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    The purpose of the paper is to define a ring G and to determine the K-cohomology of

lens space as a G-module.

                           g 1. Introduction

    Let P be an odd prime number and L"(P4 the standard (2n+1)-dimensional lens space

S2n+i/ (Z/Pd).

   Denote by A the ring of P-adic integers Zp. Let leu*A (-) be the P-adic completion of

(-1)-connected complex K-theory. In [1], we showed that there is an element e of leuR (Ln(PO)

and a monic polynomial fd (LX) of degree (Pd-1)1 lv-1) such that

      feuO. (Ln(pd)) == A [e]1(6fd (eP-i), 6n+i).

   Let G be the ring A [t] 1 (fid (t)), where the polynomial fd (X) is as above. The purpose of

the paper is to determine kuR (L"(Pd)) as a G-module and to state some results about the

polynomial fd (.X).

   The main theorems are Theorem 2.7, Theorem 3.1 and Theorem 3.2.

                     g 2. Splitting of kuX (Ln(pny)

   Let ku" (-) be the (-1)-connected complex K-theory, v the canonical complex line bun-

dle of L"(Pd), and put x = rp-1.
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Then the kuO-cohomology of lens spaces is as follows (see [2,3]):

Theorem 2.1.
  leuO (Ln(pd)) --.

We have

 Z [x] 1 ((1+x) pd-1, xn+1).

   Denote by A the ring of P-adic integers Zp. Let feuTi (-) be t5g,P-adic completion of ha* (

Let p EA be a primitive (P-1)-th root of unity, and put e= 2 p""iWpM(x), where Vle is

-).

the
tn=1

Adams operation.

Then we have

such

Theorem 2.2. There is a monic Polynomial fd

that

  leu.O,i (L"(Pd)) =- A [e]1(sf, (eP7i), 6n+i).

(X) EiE A [M of degree (pd-1) 1 ip-1)

                 1   Proof. Put E =p-16. From [1], there is a monic

ipd-1)1 ip-1) such that

      leu2 (Ln(p4) ; A [g]/(gf, (sP-i), gn+i).

Since P-1 is a unit element of A, if we put

      fd (X) = lv-1)Pd-if, (lv-1)-ip-oM,

then we have

      leuR (Ln(PO) tr- !y [e]!(ef, (gp-i), gn+i).

polynomial fd (.)O of degree

For the polynomial fd (.X) we have the following lemma:

Lemma2.3. The constant term Offd (.X) is Pdu, where uisa unit element of A.

   Proof. Let c be the

      ku,O, (Li(pd)) ;

                 =
On the other hand,

      kuR (Li(pd)) !

                 !
which implies Lernma

constant term of fd <.X).

A [g] 1 (ofd (6P-i), 62)

AO A1 (c).

 A [x]

 Ae
2.3.

 Then,
2-: A [e]/(ce, 62)

/((1+xPd-1, x2) ; A [x]1

A 1 (pd),

(Pdx, x2)

   Let G be the ring A [t] l (fd (t)). Then,

where g (t) EG and aE haR (Ln(pd)).

leuO. (Ln(pd)) is a G-module by g (t) •a = g (6P"i)a,

Let G. be the G-module Gl(ge), and put a(i,n)    n-z= [P-l ]+1.
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                            Splitting of K-Cohomology

   Since le"uR (L"(pO) is a A-module generated by 6, e2, ..., and ePd-i, le'"aR (Ln(pd)) is a G-

module generated by 6, 62, ..., and 6Prmi. Then we have easily the following theorem :

   Theorem 2.4. As a G-module, there is an isomorPhism

       ny P-1      lezaOA (L"(PO) 2! (D Ga(i,n)6i•
                     i=1

   To determine ku2Ak (L"(PO), we define the filtration .FileleuOA (Ln(PO)of kuOA (L"(P4) as

follows :

   Definition 2.5. Let Lfe (Pny. Ln (PO (O $ le $ n) be the canonical inclusion, then we

put

                     feuR (Ln(ls)d)) ifk$ O,
      IiilefeuR (Ln(Pd))= Ker (leuR (Ln(Pd))-> haA (Lk(1)d))) if O < k < n,

                     O if fe l) n.
   Since Atiyah-Hirzebruch spectral sequence of leu" (L"lv0) collapses, we have :

   Proposition 2.6. The leuA-cohomology of lens sPace is

      leukk (Ln(pd)) ; .PilekuR (Ln(pd)).

