A Note on the KFq -Cohomology of Lens Space $L_0^n(l^d)$

Koichi HIRATA

Department of Mathematics, Faculty of Education Ehime University, Matsuyama, Japan (Received October 11, 1986)

The purpose of this paper is to determine the $K_{\mathbf{F}q}$ -cohomology of lens space $L_0^n(l^d)$ in a special case.

§ 1. Introduction

Let l be an odd prime number and $L^n(l^d)$ the standard (2n+1)-dimensional lens space $S^{2n+1}/(\mathbb{Z}/l^d)$. The lens space $L^n(l^d)$ has the CW-decomposition

 $L^n(l^d) = S^1 \cup e^2 \cup e^3 \cup \cdots \cup e^{2n} \cup e^{2n+1}$ and we write $L^n(l^d)$ for its 2n-skeleton.

Denote by Λ the ring of *l*-adic integers Z_l . Let $K_{\Lambda}(-)$ be the *l*-adic completion of the classical complex K-theory, η the canonical complex line bundle of $L^{\eta}(l^d)$ and put $x = \eta - 1$. Then the K_{Λ} -cohomology of lens space is (see [3])

 $K_A (L^n(l^d)) \cong K_A (L_0^n(l^d)) \cong \Lambda[x] / ((1 + x)^{l^d} - 1, x^{n+1}).$

In [1], for d = 1 we showed that there is an element ξ of \tilde{K}_{Λ} (Lⁿ(l)) such that

 $K_{\Lambda} (L^{n}(l)) \cong K_{\Lambda} (L^{n}_{0}(l)) \cong \Lambda[\xi] / (\xi^{l} + l\xi, \xi^{n+1}).$

Let F_q be a finite field of order q and assume that q is prime to l. By K_{Fq} (-) we denote the algebraic K-cohomology for F_q .

 $\frac{1}{q}$

The purpose of the paper is to show the following two theorems :

Theorem 1.1. There is an element ξ of \tilde{K}_{Λ} ($L^{u}(l^{d})$) and a monic polynomial f(X) of degree $(l^{d} - 1) / (l - 1)$ such that

(i) $K_A(L^n(l^d)) \cong A[\xi] / (f(\xi^{l-1})\xi, \xi^{n+1})$ and

(ii) for an integer k whose order in $(\mathbb{Z}/l^d)^{\times}$ is prime to $l, \psi^k(\xi) = c_k \xi$ ($c_k \in \Lambda$), where ψ^k is the Adams operation.

Theorem 1.2. Let F_q be a finite field of order q and assume the order of q in $(\mathbf{Z}/l^d)^{\times}$ is prime to l. Let r be the least positive integer such that $q^r \equiv 1 \pmod{l}$. Then the algebraic Kcohomology group of lens space $ilde{K}_{F_{d}}$ ($L^{n}_{0}(l^{d})$) is isomorphic to the torsion subgroup of $\Lambda[\zeta] / (f(\zeta^s)\zeta, \zeta^{m+1}), \text{ where } \zeta = \xi^r, s = (l - 1)/r \text{ and } m = [n/r].$

§ 2. Splitting of K_A -cohomology

Let $\rho \in \Lambda$ be a primitive (l-1)-th root of unity. Then for $1 \leq i \leq l-1$ we define the $\Lambda \text{-module homomorphism } \Phi_i : K_{\Lambda}(-) \to K_{\Lambda}(-) \text{ by}$ $\Phi_i = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^m},$

where ψ^k is the Adams operation.

Then we have (cf. [2])

Proposition 2.1.

