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    Yamaguchi and Nonaka[1] clarified relative accuracy of several approximate and explicit solutions(AESs) 
to the transcendental dispersion equation in the Airy wave theory with small amplitude, in cases where a 
numerically exact solution is obtained by Newton’s iterative method. This paper reinforces the previous results 
with new investigations for accuracy of 4 recently-proposed AESs[2],[3] (Beji-1, Beji-2, Vata-1, Vata-2) and some 
of AESs[4]~[8] (from Cham-2 to Cham-7 etc.) non-discussed in Yamaguchi and Nonaka[1], and their Newton 
method-based solutions. The main findings are as follows: (1) The 4 AESs show higher accuracy than the 
previous AESs, in cases where use of Beji-2 or Vata-1 is recommended from the view point of a balance 
between accuracy and compactness (computational efficiency) of the equation; (2) The 4 AESs(Cham-4, 
Cham-5, Cham-6, Cham-7) of the 7 AESs proposed by Chamberlain and Porter[5] have small maximum relative 
errors ranging from 0.16 % to 0.0035 %, which show increasing accuracy with increased sophistication of the 
formula; (3) The Padé approximation-based Hunt[4] AES with the 9th order gives a high accuracy but less 
accuracy compared to Vata-2 or Cham-7; (4) The 1st iteration solution by Newton’s method for an initial value 
based on each of the AESs provides much higher accuracy than the original AES, in cases where any of the 
Vata-2, Hunt-9 and Cham-7-based solutions corresponds to a numerically exact solution to the best degree; (5) 
Each of the You[6]~[8]-type Piecewise AESs(PAESs) applicable only to a shallow water area indicates reasonable 
accuracy within its effective range, which means the usefulness within a limited condition in shallow water 
from a point of compactness of the expression; (6) A modified version for the Combined Piecewise 
AES(CPAES) proposed by Newman[9] which is applicable to a full range of water depth condition has the 
highest accuracy among not only various CPAESs but also the investigated AESs.   
 

Key Words；dispersion relationship, Airy wave theory, recently-proposed/previously overlooked AESs, Newton 
method-based AESs and exact solutions 
 

1. Introduction 

 
    The dispersion relationship in shallow water based on the small amplitude wave theory constitutes a 
transcendental equation with respect to wave length and this property makes it impossible to derive the 
analytical solution. For this reason, many kinds of approximate and explicit solution(AES) have been proposed 
and their error characteristics have been investigated through the comparison with a numerically exact solution. 
In 2007, Yamaguchi and Nonaka[1] classified most of previously-proposed 30 AESs including the 
authors-modified versions and made clear an error range for each of the AESs. But concerted efforts for 
developing new AESs are continuing.  
    By taking this situation into account, this paper enphances the previous results with new investigations for 
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accuracy of 4 recently-proposed AESs[2],[3] and some old AESs[4]~[8] non-discussed in Yamaguchi and Nonaka[1], 
and their Newton method-based solutions. The AESs investigated here are ○1 2 expressions by Beji[2](Beji-1, 
Beji-2), ○2 2 expressions by Vatankhah and Aghashariatmadari[3](Vata-1, Vata-2), ○3 4 expressions with several 
orders of relative water to depth-deep water wave length parameter α  by Hunt[4](Hunt-4, Hunt-5, Hunt-6, 
Hunt-9), ○4 6 expressions by Chamberlain and Porter[5](Cham-2, Cham-3, Cham-4, Cham-5, Cham-6, Cham-7), 
○5 a set of the 1st iteration solution(2-step AES) by Newton’s method associated with an initial value calculated 
using each of the above-mentioned AESs. Also the You[6]~[8]-type PAESs applicable only to shallow water area 
and the PAESs by Chamberlain and Porter[5] and Newman[9] application-limited to either of shallow water area 
or deeper water area are added to the candidates to be investigated. Then characteristics of 2 Combined 
PAESs(CPAESs) consisting of the 2 types of PAES mentioned above are discussed.  

2. Dispersion relationship and numerically exact solution 

    The dispersion relationship based on the small amplitude wave theory(the Airy wave theory) on the 
constant water depth is expressed as 

ββα tanh⋅= ， hk0=α ， kh=β                                                      (1) 
where h  is the water depth, 00 2 Lk π=  the wave number in deep water, 0L  the wave length in deep water, 

Lk π2=  the wave number in shallow water and L  the wave length in shallow water. Eq.(1) is a typical 
transcendental equation with the unknown variable of β . Numerical computation of Eq.(1) is made using 

Newton’s method and a numerical solution with the relative error less than 1010−  obtained through iterative 
computations is regarded as a numerically exact solution of Eq.(1) in this study. An initial value in the 
computation aβ  is due to either of the following expressions. 

