On the Splitting of K-Cohomology of Lens Space $L^{n}\left(p^{d}\right)$ Dedicated to Professor Hirosi Toda on his 60th birthday

Koichi Hirata
Department of Mathematics, Faculty of Education, Ehime University, Matsuyama, Japan

(Received October 11, 1988)

The purpose of the paper is to define a ring G and to determine the K-cohomology of lens space as a G-module.

§ 1. Introduction

Let p be an odd prime number and $L^{n}\left(p^{d}\right)$ the standard ($2 n+1$)-dimensional lens space $S^{2 n+1 /}\left(\mathbf{Z} / p^{d}\right)$.

Denote by Λ the ring of p-adic integers \boldsymbol{Z}_{p}. Let $k u_{\Lambda}^{*}(-)$ be the p-adic completion of (-1)-connected complex K-theory. In [1], we showed that there is an element ξ of $\tilde{k} u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right)$ and a monic polynomial $f_{d}(X)$ of degree $\left(p^{d}-1\right) /(p-1)$ such that

$$
k u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right)=\Lambda[\xi] /\left(\xi f_{d}\left(\xi^{p-1}\right), \xi^{n+1}\right)
$$

Let G be the ring $\Lambda[t] /\left(f_{d}(t)\right)$, where the polynomial $f_{d}(X)$ is as above. The purpose of the paper is to determine $\tilde{k u_{\Lambda}^{0}}\left(L^{n}\left(p^{d}\right)\right)$ as a G-module and to state some results about the polynomial $f_{d}(X)$.

The main theorems are Theorem 2.7, Theorem 3.1 and Theorem 3.2.

§ 2. Splitting of $k u_{\Lambda}^{*}\left(L^{n}\left(p^{d}\right)\right)$

Let $k u^{*}(-)$ be the (-1)-connected complex K-theory, η the canonical complex line bundle of $L^{n}\left(p^{n}\right)$, and put $x=\eta-1$.

Then the $k u^{0}$-cohomology of lens spaces is as follows (see [2,3]):

Theorem 2.1. We have

$$
k u^{0}\left(L^{n}\left(p^{d}\right)\right) \cong \boldsymbol{Z}[x] /\left((1+x) p^{d}-1, x^{n+1}\right)
$$

Denote by Λ the ring of p-adic integers \boldsymbol{Z}_{p}. Let $k u_{\lambda}^{*}(-)$ be the p-adic completion of $k u^{*}(-)$. Let $\rho \in \Lambda$ be a primitive $(p-1)$-th root of unity, and put $\xi=\sum_{m=1}^{p-1} \rho^{-m} \psi^{\rho^{m}}(x)$, where ψ^{k} is the Adams operation.

Then we have

Theorem 2.2. There is a monic polynomial $f_{d}(X) \in \Lambda[X]$ of degree $\left(p^{d}-1\right) /(p-1)$ such that

$$
k u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right) \cong \Lambda[\xi] /\left(\xi f_{d}\left(\xi^{p-1}\right), \xi^{n+1}\right)
$$

Proof. Put $\bar{\xi}=\frac{1}{p-1} \xi$. From [1], there is a monic polynomial $\bar{f}_{d}(X)$ of degree $\left(p^{d}-1\right) /(p-1)$ such that

$$
k u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right) \cong \Lambda[\bar{\xi}] /\left(\bar{\xi}_{d}\left(\bar{\xi}^{p-1}\right), \bar{\xi}^{n+1}\right)
$$

Since $p-1$ is a unit element of Λ, if we put

$$
f_{d}(X)=(p-1)^{p^{d}-1} \bar{f}_{d}\left((p-1)^{-(p-1)} X\right),
$$

then we have

$$
k u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right) \cong \Lambda[\xi] /\left(\xi f_{d}\left(\xi^{p-1}\right), \xi^{n+1}\right) .
$$

For the polynomial $f_{d}(X)$ we have the following lemma :

Lemma 2.3. The constant term of $f_{d}(X)$ is $p^{d} u$, where u is a unit element of Λ.

Proof. Let c be the constant term of $f_{d}(X)$. Then,

$$
\begin{aligned}
k u_{A}^{0}\left(L^{1}\left(p^{d}\right)\right) & \cong \Lambda[\xi] /\left(\xi f_{d}\left(\xi^{p-1}\right), \xi^{2}\right) \cong \Lambda[\xi] /\left(c \xi, \xi^{2}\right) \\
& \cong \Lambda \oplus \Lambda /(c) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
k u_{\Lambda}^{0}\left(L^{1}\left(p^{d}\right)\right) & \cong \Lambda[x] /\left((1+x)^{p^{d}}-1, x^{2}\right) \cong \Lambda[x] /\left(p^{d} x, x^{2}\right) \\
& \cong \Lambda \oplus \Lambda /\left(\mathrm{p}^{d}\right)
\end{aligned}
$$

which implies Lemma 2.3.

