BaO-P₂O₅-B₂O₃ガラスの特性と構造

Properties and Structure of BaO-P2O5-B2O3 Glasses

武 部 博 倫*

Hiromichi Takebe*

Abstract: Effect of B_2O_3 addition on the thermal stability and properties of barium borophosphate glasses was studied in a series of $(50-x/2)BaO-(50-x/2)P_2O_5-xB_2O_3$, x = 0-12 mol%. No crystallization behavior was observed at ≥ 3 mol% B_2O_3 for bulk form and at 7.5 mol% B_2O_3 for powdered form. Glass transition and iso-viscosity temperatures increase and thermal expansion coefficient and density decrease with increasing B_2O_3 concentration. The water durability evaluated by immersion test into hot water degrades due to the addition of B_2O_3 . Raman spectroscopy reveals that the barium borophosphate glasses consist of metaphosphate Q^2 units with ring-type metaborate, diborate, and PO_4 -BO₄ groups. X-ray photoelectron spectroscopy suggests that the existence of P-O-B bonds at the surface of the grinded powders suppress the surface crystallization during softening process at high temperatures.

Key words: Phosphate glass, Thermal properties, Structure, Crystallization

1. 緒 言

リン酸塩ガラスは、一般にはケイ酸塩ガラスと比較して低融性・低温軟化性を有し、高濃度(≧50 mol%)に金属酸化物を含有した上でガラス形成可能であることを特徴とする。リン酸塩ガラスの中で BaO-P₂O₅ 系ガラスは良耐水性^[1]と低光弾性^[2]の特性を有しており、短尺・高出力ファイバレーザー、 電流センサーファイバ等新しい光ファイバデバイスや鉛フリーフリットガラスの候補材料である。 BaO-P₂O₅ 二元系ガラスでは、光ファイバや粉末焼結体を形成するための高温での軟化過程において、 表面から結晶化が起こることが未解決課題であった^{[3],[4]}。しかしながら、同ガラスの耐結晶化性は B₂O₃ を添加することで顕著に改善される^[4]。

本報告では、BaO-P₂O₅(BP)ガラスの耐結晶化性に及ぼす B₂O₃の添加効果および BaO-P₂O₅-B₂O₃ (BPB)ガラスの特性とガラス構造との関係について紹介する。

* 松山市文京町3 愛媛大学大学院理工学研究科
Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
原稿受理 平成 20 年 10 月 31 日

Journal of American Ceramic Society 第87巻第3号 (2004) pp.408 - 411.

Journal of American Ceramic Society 第89卷 第1号 (2006) pp.247 - 250.

Physics and Chemistry of Glasses: European Journal of Glass Science and Technology B 第 48 巻 第 3 号 (2007) pp.113 - 116.

2. 実験方法

2.1 ガラス試料の調製

試料組成は(50-x/2)BaO-(50-x/2)P₂O₅-xB₂O₃, x = 0-12 mol%である。原料には Ba(PO₃)₂ (純度 99.99%, 自辰化学研究所製) と B₂O₃ (純度 99.9%, 添川理化学製) を用いた。所定の組成に原料を秤量した後, 磁性乳鉢と乳棒で混合した。バッチ量は 10-20 g である。混合粉末はシリカルツボに入れ, 500℃ で 2 時間仮焼することで原料中の水分を低減した後, 1250℃ で 1 時間大気中にて溶融を行った。溶融した 後,予め加熱したグラファイト製モールドに流し出し,引き続きガラス転移温度で 1 時間アニールを 行い,その後室温まで 1℃ min⁻¹ で冷却することでガラス試料を作製し,以下の評価に用いた。

リン酸塩ガラスの特性は残存する OH 量の影響を受けることから^[5],赤外分光分析装置(IR440,島 津製作所製)を用い,以下の式に従いガラス中に含まれる OH 量を算出した^[6]。

$$\alpha_{\rm OH}=300 \times log(T_0/T_D)/d$$

(1)

ここで、 T_0 は波長 2 μ m での透過率、 T_D は OH の吸収帯~3.6 μ m (2800 cm⁻¹) での透過率、dは試料の 厚さ[mm]である。