1≥α  or π210 ≥Lh ： ( )02 Lha παβ ==  

1<α  or π210 <Lh ： ( ){ } 21
0

21 2 Lha παβ ==                       

The number of iterations reaching a numerically exact solution is only from 2 to 4, because Newton’s method 
has a property of quadratic convergence.  

3. Approximate and explicit solutions(AESs) for computation of wave length and 

their accuracy 

3.1 Classification of AESs[1] 

    AESs published so far may be classified into 2 main groups, I : AESs applicable to a full range of relative 
water depth 0Lh  of 0 to ∞  and II : AESs valid for a limited range of 0Lh . Each group may be 

sub-classified into ○1  AESs with simple form but lower accuracy, ○2 AESs with complicated or lengthy form 
but higher accuracy and ○3 2-step AESs with high accuracy. AESs of group II-○1  may be separated into 
(i)shallower water use and (ii)deeper water use. 
    Table 1 re-summarizes the above-mentioned description which has a slightly different form from Table 1 
in Yamaguchi and Nonaka[1]. AESs classified into I-○1  are the 1st and 2nd equations by Beji[2](Beji-1, Beji-2), 
the 1st equation by Vatankhah and Aghashariatmadari[3](Vata-1), the Padé approximation-based Hunt 4th order 
and 5th order solutions(Hunt-4, Hunt-5), and the 1st 4 equations by Chamberlain and Porter[5](Cham-2, Cham-3, 
Cham-4, Cham-5). Then AESs classified into I- ○2  are the 2nd equation by Vatankhah and 
Aghashariatmadari[3](Vata-2), the Hunt 6th order and 9th order solutions (Hunt-6, Hunt-9) and the last 2 

(2) 
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equations by Chamberlain and Porter[5](Cham-6, Cham-7). A set of AESs classified into I-○3  is the 1st iteration 
solution (2-step AES) by Newton’s method taking each of the AESs as an initial value, in cases where ' N ' is 
added to each of the notations such as Beji-1N. 
    Moreover AESs classified into II-○1 (i) are the n-th order( 3≤n ) equations given by You[6]~[8](You-1, 
You-2/WT1, You-3/Niel2, You-4, You-5/You), the modified versions(Cham-6L/Olson3, Cham-7L/YNH) and 
the Chamberlain and Porter[5] equation(CP-1) applicable only to a shallow water condition. An AES 
sub-grouped into II-○2 (i)(shallower water) is the Newman[9] 8th order equation(New-1) and an AES 
sub-grouped into II-○1 (ii)(deeper water) is the Chamberlain and Porter[5] equation(CP-2). Either the Newman[9] 
5th order solution(New-2) or 4th order solution(New-3) belongs to II-○2 (ii)(deeper water). A simplified New-2 
solution with the 2nd order(New-2S) is classified into II-○1 (ii)(deeper water). The other AESs grouped in 
category II)-○1  or II-○2  were discussed in Yamaguchi and Nonaka[1]. 

    Numerical computations are conducted for a range of 5
0 10−=Lh - 1 with an increment of ( )0Lh = 510− . 

The error of each AES relative to the exact solution ε  is defined as : 

    ( ) 1001 ×−= exacapp LLε %                                                            (3) 

where the subscript 'app' means an approximated wave length and the subscript 'exac' means the exact wave 

length computed with an relative error less than 1010−  using Newton’s method. 
 

3.2 AESs applicable to a full range of relative water depth 0Lh  

    Each of the 2 AESs proposed by Beji[2], its classification, its abbreviated notation and the maximum 
relative error maxε  indicated in his paper are written as : 

    ( ){ }[ ] ( ) 2131 tanh0211exp1 ααααβ ... +−+= ，[Ⅰ-①，Beji-1， maxε =0.187%]                 (4) 

( ){ }[ ] ( ) 212091 tanh2160301551exp1 αααααβ .... ++−+= ，[Ⅰ-①，Beji-2， maxε =-0.044%]      (5) 

Also, those by Vatankhah and Aghashariatmadari[3] are similarly expressed as 

( ){ }[ ] ( ) 21351 tanh22518351exp1 ααααβ ... +−⋅+= ，[Ⅰ-①，Vata-1， maxε =0.019%]           (6) 

Table 1 Grouping of AESs. 
 