    Theorem 2.7. The leu,t-cohomology of lens sPace is

                   P-1
                    e G. (i,.)ei tfk$ o,
                   i--1
       N P-1      leuRle (Ln(Pd)); e G.(i,.)-.(i,le)6i+ipTi)a(i•k) tfO< le < n,
                   i=1

                    O ik z. n.
   Proof. It is clear for le $ O and for k l n. For O < k < n, we have

       .. P-1      ku2.le (Ln(PO) !; e Ker (Ga(i,n) n" Ga(i,k))
                     i=1
                     P-1
                  ; (D ts {i'k) Ga (i,n)•
                     i=1

By Lemma 2.3, we have G-module isomorphism tiG,. =- G.-i. This completes the proof of

the theorem.
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                       g 3. Polynomial fd(X)

   Denote by gd (.i\) the polynomial Xfd (XP-i). In this section we state some results about

gd (M•

   Let R be the ring vl [x] / ((1+x) Pd-1) =- A [n] 1 (vPd-1). First we recall that to prove gd

(X) = XM+aM-iXdi-'+ • - • +aiX+ao we need to find a relation gd (g) =O in R.

   For P =: 3, we have

   Theorem 3. 1. If p == 3, then we have gi (X) = IY3+3X and gd (X) = gd-i (X)3

+3gd-i (M for d>1.

   Proof. Since p == -1, e == n- rp-i. Then, we have

     gi (e) == g3+36 = (rp-rp-i)3+3 (v-rp-i)

           = rp3-rp-3.
     g2 (6) = gi (6)3+3gi (e) = (rp3-nv3)3+3 (rp3-n-3)
           = rp32-rp-32.

      gd (g) = gdmi (6)3+3gd-i (g)
           == (v3d-1-v-3d-1)3+3 (rp3d-1-?-3d-1)

           ,,,, rp3d-v-3d=O.

This completes the proof of the theorem.

   Denote by M (xo, xi, ...,xN"i) the matrix

       XO XI • • • XN-1
       XN-1 XO ••• XN-2

       Xl X2 ••• XO •
Then we have

   Theorem 3.2. If we write e == co+cin+• • -+cpdrminPd-i (ci EA), Then we have

      gd (M = det M (X-co, -ci, -c2, . . • , -cdiTi)•

   Proof. Put m==Pd-1. Since R is a free A-module with a basis {om, nm-i, ..., 1},

denote an element aorp'n+airpm-i+e • •+a. of R by (ao, ai,. . . , a.). Let A be the matrix

M (co, ci, ..., c.), then we have 6i -- Aie where e= (O, O, ..., O, 1). Since gd (X) is the

characteristic polynomial of A, we have gd (A) = O. Therefore gd (g) = gd (A)e = O.
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We have some calculations of gd (X):

ForP=5 and p!2 (mod P), we have
   gi (X) =X5+(l5+20p)X, and
   g2 (X)=gi (M (X20+(60`:-20p)Xi6+(2oo-looop)xi2

        + ( - l2625 - 18500p)X8 + ( - 73750 + 950OOp)X4

        +(61815+247420p)).

For P==7 and p=-3 (mod P), we have

   gi (X) =X7+(385-273p)X, and
   g2 (X)=gi(X)(X42+(105+273p)X36+(2063537-3426717p)X30

        +(1343153896-318232215p).X2`
        +(-171515355277+231015496383p)XL8
        +(-15283832013744+12511015521816p)Xi2
        +(2217175867312-4115711963349p)X6
        +(-71626902095+68439131943p)).
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