temperature of corona plasma is in the range of 3.5 to 5 eV while the gas temperature is 

less than 400 K and the electron density is about 10
15

 to 10
19

 m
-3 

[20]. However, high 

electron density mainly occupies the region around the high curvature electrode.  

Microwave discharge is another plasma method where it characterized by high density of 
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electrons and active spices, such as ions and free radicals. Microwave plasmas can be 

operated in a wide range of pressure from milliTorr to near atmospheric; however, at 

high pressures, the discharge tends to contract and behave similar to thermal plasma [21]. 

Thus, gliding arc method is constructed by two knives and the electrical are formed 

between them. The arc disappears at the end of the knives and a new discharge 

immediately re-formed at the initial locations. 

 The most mature technologies are reforming and gasification. Electrolysis coupled 

with renewable energy is near term low emission technology. Longer term technologies 

include biohydrogen, thermochemical water splitting, and photoelectrolysis. While 

significant progress has been made in development of these alternative hydrogen 

production systems, more technical progress and cost reduction needs to occur for them 

to compete with traditional large scale reforming technologies at this time. However, for 

smaller scale hydrogen production at distributed facilities the technologies, particularly 

electrolysis, may be cost competitive. In addition, it is important to note that hydrogen 

can be produced from a wide variety of feed stocks available almost anywhere. There are 

many processes under development which will have a minimal environmental impact 

Meanwhile, Plasma was generated within the bubble in-liquid. Two types of 

microwave in-liquid plasma apparatus are adopted for hydrogen production. One is a 

conventional MW oven, the other is a microwave generator with a waveguide to apply 

the in-liquid plasma steam reforming method in n-dodecane. A conventional microwave 

(MW) oven is used to irradiate at 2.45 (GHz) within liquid. The conventional MW oven 

has an output of 1260 W with only 750 W being used by the magnetron to generate 

plasma. Furthermore, in a separated system, 150 – 330 W of energy power was used by 

the steaming reforming method to generate plasma in the vessel reactor. For the 
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experimental results of the MW oven, the hydrogen proportion of the generated gas was 

affected by the graphite concentration. Hydrogen was dominant in the gas produced, 

with the ratio around 58-90% of the total gas. By using a bubble control plate, the gas 

production rate could be increased up to 1.3 times. The gas production rate using steam 

reforming could be increased up to 1.4 times over that without using steam reforming. 

This indicates that steam reforming method was effective in producing hydrogen gas 

since the rate of hydrogen gas production is higher than that of using a conventional MW 

oven. 

Finally, the steam feeding method when using in liquid plasma for decomposition of  

n-dodecane oil to produce hydrogen was significantly effective in increasing the 

hydrogen production rate over the method without steam. A single electrode positioned 

in the bottom center of a reactor vessel was utilized to generated plasma at its tip. The 

produced gas was measured and the composition of the produced gas was analyzed. The 

gas production rate using plasma by injecting steam at the same power consumption 

showed an increase of 1.4 times over that without using steam. Hydrogen production was 

dominant in the experimental results and amounted to 73% to 82% of the product gas. 

The maximum hydrogen production efficiency determined by the ratio of the enthalpy 

difference of the chemical reactions to the input energy was approximately 12%. The 

optimal EPRH2 is found to be 47% when the input power reaches 225 W and 250 W as 

well as when the gas generation rate reaches 10.5 cm
3
/s and 12.5 cm

3
/s. The hydrogen 

production efficiency using 2.45 GHz of microwave plasma can provide an improvement 

of 59% over that by alkaline water electrolysis for the same power consumption. This 

indicates that at present, the manufacturing costs remain high when used solely for 

hydrogen production. 
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 Figures of experimental setup 
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