(i)
$$\Phi_1 + \Phi_2 + \cdots + \Phi_{l-1} = id_{n-1}$$

(ii) $\Phi_i \Phi_j = \begin{cases} \Phi_i & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$

Let k be an element of A such that $k \neq 0 \pmod{l}$. Then there exists only one element m of A such that $m^{l-1} = 1$ and $m \equiv k \pmod{l}$. We write \tilde{k} for the element m. Then we have

Proposition 2.2. Let k be an integer whose order in $(\mathbf{Z}/l^d)^{\times}$ is prime to l, then $\psi^k \Phi_i = \Phi_i \psi^k = \tilde{k^i} \Phi_i$ as A-module homomorphism $K_A(L^n(l^d)) \to K_A(L^n(l^d))$.

Proof. The commutativity of ψ^k and Φ_i is clear. Since the order of k in $(\mathbb{Z}/l^d)^{\times}$ is prime to l, $\psi^k = \psi^{\tilde{k}}$. From the fact that \tilde{k} is an (l-1)-th root of unity, there is an integer *s* such that $\tilde{k} = \rho^s$. Then $\psi^k \Phi_i = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\tilde{k}\rho^m} = \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{-mi} \psi^{\rho^{m+s}}$ $= \frac{1}{l-1} \sum_{m=1}^{l-1} \rho^{si} \rho^{-(m+s)i} \psi^{\mu^{m+s}}$ $= rac{1}{l-1} \
ho^{si} \ \sum\limits_{m=1}^{l-1} \
ho^{-mi} \psi^{
ho^m} = \ ilde{k^i} arPsi_i.$

This completes the proof of the proposition.

§ 3. Structure of $K_A(L^n(l^d))$

In this section we write R for the ring $A[x] / ((1 + x))^{d} - 1)$. The ring is a free A-module with a basis $\{1, x, x^2, ..., x^{k^d-1}\}$. The action of the Adams operation ψ^k to R is $\psi^k(x) = (1 + x)^k - 1$.

Put $\xi = \Phi_1(x)$ and $m = l^d - 1$, then we have

Proposition 3.1.

(i) $\{1, \xi, \xi^2, ..., \xi^m\}$ is a basis of the Λ -module R and

(ii) the ideal (ξ) of R is equal to (x).

Proof. Since $\{1, x, x^2, ..., x^m\}$ is a basis of R, we can write

 $\xi^i = c_{i0} + c_{i1}x + c_{i2}x^2 + \cdots + c_{im}x^m$

where $0 \le i \le m$ and c_{ij} is an element of Λ . And $c_{i0} = c_{0i} = 0$ for $1 \le i \le m$. Since the mod l reduction of $(1 + x)^{id} - 1$ is x^{id} and

$$c_{11} \equiv \frac{1}{l-1} \sum_{l=1}^{\infty} \rho^{-m} \rho^{m} = 1 \pmod{l},$$

we have that $c_{ij} \equiv 0 \pmod{l}$ for i > j and $c_{ii} \equiv 1 \pmod{l}$. Therfore $\det(c_{ij}) \equiv 1 \pmod{l}$, which implies Proposition 3.1.

Proposition 3.2. For $k \ge 0$, we have

(i) $\Phi_i(\xi^k) = 0$ if $i \neq k \pmod{l-1}$ and

(ii) $\Phi_i(\xi^k) = \xi^k \text{ if } i \equiv k \pmod{l-1}$.

Proof. To prove (i), assume $i \neq k \pmod{l-1}$. By Proposition 2.2, $\psi^{\rho} \Phi_i(\xi^k) = \rho^i \Phi_i(\xi^k)$. On the other hand

$$\begin{split} \psi^{\rho} \Phi_i(\xi^k) &= \Phi_i\left((\psi^{\rho}(\xi))^k\right) = \Phi_i\left((\psi^{\rho} \Phi_1(x))^k\right) \\ &= \Phi_i\left((\rho \Phi_1(x))^k\right) = \rho^k \Phi_i(\xi^k). \end{split}$$

Since $\rho^i - \rho^k$ is a unit of Λ , $(\rho^i - \rho^k) \Phi_i(\xi^k) = 0$ implies $\Phi_i(\xi^k) = 0$. To prove (ii), assume $i \equiv k \pmod{l-1}$. Applying Proposition 2.1 (i) to ξ^k , we have

$$\begin{aligned} \xi^k &= \Phi_1(\xi^k) + \Phi_2(\xi^k) + \cdots + \Phi_{l-1}(\xi^k) \\ &= \Phi_l(\xi^k). \end{aligned}$$

This completes the proof of the proposition.