Let G be the ring $\Lambda[t] /\left(f_{d}(t)\right)$. Then, $\tilde{k u} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$ is a G-module by $g(t) \cdot a=g\left(\xi^{p-1}\right) a$, where $g(t) \in G$ and $a \in \tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$.

Let G_{n} be the G-module $G /\left(t^{n}\right)$, and put $a(i, n)=\left[\frac{n-i}{p-1}\right]+1$.

Since $\tilde{k} u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right)$ is a Λ-module generated by $\xi, \tilde{\xi}^{2}, \ldots$, and $\xi^{p^{d}-1}, \tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$ is a $G-$ module generated by ξ, ξ^{2}, \ldots, and ξ^{p-1}. Then we have easily the following theorem :

Theorem 2.4. As a G-module, there is an isomorphism

$$
\tilde{k} u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right) \cong{\underset{i=1}{p-1} G_{a(i, n)} \xi^{i} .}^{i=1}
$$

To determine $\tilde{k} u_{A}^{2 k}\left(L^{n}\left(p^{d}\right)\right)$, we define the filtration $F^{k} \tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$ of $\tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$ as follows :

Definition 2.5. Let $L^{k}\left(\phi^{d}\right) \longrightarrow L^{n}\left(\phi^{d}\right)(0 \leqq k \leqq n)$ be the canonical inclusion, then we put

$$
F^{*} \tilde{k} u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right)= \begin{cases}\tilde{k} u_{\Lambda}^{0}\left(L^{n}\left(p^{d}\right)\right) & \text { if } k \leqq 0 \\ \operatorname{Ker}\left(\tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right) \longrightarrow \tilde{k} u_{\Lambda}^{0}\left(L^{k}\left(p^{d}\right)\right)\right) & \text { if } 0<k<n \\ 0 & \text { if } k \geqq n\end{cases}
$$

Since Atiyah-Hirzebruch spectral sequence of $k u^{*}\left(L^{n}\left(\phi^{d}\right)\right)$ collapses, we have :

Proposition 2.6. The $k u_{A}-$ cohomology of lens space is
$\tilde{k} u_{\lambda}^{2 k}\left(L^{n}\left(p^{d}\right)\right) \cong F^{v} \tilde{k} u_{A}^{0}\left(L^{n}\left(p^{d}\right)\right)$.

Theorem 2.7. The $k u_{A}$-cohomology of lens space is

$$
\tilde{k} u_{\lambda}^{2 k}\left(L^{n}\left(p^{d}\right)\right) \cong \begin{cases}p-1 & \text { if } k \leqq 0 \\ \stackrel{\oplus}{i=1} G_{a(i, n) \xi^{i}} & \text { if } 0<k<n \\ p-1 \\ \underset{i=1}{\oplus} G_{a(i, n)-a(i, k) \xi^{i+(p-1) a(i, k)}} & \text { if } k \geqq n \\ 0 & \end{cases}
$$

Proof. It is clear for $k \leqq 0$ and for $k \geqq n$. For $0<k<n$, we have

$$
\begin{aligned}
\tilde{k} u_{\Lambda}^{2 k}\left(L^{n}\left(p^{d}\right)\right) & \cong \stackrel{p-1}{\oplus} \operatorname{Her}\left(G_{a(i, n)} \rightarrow G_{a(i, k)}\right) \\
& \cong \begin{array}{l}
p-1 \\
i \neq 1
\end{array} t^{a(i, k)} G_{a(i, n)} .
\end{aligned}
$$

By Lemma 2.3, we have G-module isomorphism $t^{\prime \prime} G_{m} \cong G_{m-l}$. This completes the proof of the theorem.

§ 3. Polynomial $\boldsymbol{f}_{d}(\boldsymbol{X})$

Denote by $g_{d}(X)$ the polynomial $X f_{d}\left(X^{p-1}\right)$. In this section we state some results about $g_{d}(X)$.

Let R be the ring $\left.\Lambda[x] /((1+x))^{d}-1\right) \cong \Lambda[\eta] /\left(r^{p^{d}}-1\right)$. First we recall that to prove g_{d} $(X)=X^{p^{d}}+a_{p^{d-1}} X^{p^{d-1}}+\cdots+a_{1} X+a_{0}$ we need to find a relation $g_{d}(\xi)=0$ in R.