2.2 特性評価

ガラス転移温度 T_gと結晶化開始温度 T_xは示差熱分析装置(DTA)(TG-8120, リガク製)を用い,評価した。試料形状は約 1–2 mmの塊または 100–150 µm 径の粉末であり,試料量は 20 mg である。DTA 試料は昇温速度 10℃ min⁻¹ で 800℃ まで加熱した。一つの組成に対し,少なくとも3 回の測定を行った。

結晶化過程を調査するために、10×10×2mmの平板状ガラス試料とDTA 試料と同様の粉末状ガラス試料について熱処理を行った。昇温速度は10 ℃ min⁻¹とし、所定の温度まで昇温した後、室温まで冷却し結晶化の有無を確認した。結晶相はX線回折装置(RINT2000、リガク製)で同定した。

熱膨張係数は 16-20 mm の棒状試料を用い,熱機械分析装置(TMA)(TMA8310,リガク製)にて 30°-450°C で決定した。

密度は白灯油(ケロシン)を浸液に用い,アルキメデス法で求めた。密度の測定誤差は±0.01 g cm⁻³ である。

ガラスの軟化状態における粘度η^[7]は TMA を用い, ペネトレーション法^[8]で 10⁷-10¹¹ Pa·s の範囲にて 求めた。試料は直径約 5 mm, 3-4 mm 厚さのディスク状ガラスであり,表面は鏡面に仕上げている。 各温度でのηを次式にて求めた。

$$\eta{=}\,Wt{/}A$$

(2)

ここで,Wは荷重[g],tはNi製ピン(直径0.5 mm)がある一定深さ(ここでは100 μm) 試料へ貫入 するのにかかる時間[s],Aは装置定数であり,粘度と温度の関係が既知の標準試料 NBS711 を用いて 求めた。

ガラス試料の耐水性を評価するために, MCC-1 静的試験法^[9]でガラスの蒸留水への浸出挙動を調べた。試料サイズは10×10×1 mm であり、6つの面はすべて鏡面に仕上げている。試料を70℃の熱水

中に72時間(3日間)浸漬した後、試料重量の減少量は次式で求めた。

[Weight loss]= $\Delta W/S$

(3)

ここでΔW は浸漬前後での重量変化[kg], S は試料の表面積[mm²]である。測定は各組成について 3 回行 い,平均値を算出した。

2.3 構造解析

微細構造はレーザー顕微鏡(VK-8550,キーエンス製)または FE-SEM(S-4500,HITACHI 製)を用 い,観察した。ガラス構造は顕微ラマン分光分析装置(NSR-2100,JASCO 製)を用い,ラマン分光法 で解析した。ガラス粉末の表面における化学結合状態を評価するために,酸素の O1s 準位の束縛エネ ルギーを X 線光電子分光分析装置 (XPS)(AXIS165,Kratos 製)を用い,評価した^[10]。励起光源はモ ノクロの AlKa線(hv=1486.49 eV)である。XPS スペクトルはガウシアンカーブでフィッティングを行 い,波形分離を行った。大気中での表面状態を知るために,XPS 測定用粉末試料は DTA 試料粉末の調 製と同様の方法でアルミナ製乳鉢と乳棒で粉砕した後,直ちに数 nm 厚さの Au をコーティングし XPS 測定のための真空チャンバへ移動した。O1s の結合エネルギーは Au の ⁴F_{7/2} 準位の結合エネルギー (84 eV)を基準として求めた。

3. 結 果

3.1 残存 0H 量

いずれのガラス試料も肉眼では無色透明であり、分相の傾向は認められなかった。~2600 cm⁻¹の OH 吸収帯における吸収係数 α_{OH} は 2.9–4.2 cm⁻¹の範囲にあり、 C_{OH} =30 × 10⁻⁴^[6]から算出した OH 残存量は 84–127 × 10⁻⁴ mass%である。OH の残存量は B_2O_3 の添加量とは無関係であり、再現性の高い特性データ を得るためには問題がないものと判断された。

3.2 耐結晶化性

Fig. 1 に(a)バルクおよび(b)粉末状の BP および BPB ガラスについて,DTA 曲線を示す。Fig. 1(a)より バルク試料では B_2O_3 の添加量の増大とともに, $T_g \ge T_x$ のいずれも徐々に増大しており,3 mol%

Fig. 1. DTA curves of (a) chunk and (b) powdered BP and BPB glasses with various B_2O_3 concentrations.