Proposition 3.3. There is a monic polynomial f(X) of degree $(l^d - 1) / (l - 1)$ such that $R \cong \Lambda[\xi] / (f(\xi^{l-1})\xi)$.

Proof. By Proposition 3.1 there is a relation

 $\xi^{m+1} = a_0 + a_1\xi + a_2\xi^2 + \dots + a_m\xi^m$, where a_i is an element of Λ for $0 \le i \le m$. From Proposition 3.2, we have

$$\begin{split} \xi^{m+1} &= \Phi_1(\xi^{m+1}) \\ &= \Phi_1(a_0 + a_1\xi + a_2\xi^2 + \dots + a_m\xi^m) \\ &= a_1\xi + a_l\xi^l + a_{2l-1}\xi^{2l-1} + \dots + a_{m-l+2}\xi^{m-l+2}. \end{split}$$

Put

 $f(X) = -a_1 - a_l X - a_{2l-1} X^2 - \cdots - a_{m-l+2} X^{m/(l-1)-1} + X^{m/(l-1)},$

then we have a relation $f(\xi^{l-1})\xi = 0$ of R. Clearly $\Lambda[\xi] / (f(\xi^{l-1})\xi)$ is a free Λ -module with a basis

 $\{1, \xi, \xi^2, \dots, \xi^m\}$. This implies Proposition 3.3.

Proof of Theorem 1.1. From Proposition 3.1 and Proposition 3.3, we have

$$K_{\Lambda}(L^{n}(l^{d})) \cong \Lambda[x] / ((1 + x)^{l^{d}} - 1, x^{n+1}) \cong R / (x^{n+1})$$

 $\cong R/(\xi^{n+1}) \cong \Lambda[\xi] / (f(\xi^{l-1})\xi,\xi^{n+1}).$

Let r be a positive integer such that r divides l - 1, and put s = (l - 1) / r. We write R' for the ring $\Lambda[\zeta] / (f(\zeta^s)\zeta)$. Then there is the ring homomorphism $\iota : R' \to R$ such that $\iota(\zeta) = \xi^r$ and $\iota|_{\Lambda} = id_{\Lambda}$. Then we have the following proposition :

Proposition 3.4.

- (i) *is a monomorphism*,
- (ii) $\operatorname{Im}(\iota : R' \to R) = \operatorname{Im}(\Phi_r + \Phi_{2r} + \dots + \Phi_{l-1} : R \to R),$
- (iii) let $\pi : R \to R / (\xi^{n+1})$ be the canonical projection, then $\operatorname{Ker}(\pi \circ \iota) = (\zeta^{[n/r]+1})$, and
- (iv) $R' / (\zeta^{[n/r]+1}) \cong \operatorname{Im}(\Phi_r + \Phi_{2r} + \dots + \Phi_{l-1} : R / (\xi^{n+1}) \to R / (\xi^{n+1})).$

Proof. Since R' is a free Λ -module with a basis $\{1, \zeta, \zeta^2, ..., \zeta^{mlr}\}$ and $\operatorname{Im}(\Phi_r + \Phi_{2r} + \cdots + \Phi_{l-1})$ is a free Λ -module with a basis $\{1, \xi^r, \xi^{2r}, ..., \xi^m\}$, (i) and (ii) is clear. To prove (iii), assume that α is an element of $\operatorname{Ker}(\pi \circ \iota)$. Then we can write

