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The purpose of this paper is to determine the K Fy ~cohomology of lens space L{(l) in
a special case.

§ 1. Introduction

Let ! be an odd prime number and L*(/¢) the standard (2% - 1)-dimensional lens space

Sen+1/(Z[19), The lens space L*(l?) has the CW-decomposition
Ln(la') — Sl U e2 u 63 U - U eZn U eZ‘)H—l
and we write L§(¥) for its 2u—skeleton.

Denote by A the ring of /-adic integers Z,, Let K,(—) be the /-adic completion of the
classical complex K-theory, 5 the canonical complex line bundle of L*(/4) and putx = » — 1.
Then the K ,~cohomology of lens space is (see [3])

Ky (L) = K, (L) = Al /(1 + 9f — 1, x+),
In [1], for d = 1 we showed that there is an element ¢ of K, (L*(J) such that
K, (LM) = K, (Ly(D) = Alg] ] (¢ + lg, ).
Let F4 be a finite field of order ¢ and assume that ¢ is prime to I. By Kfy (=) we

denote the algebraic K—cohomology for Fy.
The purpose of the paper is to show the following two theorems :

Theorem 1.1. There is an element & of K, (L(1%) and a monic polynomial f(X) of
degree (I8 — 1)/ (I — 1) such that ‘

O K, L)y = Ale] 1 (egDg, &) and

(i) for an integer k whose ovder in (Z/19)* is prime to I, y*E) = & (€ A), where J* is
the Adams operation.
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Theorem 1.2. Let Fy be a finite field of ovder q and assume the order of q in (ZI1)* s
prime to I. Let v be the least positive integer such that ¢v = 1 (mod ). Then the algebraic K-
cohomology group of lens space K Fy (Lg(l9) is isomorphic to the torsion subgroup of
A[L) 1 (Ae)z, em*Y), where { = €, s = (I — Vv and m = [n/r].

§ 2. Splitting of K,—cohomology

Let p € A be a primitive (/—1)-th root of unity. Then for 1 = ¢ = [ — 1 we define the
A-module homomorphlsm O, K\(—) — K,(—) by
o = —1 Z e A
where ¢* is the Adams operation.
Then we have (cf. [2])

Proposition 2.1.

(1) (Dl + @2 + -+ (Dl—l = Zd,

11 — (Di Zfl = j:

(i) o0 = { 0 ifii

Let & be an element of A such that 2 #% 0 (mod ). Then there exists only one element m of
A such that m'~! = 1 and m = k (mod /). We write £ for the element m. Then we have

Proposition 2.2. Let k be an integer whose ovder in (ZI119)* is prime o |, then
Yro; = oyt = Ko,
as A-module homomorphism K (LM19) — K (Lx19)).

Proof. The commutativity of ¢* and ®; is clear. Since the order of & in (Z/l9)* is prime to I,
¢* = ¢* From the fact that % is an ({(—1)-th root of unity, there is an integer s such that £ = p%. Then

1 ! 1
k —_ - — i g Bo™ —_ ~m1 m+s
l// Q)Z l 1 nZ p S[/ ’ l 1 m 1 l)bp

1 1:_1 (nsii 7 oMt
e Z_—_—.]j z—f pbl‘o e }l‘jb.u

-1

= l—il psi o p—mi‘//p’” — Ez‘(pi'

m=1

This completes the proof of the proposition.

§ 3. Structure of K,(L™(1%)

In this section we write R for the ring Afx]/ (1 + %) — 1). The ring is a free A-module with
a basis {1, x, £2,..., %=1} The action of the Adams operation % to R is y*x) = (1 + x)* — 1.
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Put ¢ = ®1(x) and m = I — 1, then we have

Proposition 3.1.
G {1, & £2,..., &m} is a basis of the A-module R and
(i) the ideal (€) of R is equal to (x).

Proof. Since {1, x, 2,..., x™} is a basis of R, we can write
g o= cip + cax + cp® + ot Cipa®,
where 0 = 7 = m and ¢; is an element of A. And cip = ¢p; = 0 for 1 = { = m. Since the mod /
reduction of (1 + 2 — 1 is x’d and
e = 72y £ p7men = 1 (mod 1),
we have that ¢; = 0 (mod [) for i > jand ¢ = 1 (mod [). Therfore det(c;) = 1 (mod /), which im-

plies Proposition 3.1.

Proposition 3.2. For k = 0, we have
() o4 =0ifi £ k (mod I—1) and
i) @deh) = & if i = k (mod [—1).

Proof. To prove (i), assume 7 # % (mod [—1). By Proposition 2.2, yr@{e") = pi@{&%). On the
other hand
r®i (ER) = O (L)) = Di((yrdi(x)?)
@; (p@1()Y) = o*D; (&%)
Since o — ptis a unit of A, (0! — p*) @; (¢%) = 0 implies @®A¢*) = 0. To prove (ii), assume { = &

{

(mod [—1). Applying Proposition 2.1 (i) to &* we have
eh = Q) + Doleh) +- -+ D1a(Eh)
= P{eh).
This completes the proof of the proposition.