 B_2O_3 の試料では、 T_x が観察されないことがわかる。また Fig. 1(b)より粉末試料では B_2O_3 の添加量の増大とともに T_g と T_x のいずれも増大しているものの、3 mol% B_2O_3 でも結晶化挙動が認められており、7.5 mol% B_2O_3 で T_x が存在しないことが知られる。これらの結果は B_2O_3 の添加によって BPB ガラスの耐結晶化性が向上することを意味している。

Fig. 2 は 50BaO-50P₂O₅の結晶化ピーク温度(690℃)で10 分間熱処理したバルク試料の外観を示している。B₂O₃ 無添加 試料(a)では表面結晶化により白濁しているのに対し,3 mol% B₂O₃の試料(b)では軟化により巨視的形状は変形しているも のの,全く結晶化しておらず,無色かつ透明であることがわ かる。X線回折の結果より熱処理した BP ガラスの結晶相は バリウムメタリン酸塩 Ba(PO₃)₂であった。

Fig. 2. Appearance of (a) BP and(b) BPB glasses heat-treated at 690°C for 10 min.

分間熱処理した 46.25BaO-46.25P₂O₅-7.5B₂O₃ ガラス粉末焼成体のレーザー顕微鏡写真である。730℃は DTA の結果で 47.5BaO-47.5P₂O₅-5B₂O₃ ガラス粉末の結晶化ピーク温度に対応している(Fig. 1(b))。い ずれの試料も熱処理後は軟化しており,47.5BaO-47.5P₂O₅-5B₂O₃ ガラスでは,粒界のトレース(跡) と見られる箇所において,微細な結晶の析出が確認された(Fig. 3(a))。一方 46.25BaO-46.25P₂O₅-7.5B₂O₃

ガラスでは、粘性流動によ るガラス粒子同士の焼結 が進行しているものの、微 結晶の析出は認められな かった。

以上のように、DTA と熱 処理した試料の外観およ び微細構造の観察から、 B_2O_3 の添加により BPB ガ ラスの耐結晶化性が向上 し結晶化することなくガ ラス状態での軟化が可能 であること、バルク試料と 比較して、粉末試料では結 晶化の抑制により多くの B_2O_3 の添加が必要である ことが判明した。

3.2 特性

Fig. 4(a)および(b)にそれ ぞれ(a)熱膨張係数および (b)密度の B₂O₃含有量に伴

Fig. 3. Laser micrographs of (a) $47.5BaO-47.5P_2O_5-5B_2O_3$ glass treated at 730°C for 10 min and (b) $46.25BaO-46.25P_2O_5-7.5B_2O_3$ glass treated at 750°C for 10 min.

Fig. 4. Variations of (a) thermal expansion coefficient and (b)density with B_2O_3 concentration in BPB glasses.

う変化を示している。B₂O₃含有量の増大とともに、熱膨張係数と密度のいずれも小さくなっている。 またいずれの物性においても、6 mol% B₂O₃付近を境に物性値の組成依存性を示す点線の傾きが変化す る傾向にあり、この組成の前後でガラス構造が変化していることを暗示している。

Fig. 5(a)および (b)はペネトレー ション法で求めた BP および BPB ガ ラスの粘度のアレ ニウスプロットで ある。等粘度を示 す温度(等粘度温 度)を比較した場 合, B₂O₃含有量と ともに等粘度温度 は増大している。

Table 1はBPお

よび BPB ガラス

Fig. 5. Log viscosity versus reciprocal temperature for BP and BPB glasses with various B_2O_3 concentrations. (a) 0–5 mol% B_2O_3 and (b) 6–12 mol% B_2O_3 . The plots show average values with error bars. The plots without error bars mean that the error ranges are smaller than the sizes of the plot symbols. The lines are linear least square fits to experimental data.