Group 
classification 

Simple, low or moderate 
accuracy○1  

Complicated or lengthy, 
high accuracy○2  

2-step AES 
high accuracy○3  

Full range of 
water depth I 

Beji-1, Beji-2, Vata-1,Hunt-4, 
Hunt-5, Cham-2, Cham-3, 
Cham-4, Cham-5 

Vata-2, Hunt-6, Hunt-9 
Cham-6, Cham-7 

Beji-1N ~ 
Cham-7N 

 
Limited range of 
water depth II 

Shallower 
water(i) 

Deeper 
water(ii) 

Shallower 
water(i) 

Deeper 
water(ii) 

 

You-1, You-4, 
Cham-6L, 
Cham-7L, CP-1 

CP-2, 
New-2S 

New-1 
New-2, 
New-3 
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    ( ){ }[ ]
( )

( ){ }( )50511582053251320
21

651

exp1
tanh

23exp1 ....
.. ααα

α
αααβ +−−+

+−⋅+
= ，[Ⅰ-②，Vata-2， maxε =0.001%]  

                                                                                     (7) 
Both Vata-1 and Vata-2 may correspond to improved versions of Beji-1 and Beji-2 respectively. But Vata-2 has 
a rather sophisticated form compared to either Beji-1 or Beji-2. 
    Fig. 1 shows the relation between relative error ε  and relative water depth 0Lh  for not only Eqs. 

Beji-1, Beji-2, Vata-1 and Vata-2 but also the 5th equation by Carvlho (Carv5) given in Yamaguchi and 
Nonaka[1]. The characteristics of Carv5 is described as 

    ( )2121tanh ααβ α.= ，[Ⅰ-①，Carv5， maxε =0.27%]                                     (8) 
Relative error ε  in any of the AESs yields a positive or negative behavior with respect to change of 0Lh , 
which finally approaches zero with either infinitesimal decrease or infinite increase of 0Lh . 

 
    A range of the negative maximum and positive maximum relative error maxε  and its corresponding 0Lh  

for any of Beji-1, Beji-2, Vata-1, Vata-2 and Carv5 are collectively written as : 

23) Beji-1：-0.15%（ 0Lh =0.385）～0.19%（ 0Lh =0.010）                             (9) 

24) Beji-2：-0.044%（ 0Lh =0.048）～0.042%（ 0Lh =0.006）                           (10) 

25) Vata-1：-0.019%（ 0Lh =0.064）～0.019%（ 0Lh =0.011）                           (11) 

26) Vata-2：-0.0012%（ 0Lh =0.006）～0.0012%（ 0Lh =0.149）                         (12) 

9) Carv5：-0.21%（ 0Lh =0.278）～0.27%（ 0Lh =0.063）                              (13) 
The leading number such as 23) in Eq.(9) indicates the number connecting to the number provided in Table 2 
by Yamaguchi and Nonaka[1] and the same number such as 9) is given for the same case. Positive or negative 
maximum value of ε  in Eq.(9) to Eq.(12) coincides with the one given in either of Beji[2] or Vatankhah and 
Aghashariatmadari[3]. In short, the maximum relative error maxε  is 0.2 % for Beji-1, (-)0.04 % for Beji-2, 
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Fig. 1 Relation between relative error ε  and relative water depth 0Lh  for any of Beji-1, Beji-2, Vata-1, 

Vata-2 and Carv5. 
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± 0.02 % for Vata-1 and ± 0.001 % for Vata-2 respectively, as shown in each paper. Comparing with Carv5  

which yields the highest accuracy in the previous single expression-based AESs grouped in I-○1 , Beji-1 gives a 

comparable accuracy and any of Beji-2, Vata-1 and Vata-2 produces a higher accuracy in this order. It should be 

emphasized that Vata-2 consisting of 2 terms has too complicated a form. In addition, the reason why Beji-1 as 

well as the below-mentioned Cham-3 leaves a significant relative error greater than the other AESs even in a 

very small 0Lh  case such as 0Lh = 410−  is analytically and numerically investigated in the Appendix. 
    Next, the Padé-approximation-based Hunt[4] equation with the 6th order of relative water depth of 

( )02 Lhπα =  is given as : 

    ( ){ } 2116
6

5
5

4
4

3
3

2
21

21 1 −
+++++++= ααααααααβ DDDDDD ，[Ⅰ-②，Hunt-6]          (14) 