Proposition 3.3. There is a monic polynomial f(X) of degree (¥ — 1)/ (I — 1) such that R
= Alg] 7 (e he).

Proof. By Proposition 3.1 there is a relation
{:m+l = ay + a1 + 0252 g AmE™,
where ¢; is an element of A for 0 = 7 < m. From Proposition 3.2, we have
,;;-m+1 — (DI(Em_H)
= Oilay + mé + a2 + -+ auEm)

mé + @l + an 187 o @y

I

Put
X)) = — a1 — aX — a1 X2 — = @y XD XD,
then we have a relation fle/~1s = 0 of R. Clearly A[£]/ (flei"1)¢) is a free A—-module with a basis
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{1, &, £2,..., e}, This implies Proposition 3.3.

Proof of Theorem 1.1. From Proposition 3.1 and Proposition 3.3, we have
K L) = Alx] /(1 + 27 — 1, 2241 = R [ ()
Ri(gnt) = Ale] 1 (e Ng,enth).

I

Let 7 be a positive integer such that » divides / — 1, and put s = (! — 1) / . We write K’
for the ring A[£] / (z)). Then there is the ring homomorphism ¢ : R — R such that () = ¢

and ¢|4 = id,. Then we have the following proposition :

Proposition 3.4.
() ¢ is a monomorphism,
@ Im(:R — R =Im(®, + &, +---+ &1 : R —> R),
(iii) let = : R — R/ (¢7*Y) be the canonical projection, then Ker(zor) = ((1+Y), and
(iv) R /(@) = Im(@, + @y, +- -+ @, : R/ (e"*) — R/ (g2,

Proof. Since R' is a free A-module with a basis {1, ¢, ¢2 ,..., "} and Im(@, + ©,,
4+ 4 @,_y) is a free A-module with a basis {1, &, &% ,..., &}, (1) and (ii) is clear. To
prove (iii), assume that « is an element of Ker(zc¢). Then we can write

da) = " ay + a6 + a8+ -+ a,f")
= 00§”+1 + a15n+2 + a2§"+3 + e+ a1n§n+7'1+1,
where ¢; € A for 0 = 7 = m. By Proposition 3.2 we have

da) = (D, + Dy +- -+ D )e)
— ¥ ai5n+i+1

0=i=m
n+i+1=0 (mod 7)

= > ai((g(n+i+1)/r)‘
O=siz=m
n+i+1=0 (mod )

Therefore « is an element of the ideal (#1+1). It is clear that ((¢"1+1)=0, so we have
Ker(zoe) = (¢*1+1), From (i), (i) and (iii), {iv) follows. This completes the proof of Proposi-
tion 3.4.

§ 4. KFq—cohomology of lens space Lg(l9)

Let Fy be a finite field of order ¢ and assume that the order of ¢ in (Z/19)* is prime to L
Put M; = oK, (Ly(1%)). Then from Proposition 2.1, we have
KAL) = A OM®OM,® - - - DM, ).
Since K-1(Lg(l9)) = 0, there is an exact sequence {(cf. [4])
0 — R (L) — BLie) =4 B,
From Proposition 2.2 and the fact that 1 — ¢¢ commutes with @; we have the following
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proposition :

Proposition 4.1.
(i) The K Fq—cohomology of lens space Ly(l9) is

Ky L) = '@ Kex(t — go: M, > M), and

() (1 — ¢90) =0 — gy fory € M;
Then the following lemma is well known :

Lemma 4.2. Let r be the least positive integer such that ¢ = 1 (mod ). Then
(@) 1 — ¢ isaunitof AifiF# 0 (mod#) and
@ 1 —4 =0ii=0(mod 7.

Proof of Theorem 1.2. From Proposition 4.1 and Lemma 4.2,
7 n [=V)ir
n@kp i = 10 ) m,.

Since this A-submodule of K,(Lg(9) is generated by 1, &, &%, &% ..., we have
A @KF L) = Im@, + @+ + By,

From Proposition 3.4
A @KFQ( o) = R 1 (LY,

which implies Theorem 1.2,

References

{ 1] Hirata, K., A Note on the Structure of K-ring of Lens Spaces, Men. Fac. Edu., Ehime Univ., Ser. III
Natural Science, 5 (1985), 1—6.

[ 2] Jankowski, A., Splitting of K-theory and g. characteristic numbers, Studies in Algebraic Topology,
Advances in Mathematics Supplementary Studies, vol. 5, Academic Press, (1979), 189—212.

[ 31 Mahammed, N., A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, 271 (1970),
639—642,

[4] Quillen, D. G., On the cohomology and K-theory of the general linear groups over a finite field, Anx.
of Math., 96 (1972), 552—586.