における浸出試験の結果である。表中に は1日当たりの重量減少量を算出し,平 均的な溶出速度として表示している。 Table 1 から B_2O_3 含有量の増大とともに 溶出速度は増大しており, B_2O_3 の添加は BPB ガラスの耐水性を劣化させることが わかる。Fig. 6 は浸出試験後の BP および BPB ガラス表面の SEM 写真である。 B_2O_3 無添加の BP ガラスでは研磨キズや 0.5

が認められるのに対し (Fig. 6(a)), B₂O₃を添加 した BPB ガラスでは約 100 nm 径の球状ナノ粒 子の存在が認められる (Fig. 6(b))。この微粒子 の存在量は B₂O₃ 含有量 の増大とともに増える 傾向にあり,微粒子の生 成は B₂O₃ 成分と熱水と の反応に起因するもの と判断される。

µm 以下の小さな穴のみ

Table 1 Average dissolution rate of BP and BPB glasses. The samples were immersed into distilled water at 70°C for 72 h. The pH after immersion test is also shown in this table.

B ₂ O ₃ (mol%)	0	3	7.4	10
Average dissolution rate (kg·mm ^{-2.} day ⁻¹)	4.6 x 10 ⁻¹⁰	1.9 x 10 ⁻⁹	5.3 x 10 ⁻⁹	1.6 x 10 ⁻⁸
pH (after)	6.3 - 6.4	6.0 - 6.9	5.3 - 5.8	4.6 - 5.2

Measured 3-5 times for each composition.

Fig. 6. SEM micragraphs of surfaces of BP and BPB glasses immersed into distilled water at 70°C for 72 h. (a) 0 mol% B_2O_3 and (b) 10 mol% B_2O_3 .

3.3 ガラス構造

Fig. 7 は BP ガラスおよび BPB ガラスのラマン散乱スペ クトルである。リン酸塩ガラスの基本的な PO4 四面体の構 成単位はQⁱ(iはPO4四面体1個当りの架橋酸素の数)^[11]で 表される。BP ガラスでは 1000-1400 cm⁻¹に P-O 結合によ る非架橋酸素の対称性および非対称性伸縮振動が認められ る。620-820 cm⁻¹には P-O-P による架橋酸素の対称性およ び非対称性伸縮振動が存在している^[11]。BP ガラスにおける 1180 cm⁻¹の散乱帯はメタリン酸塩の Q²ユニットに帰属さ れる。BPB ガラスでは 600-650 cm⁻¹と 1050-1150 cm⁻¹に散 乱帯が存在し、B2O3含有量の増大とともにそれらの強度は 増大している。600-650 cm⁻¹の散乱帯はリングタイプのメ タボレート^[12]に帰属され, 1050-1150 cm⁻¹の散乱帯はダイ ボレートグループ (DBG) ^{[13], [14]}や B³⁺に囲まれた[PO₄]³⁻四 面体 (PO₄-BO₄ グループ)^{[15],[16]}に帰属されることから,こ れらの陰イオンが BPB ガラスでは形成されることを示し ている。

Fig. 8 は BPB ガラス粉末表面の O1s XPS スペクトルであ る。Fig. 9 に示す O1s XPS スペクトルの波形分離の結果か ら P-O-P (架橋酸素), P-O⁻ (非架橋酸素) および P-O-B 結合を含むものと判断される。Fig. 10 は波形分離した各ピ ークの相対面積から求めた P-O-B 結合の存在割合である。 図より大気中で粉砕することで調製した BPB ガラス粉末 の表面には、 $\leq 6 \mod 8_2O_3$ の領域では、P-O-P および P-O⁻結合のみが存在し、 $\geq 6 \mod 8_2O_3$ ではこれらの結合 に加えて P-O-B 結合し、B₂O₃ 含有量とともにその存在割 合が増大することがわかる。次章では BPB ガラスの特性と 構造との関係について検討する。

Fig. 9. O1s spectra of two types of BPB glasses for spectral deconvolution.

Fig. 7. Raman spectra of BP and BPB glasses.

Fig. 8. O1s XPS spectra of BPB glasses.

Fig. 10. Variation of P-O-B bonds fraction with B_2O_3 concentration at the surface of powdered BPB glasses. The fraction was determined by the deconvolution of XPS O1s spectra.