66666666660321 .D ≈= ， 3555555555045162 .D ≈= ， 
160846560809451523 .D ≈= ， 06320987650141758964 .D ≈= ， 

0217540484015592533925 .D ≈= ， 00654079820149706597926 .D ≈=                    (15) 

The fraction-used expressions for the coefficients 5D  and 6D  in Eq.(14) are made in this study due to their 

lack in the Hunt[4] paper. The numeric figure of 5D  with 10 digits are in perfect agreement with the one by 

Hunt[4] and then it should be noted that the figure for 6D  is 1010− , which differs from the one by Hunt[4] 

( 006540798306 .D = ). Although the cause is not clear, the effect of the difference on relative error is 

substantially zero. In addition, the Hunt[4] 4th order solution, its classification, the abbreviated notation and the 

maximum relative error maxε  are as follows : 

    ( ){ } 21143221 27201050445066601 −
+−+++= ααααααβ .... ，[Ⅰ-①，Hunt-4， maxε =0.2%]   (16) 

    Fig. 2 indicates the relation between ε  and 0Lh  for not only Hunt-4 and Hunt-6 but also Hunt-5 and 
Hunt-9 investigated in Yamaguchi and Nonaka[1]. While Hunt-6 has a single negative peak of ε  with 0Lh , 

the other 3 AESs yield 2 positive and negative peaks. Hunt-6 shows a different behavior of ε  from any of the 
other AESs. 
    Similar to the former cases, a range of the negative maximum and positive maximum relative error and its 
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Fig. 2 Relation between relative error ε  and relative water depth 0Lh  for any of Hunt-4, Hunt-5, Hunt-6 

and Hunt-9. 
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corresponding 0Lh  for any of Hunt-4, Hunt-5, Hunt-6 and Hunt-9 are collected as 

27) Hunt-4：-0.15%（ 0Lh =0.488）～0.14%（ 0Lh =0.242）                            (17) 

12) Hunt-5：-0.070%（ 0Lh =0.532）～0.078%（ 0Lh =0.288）                          (18) 

28) Hunt-6：-0.19%（ 0Lh =0.395）～0.0%（ 0Lh →0，∞）                            (19) 

13) Hunt-9：-0.0082%（ 0Lh =0.603）～0.0054%（ 0Lh =0.324）                        (20) 
The results for Hunt-6 and Hunt-9 were provided by Yamaguchi and Nonaka[1]. The maximum relative error 

maxε  is (-)0.15 % for Hunt-4, 0.08 % for Hunt-5 and (-)0.008% for Hunt-9, which reveals decrease of the error 

associated with a higher order approximation. The error of  (-)0.19 % for Hunt-6 is greater in absolute value 
than that for Hunt-4. Adjustment or tuning for the coefficients 1D ~ 6D  in Eq. (14) may be required in order to 

make Hunt-6 more practical. Moreover, the accuracy of Hunt-9 with the maximum error of (-)0.008 % is lower 
that that of Vata-2 with an error of 0.0012 %. Vata-2 uses both exponential function with argument of real 
number power of α  and hyperbolic function. This may correspond to making use of an infinite series with 
integer number power terms of variable α . On the other hand, Hunt-9 is expressed by a polynomial of degree 
9 in variable α . Although Hunt-9 appears to have a lengthy form, Hunt-9 may be regarded as an AES with 
shorter and more compact form compared to AESs using exponential and hyperbolic functions such as Vata-1 
and Vata-2. 
    Next, each of the 6 AESs proposed by Chamberlain and Porter[5] but overlooked in Yamaguchi and 
Nonaka[1], its classification, its abbreviated notation and the maximum relative error maxε  indicated in their 

paper are written in order as : 

    ( ){ } 21sinhe1 αααβ α−= ，[Ⅰ-①，Cham-2， =maxε 0.747%]                           (21) 

    ( ) ( ){ } 212 22sinh22sinhcosh4 ααααααβ ++−= ，[Ⅰ-①，Cham-3， =maxε 2.73%]          (22) 

    ( ) ( ){ } 212 22sinhsinh422sinh ααααααβ +−+= ，[Ⅰ-①，Cham-4， =maxε 0.163%]          (23) 

    ( ){ } 412

2sinh2
e1141

−−









+

+−
−=

αα
ααβ

α

，[Ⅰ-①，Cham-5， =maxε 0.0710%]                       (24) 

    ( ){ }
( ){ }[ ]

21

2

232

e11422sinh3
e2663321

−

−

−









+−−+

−++−
−= α

α

ααα
ααααβ ，[Ⅰ-②，Cham-6， =maxε 0.0126%]       (25) 