For $p=3$, we have

Theorem 3.1. If $p=3$, then we have $g_{1}(X)=X^{3}+3 X$ and $g_{d}(X)=g_{d-1}(X)^{3}$ $+3 g_{d-1}(X)$ for $d>1$.

Proof. Since $\rho=-1, \xi=\eta-\eta^{-1}$. Then, we have

$$
\begin{aligned}
g_{1}(\xi) & =\xi^{3}+3 \xi=\left(\eta-\eta^{-1}\right)^{3}+3\left(\eta-\eta^{-1}\right) \\
& =\eta^{3}-\eta^{-3} . \\
g_{2}(\xi) & =g_{1}(\xi)^{3}+3 g_{1}(\xi)=\left(\eta^{3}-\eta^{-3}\right)^{3}+3\left(\eta^{3}-\eta^{-3}\right) \\
& =\eta^{3^{2}-\eta^{-3^{2}} .} \\
& \cdots \\
g_{d}(\xi) & =g_{d-1}(\xi)^{3}+3 g_{d-1}(\xi) \\
& =\left(\eta^{3 d-1}-\eta^{-3^{d-1}}\right)^{3}+3\left(\eta^{3^{d-1}}-\eta^{-3^{d-1}}\right) \\
& =\eta^{3^{d}-\eta^{-3^{d}}=0 .}
\end{aligned}
$$

This completes the proof of the theorem.

Denote by $M\left(x_{0}, x_{1}, \ldots, x_{N-1}\right)$ the matrix

$$
\left(\begin{array}{ccc}
x_{0} & x_{1} & \ldots \\
x_{N-1} \\
x_{N-1} & x_{0} & \ldots \\
x_{N-2} \\
& \ldots \\
x_{1} & x_{2} & \ldots x_{0}
\end{array}\right)
$$

Then we have

Theorem 3.2. If we write $\xi=c_{0}+c_{1} \eta+\cdots+c_{p^{d}-1} \eta^{p^{d-1}}\left(c_{i} \in \Lambda\right)$, Then we have $g_{d}(X)=\operatorname{det} M\left(X-c_{0},-c_{1},-c_{2}, \ldots,-c_{p^{d}-1}\right)$.

Proof. Put $m=p^{d}-1$. Since R is a free Λ-module with a basis $\left\{\eta^{m}, \eta^{m-1}, \ldots, 1\right\}$, denote an element $a_{0} \eta^{m}+a_{1} \eta^{m-1}+\cdots+a_{m}$ of R by $\left(a_{0}, a_{1}, \ldots, a_{m}\right)$. Let A be the matrix $M\left(c_{0}, c_{1}, \ldots, c_{m}\right)$, then we have $\xi^{i}=A^{i} e$ where $e=(0,0, \ldots, 0,1)$. Since $g_{d}(X)$ is the characteristic polynomial of A, we have $g_{d}(A)=0$. Therefore $g_{d}(\xi)=g_{d}(A) e=0$.

We have some calculations of $g_{d}(X)$:

For $p=5$ and $\rho \equiv 2(\bmod p)$, we have

$$
\begin{aligned}
g_{1}(X)= & X^{5}+(15+20 \rho) X, \text { and } \\
g_{2}(X)= & g_{1}(X)\left(X^{20}+(60-20 \rho) X^{16}+(200-1000 \rho) X^{12}\right. \\
& +(-12625-18500 \rho) X^{8}+(-73750+95000 \rho) X^{4} \\
& +(61815+247420 \rho)) .
\end{aligned}
$$

For $p=7$ and $\rho \equiv 3(\bmod p)$, we have

$$
\begin{aligned}
g_{1}(X)= & X^{7}+(385-273 \rho) X, \text { and } \\
g_{2}(X)= & g_{1}(X)\left(X^{42}+(105+273 \rho) X^{36}+(2063537-3426717 \rho) X^{30}\right. \\
& +(1343153896-318232215 \rho) X^{24} \\
& +(-171515355277+231015496383 \rho) X^{18} \\
& +(-15283832013744+12511015521816 \rho) X^{12} \\
& +(2217175867312-4115711963349 \rho) X^{6} \\
& +(-71626902095+68439131943 \rho)) .
\end{aligned}
$$

References

[1] Hirata, K., A Note on the $K_{F_{q}}$-Cohomology of Lens Space $L_{\gamma}{ }^{z}\left(l^{d}\right)$, Mem. Fac. Edu., Ehime Univ., Ser. III Natural Science, 7 (1987), 1-5.
[2] Kambe, T., The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18(2)(1966), 135-146.
[3] Mahammed, N., A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sc. Paris, 271 (1970), 639-642.