4. 考察

3章で記述したように、 B_2O_3 の添加により $BaO-P_2O_5-B_2O_3$ (BPB)ガラスの結晶化に対する熱的安定性 は向上する (Fig. 1(a), (b))。また B_2O_3 の含有量の増大とともに、熱膨張係数 (Fig. 4(a))と密度 (Fig. 4(b)) は小さくなり、ペネトレーション法で求めた 10^7-10^{11} Pa·s における等粘度温度 (Fig. 5(a), (b))は高く なる傾向にある。これらの特性の B_2O_3 含有量依存性はガラス構造の変化と関連付けることができる。

Fig. 11 はラマン分光の結果から推定した BPB ガラスの構造模式図である。BP ガラスは PO₄ 四面体 が鎖状に連なった構造を呈しており、その空き間に Ba イオンが存在している。高温での軟化過程では、 Q² 鎖状構造の部分的な再配列が進むものと考えられる^[4]。B₂O₃ を添加した場合には、ダイボレートグ ループ (DBG)等ホウ酸塩陰イオンの存在による Q² 鎖状構造の部分的な架橋が起こるものと推定され る。このガラス構造の変化に伴い、BPB ガラスでは耐結晶化性の向上、ガラス転移温度の増大や熱膨 張係数の低下が認められる。

また Fig. 4(a), (b)に示したように、特性の組成依存性において直線の傾きから 6 mol% B₂O₃を境に 2 つの領域が認められる。これらの領域の境界は BPB ガラス粉末において T_xの有無(Fig. 1(b))や XPS による BPB ガラス粉末表面の化学結合状態の変化(Fig. 10)と概ね対応している。即ち、 \geq 6 mol% B₂O₃の領域では BPB ガラス表面において P–O–B 結合が存在しており、P–O–B 結合の存在が BPB ガラス粉 末の耐結晶化性と関係があるものと考えられる。

Fig. 11. A schematic structural model of BPB glasses consisting of $PO_4 Q^2$ units with ring-type metaborate, diborate, and PO_4 -BO₄ groups.

P-O-B 結合が形成される理由はラマン分光の結果から推定すると、PO4 四面体に結合した DBG または SiO4 四面体類似の PO4-BO4 グループによるものである。Fig. 11 に示すように、DBG では B 原子 1 個あたり 1 個の P-O-B 結合が形成されるのに対し、PO4-BO4 グループでは B 原子 1 個あたり 4 個の
P-O-B結合が形成されることから、後者の方が P-O-B結合の形成には大きく寄与することになる。B2O3

の添加に伴うガラス構造の変化についてはさらに詳細な検討を必要とする。 $\leq 6 \mod 8 B_2 O_3$ の領域では 主に DBG による Q² 鎖状構造の架橋が起こり、バルク状ガラスの耐結晶化性については向上が認めら れるものの、粉砕過程を経由した粉末の表面では B₂O₃ 無添加と同様の結合状態になるため軟化過程で 表面結晶化が進行する。一方、 $\geq 6 \mod 8 B_2 O_3$ では DBG に加えて PO₄-BO₄ ネットワークの形成により、 ガラス粉末表面に P-O-B 結合が存在し、粉末状態での耐結晶化性が向上する。

なお耐水性については Table 1 に示したように, B₂O₃の添加とともに悪くなる傾向にある。ラマン分 光の結果によれば,リングタイプのメタボレート(Fig. 11)が認められることから,微視的には B₂O₃ が偏在しており,このメタボレートの存在が BPB ガラスの耐水性と関係があるものと考えられる。

5. 結 言

(50-x/2)BaO-(50-x/2)P₂O₅-xB₂O₃, x = 0-12 mol%の組成を有する BaO-P₂O₅-B₂O₃ (BPB)バルクガラス において, B₂O₃ 含有量の増大とともにガラス転移温度および等粘度温度は増大し,熱膨張係数と密度 は減少する。ラマン分光によれば,BPB ガラスはメタリン酸塩の Q² 鎖状構造に加えて,リングタイプ メタボレート,ダイボレートおよび PO₄-BO₄ グループから構成されている。少量 (3 mol%) の B₂O₃ の添加による BPB バルクガラスの耐結晶化性の向上はダイボレートの存在によるものである。XPS の 結果によれば, \geq 6 mol% B₂O₃ での BPB ガラス粉末の耐結晶化性の向上は粉末表面に存在する P-O-B 結合と関連付けられる。B₂O₃ の添加により BPB ガラスの耐水性は劣化する傾向にあり,この結果はリ ングタイプメタボレートの存在と関係があるものと考えられる。