 $\iota(\alpha) = \xi^{n+1}(a_0 + a_1\xi + a_2\xi^2 + \dots + a_m\xi^m)$ = $a_0\xi^{n+1} + a_1\xi^{n+2} + a_2\xi^{n+3} + \dots + a_m\xi^{n+m+1}$, where $a_i \in \Lambda$ for $0 \le i \le m$. By Proposition 3.2 we have $\iota(\alpha) = (\Phi_r + \Phi_{2r} + \dots + \Phi_{l-1})(\alpha)$ = $\sum_{\substack{0 \le i \le m \\ n+i+1=0 \pmod{r}}} a_i\xi^{n+i+1}$

$$= \sum_{\substack{0 \le i \le m \\ n+i+1 \equiv 0 \pmod{r}}} a_i t(\zeta^{(n+i+1)/r}).$$

Therefore α is an element of the ideal $(\zeta^{[n/r]+1})$. It is clear that $\iota(\zeta^{[n/r]+1})=0$, so we have $\operatorname{Ker}(\pi \circ \iota) = (\zeta^{[n/r]+1})$. From (i), (ii) and (iii), (iv) follows. This completes the proof of Proposition 3.4.

§ 4. KF_{q} -cohomology of lens space $L_{0}^{n}(l^{d})$

Let F_q be a finite field of order q and assume that the order of q in $(\mathbb{Z}/l^d)^{\times}$ is prime to l. Put $M_i = \Phi_i(\tilde{K}_A(L_0^n(l^d)))$. Then from Proposition 2.1, we have

 $K_{\Lambda}(L_{0}^{n}(ld)) \cong \Lambda \oplus M_{1} \oplus M_{2} \oplus \cdots \oplus M_{l-1}.$

Since $K^{-1}(L_0^n(l^d)) = 0$, there is an exact sequence (cf. [4])

 $0 \to \tilde{K}_{\boldsymbol{F}_q}(L_0^n(l^d)) \to \tilde{K}_{\Lambda}(L_0^n(l^d)) \xrightarrow{1-\psi^q} \tilde{K}_{\Lambda}(L_0^n(l^d)).$

From Proposition 2.2 and the fact that $1 - \psi^q$ commutes with Φ_i we have the following

proposition :

Proposition 4.1.

Then the following lemma is well known :

Lemma 4.2. Let r be the least positive integer such that $q^r \equiv 1 \pmod{l}$. Then (i) $1 - \tilde{q}^i$ is a unit of Λ if $i \neq 0 \pmod{r}$ and (ii) $1 - \tilde{q}^i = 0$ if $i \equiv 0 \pmod{r}$.

Proof of Theorem 1.2. From Proposition 4.1 and Lemma 4.2,

$$\Lambda \oplus \tilde{K}_{F_q}(L_0^n(l^d)) \cong \Lambda \oplus \overset{(l-1)/r}{\underset{i=1}{\oplus}} M_{ir}.$$

Since this Λ -submodule of $K_{\Lambda}(L_0^n(l^d))$ is generated by 1, ξ^r , ξ^{2r} , ξ^{3r} ,..., we have

 $\Lambda \oplus \tilde{K}_{\mathbf{F}_q}(L_0^n(l^d)) \cong \operatorname{Im}(\Phi_r + \Phi_{2r} + \dots + \Phi_{l-1}).$

From Proposition 3.4

 $\Lambda \oplus \tilde{K}_{\mathbf{F}_q}(L^n_0(l^d)) \cong R' / (\zeta^{[n/r]+1}),$ which implies Theorem 1.2.

References

- [1] Hirata, K., A Note on the Structure of K-ring of Lens Spaces, Men. Fac. Edu., Ehime Univ., Ser. III Natural Science, 5 (1985), 1-6.
- [2] Jankowski, A., Splitting of K-theory and g. characteristic numbers, Studies in Algebraic Topology, Advances in Mathematics Supplementary Studies, vol. 5, Academic Press, (1979), 189-212.
- [3] Mahammed, N., A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, 271 (1970), 639-642.
- [4] Quillen, D. G., On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math., 96 (1972), 552-586.