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The purpose of the paper is to define a ring G and to determine the K-cohomology of
lens space as a G-module.

§ 1. Introduction

Let p be an odd prime number and L*(}9) the standard (2x+1)-dimensional lens space
Sent1 (ZIpY).

Denote by A the ring of p-adic integers Z,. Let ku% (—) be the p-adic completion of
(—1)-connected complex K-theory. In [1], we showed that there is an element & of £ud (L*(p9)
and a monic polynomial f; (X) of degree (p?—1) / (p—1) such that

kuf (L) = A [£]1 (gfq (€271, &),

Let G be the ring A [#]/ {(f; (§)), where the polynomial f; (X) is as above. The purpose of
the paper is to determine £u8 (L"(p9)) as a G-module and to state some results about the
polynomial f; (X).

The main theorems are Theorem 2.7, Theorem 3.1 and Theorem 3.2.

§ 2. Splitting of ku} (L™(p?))

Let ku* (—) be the (—1)-connected complex K-theory, » the canonical complex line bun-
dle of L*»%), and put x = —1.
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Then the ku-cohomology of lens spaces is as follows (see [2,3]):

Theorem 2.1. We have
ku® (L"pY) = Z [x] ] (1+x) "1, xn+Y),

Denote by A the ring of p-adic integers Z,. Let ku¥ (—) be t};(j,lp—adic completion of ku* (—).
Let p € A be a primitive (p— 1)-th root of unity, and put €= 3, o4 *"(x), where y* is the
m=1
Adams operation.

Then we have

Theorem 2.2. There is a monic polynomial f; (X) € A [X] of degree (p?—1) | (p—1)
such that

ke, (LHp%)

1K

A [€] ] (&fy (er7Y), enth),

Proof. Put € = —i—lf. From [1], there is a monic polynomial 7, (X) of degree
(»?—1) / (p—1) such that
Rud (L*@%) = A [€]1 (EF, (€7, &),
Since p—1 is a unit element of A, if we put
fi X0 = =D, (p—1) ¢ X),
then we have
kul (L) = A €]/ &y (@71, D).

For the polynomial £, (X) we have the following lemma :
Lemma 2.3. The constant term of f; (X) is pPu, where u is a unit element of A.

Proof. Let ¢ be the constant term of f; (X). Then,
Ruf (LYpD) = A 5] fa @), ) = Ale]/ (e, &)
= AD A (o).
On the other hand,
ku, (LYp7)

I

AF] (@41, 22 = A [x]/ 0%, )
= A® A (Y,
which implies Lemma 2.3.

Let G be the ring A [f]/ (f; (¢). Then, kud (L*(p?9) is a G-module by g (f) -a = g (¢ Va,
where g ) =G and ¢ A;uf{ (LrpD).

Let G, be the G-module G/(#%), and put a(i,n) = [g—:;—]Jrl.



Splitting of K-Cohomology

Since Eu9 (L*(p%) is a A-module generated by ¢, €2, . . ., and g1 Eud (Lp%) is a G-
module generated by ¢, £2, . . ., and &1, Then we have easily the following theorem :

Theorem 2.4. As a G-module, there is an isomorphism
p—-1 _
@ Ga n) &
=1

IR

Rl (L(p)

To determine Eu% (L*(p?), we define the filtration Fkud (L*(p9) of Eud (L*p?) as
follows :

Definition 2.5. Let L* (99— L (%) (0 = k& = n) be the canonical inclusion, then we
put

Eud (L"(p?) ifk=o0,
Felud (Lp9)=1{ Ker (kud (L"pD)—> Eud (LKp%)) f0<k<mn,
0 if k= n.

Since Atiyah-Hirzebruch spectral sequence of ku* (L*(p%) collapses, we have :

Proposition 2.6. The ku,-cohomology of lens space is
Bugt (L) = Fekud (LAp9).

Theorem 2.7. The ku,—cohomology of lens space is

p—1
@ Ganf k=0,
i=1
_ p—1
kut (L= { @ Guim—agps O EH #0<k<m
i=1
0 fk=n

Proof. 1t is clear for £ = 0 and for £ =z n. For 0 < & < n, we have

p

~ 1
kuZt (Lr(p9) = ) Ker (Go4m — Gagw)

'

1
fe G0 Gzz (i,n)*
1

i
P

Z

R
@

By Lemma 2.3, we have G-module isomorphism #G,, = G,, ;. This completes the proof of
the theorem.
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§ 3. Polynomial fi(X)

Denote by g; (X) the polynomial Xf, (X?—1). In this section we state some results about
&1 (X).

Let R be the ring A [x] / (1 +%) o) = A [/ (771’" —1). First we recall that to prove g,
(X) = Xi’d+apd_1XPd*1+ -+ » 4a,X+a, we need to find a relation g; (¢§) =0 in R.

For p = 3, we have

Theorem 3.1. If p =3, then we have g (X) = X3+3X and g; (X) = g1 (X)®
+3gd_1 (X) f07' a>1.

Proof. Since p = —1, & = y»—»~1. Then, we have
&) = 84+3 = =y P+3 =)
7]3_77—3.
& ©) = & (EP+35 @) = (PF—93P+3 (*—99

_ 2 ~32
= 73_77 32,

Il

(&) = i1 (6P+38;1(8)

O =TI (2 =y
7 —y=3'=0.

This completes the proof of the theorem.

Denote by M (xo, %1, . . ., Xy_1) the matrix
X0 X1 o« o Xn—1
XnN—1 Xo « - - Xny—2
X1 Xg o« . Xy

Then we have

Theorem 3.2. If we write ¢ = cy+cyip+- - '+de_1771’d’1 (c; € A), Then we have

& (X)=det M (X—c4, —Ci, =€ o+ oy —Cpdy)
Proof. Put m=p?—1. Since R is a free A-module with a basis {57, »»%, ..., 1},
denote an element agy”+a;y*~1+- - -+a, of R by (a, ay,. . . , a,). Let A be the matrix
M (cy, €1, . . ., ¢,), then we have & = A’e where e = (0,0, . . ., 0, 1). Since g; (X) is the

characteristic polynomial of A, we have g; (A) = 0. Therefore g; (§) = g, (A)e = 0.
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We have some calculations of g; (X):

For p=5 and p=2 (mod p), we have
g (X)=X3+(15+20p)X, and
g X)=g (X) (X20+(60-20p) X16+-(200—1000p)X12
+(—12625—185000)X3+(— 73750+ 950000) X*
+(61815+247420p)).

For p=7 and p=3 (mod p), we have

g1 (X)=X"+(385—273p)X, and

g5 (X)=g(X)(X*2+(105+273p) X36+(2063537 —3426717p) X3
+(1343153896 —318232215p) X%
+(—171515355277 +231015496383p) X 18
+(—15283832013744 +12511015521816p).X12
+(2217175867312—4115711963349p) X®
+(—71626902095+68439131943p)).
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