7. 謝辞

本研究は九州大学大学院総合理工学府修士課程学生の原田尚志君,野中航君の協力によって行われ た。ここに特記して感謝の意を表します。

7.引用文献

 H. Takebe, Y. Baba, M. Kuwabara, "Compositional Dependence of Water Durability in Phosphate Glasses", Proceedings of XXIst International Congress on Glass, Z10, 2007.

[2] H. In, H. Takebe, K. Morinaga, "Low Photo-Elastic Characteristics of BaO-P₂O₅ Glasses", Journal of the Ceramic Society of Japan, 111, 6, pp.426 - 429, 2003.

[3] P. E. Hart, M. G. Mesko, J. E. Shelby, "Crystallization and Phase Diagram in the Sodium Barium Metaphosphate System", Journal of Non-Crystalline Solids, 263&264, pp.305 - 311, 2000.

[4] T. Harada, H. In, H. Takebe, K. Morinaga, "Effect of B_2O_3 Addition on the Thermal Stability of Barium Phosphate Glasses for Optical Fiber Devices", Journal of American Ceramic Society, 87, 3, pp.408 - 411, 2004.

[5] H. Namikawa, M. Munakata, "Effects of the Residual Water on the Transformation Temperature and the Structure of BaO-P₂O₅ Glasses", Journal of the Ceramic Society of Japan, 73, 2, pp.86 - 94, 1965.

[6] H. Ebendorff-Heidepriem, W. Seeber, D. Ehrt, "Dehydration of Phosphate Glasses", Journal of Non-Crystalline Solids, 163, 1, pp.74 - 80, 1993.

[7] H. Takebe, W. Nonaka, J. Cha, M. Kuwabara, "Properties of BaO-B₂O₃-P₂O₅ Glasses for Active Optical Fibres", Physics and Chemistry of Glasses: European Journal of Glass Science and Technology B, 48, 3, pp.113 - 116, 2007.

[8] 藤野茂,井尻英幸,清水史幸,森永健次,"ファイバー化のためのガラスの広域粘度測定",日本金 属学会誌, 62,1,pp.106-110,1998.

[9] H. Takebe, Y. Baba, M. Kuwabara, "Dissolution Behavior of ZnO-P₂O₅ Glasses in Water", Journal of Non-Crystalline Solids, 352, 28-29, pp.3088 - 3094, 2006.

[10] T. Harada, H. Takebe, M. Kuwabara, "Effect of B₂O₃ Addition on the Structure of Bulk and Powdered Barium Phosphate Glasses", Journal of American Ceramic Society, 89, 1, pp.247 - 250, 2006.

[11] R. K. Brow, "Review: The Structure of Simple Phosphate Glasses", Journal of Non-crystalline Solids, 263&264, pp.1 - 28, 2000.

[12] B. N. Meera, J. Ramakrishna, "Raman Spectral Studies of Borate Glasses", Journal of Non-crystalline Solids, 159, 1-2, pp.1 - 21, 1993.

[13] E. I. Kamitsos, M. A. Karakassides, G. D. Chryssikos, "A Vibrational Study of Lithium Borate Glasses with High Li₂O Content," Physics and Chemistry of Glasses, 28, 5, 203 - 209, 1987.

[14] E. I. Kamitsos, M. A. Karakasside, "Structural Studies of Binary and Pseudo Binary Sodium Borate Glasses of High Sodium Content," Physics and Chemistry of Glasses, 30, 1, pp.19 - 26, 1989.

[15] A. Adamczyk, M. Handke, "The Isotopic Effect and Spectroscopic Studies of Boron Orthophosphate (BPO₄)," Journal of Molecular Structure, 555, 1-3, pp.159 - 164, 2000.

[16] T. Tsuchiya, T. Moriya, "Anomalous Behavior of Physical and Electrical Properties in Borophosphate Glasses Containing R₂O and V₂O₅," Journal of Non-crystalline Solids, 38&39, pp.323 - 328, 1980.