( ){ }
( ){ }[ ]

41

2

25432

e11422sinh15
e21053030151541

−

−

−









+−−+

+−+++−
−= α

α

ααα
ααααααβ ， 

[Ⅰ-②，Cham-7， =maxε 0.00351%]      (26) 

Their 1st AES is neglected, because it coincides with the well-known Eckart equation described in Yamaguchi 
and Nonaka[1]. 
    Fig. 3 illustrates the relation between ε  and 0Lh  for each of the 6 equations from Eq.(21) to Eq.(26). 
Eq.(26)-based ε  has a positive peak and a negative peak with 0Lh  variation and the other equation-based 

ε  takes a single negative peak respectively. The ε  in any of the equations approaches zero with either 
decreasing or increasing 0Lh . The positive maximum or negative maximum relative error and its 
corresponding 0Lh  are given as follows : 
    29)Cham-2：-0.742 %（ 0Lh =0.2496）～0.0%（ 0Lh →0，∞）                       (27) 
    30)Cham-3：2.805 %（ 0Lh =0.0642）～0.0%（ 0Lh →0，∞）                        (28) 
    31)Cham-4：-0.162 %（ 0Lh =0.1343）～0.0%（ 0Lh →0，∞）                       (29) 
    32)Cham-5：-0.0710 %（ 0Lh =0.1246）～0.0%（ 0Lh →0，∞）                      (30) 
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    33)Cham-6：-0.0126 %（ 0Lh =0.2830）～0.0%（ 0Lh →0， ∞ ）                      (31) 
    34)Cham-7：-0.00351 %（ 0Lh =0.2368）～0.00132%（ 0Lh =0.4662）                  (32) 
The maximum relative error (absolute value) maxε  in each equation is nearly identical with the value by 

Chamberlain and Porter[5] indicated in Eq.(21) to Eq.(26) respectively. A negligibly small deviation may be due 
to some difference of the computation conditions. Looking at the accuracy of the equations in turn, the absolute 

maxε  in Eq.(21)(Cham-2) is (-)0.74 %, which is almost equal to either 0.75 % in the Guo[1] equation as : 

    ( ){ }2exp1 mααβ −−= ， 49012.m =                                                (33) 

or 0.73 % in the 2nd equation by Yamaguchi and Nonaka[1] as : 

    ( ){ }mm 12cothcoth αααβ = ， 3781.m =                                              (34) 

The maxε  in Eq.(22)(Cham-3) is 2.81 %, which means insufficiently low accuracy for a sophisticated 
formulation of the equation. The maxε  in Eq.(23)(Cham-4) is (-)0.162 %, which is comparable to either 0.19 % 
in Eq.(4)(Beji-1) or 0.15 % in Eq.(10) (Hunt-4). The maxε  in Eq.(24)(Cham-5) is 0.071 %, which is close to 
0.078 % in the Hunt-5 equation and greater than (-)0.044 % in Eq.(5)(Beji-2). The maxε  in Eq.(25)(Cham-6) is 
(-)0.0126 %, which is slightly smaller than 0.019 % in Eq.(6)(Vata-1). The maxε  in Eq.(26)(Cham-7) is 

(-)0.0035 %, which is greater than 0.0012 % in Eq.(7)(Vata-2) and less than 0.0082 % in the Hunt-9 equation. 
    It should be noted that a numerical computation using either Eq.(25)(Cham-6) or Eq.(26)(Cham-7) may 
require special consideration because of round-off error produced even in the double precision computations. 
That is, α -related expansion of either Eq.(25) or Eq.(26) under the assumption of ≤α 1 yields the following 

equation to the order of 3α  with its classification and abbreviated notation including long wave 
approximation-based  ' L '  respectively as : 

    ( ) ( ) ( ){ } 213221 1891451311 −++−= ααααβ ，[Ⅱ-①(i)，Cham-6L/Olson3]            (35) 
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Fig. 3 Relation between relative error ε  and relative water depth 0Lh  for any of Cham-2, Cham-3, 

Cham-4, Cham-5, Cham-6 and Cham-7. 
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    ( ) ( ) ( ){ } 413221 9454457321 −−+−= ααααβ ，[Ⅱ-①(i)，Cham-7L/YNH]            (36) 

in cases where the notation 'YNH' in Eq.(36), which comes from the initials of the present authors (Yamaguchi, 

Nonaka and Hatada). Eq.(25)(Cham-6)-based Eq.(35) coincides with either the Eq.(58)(You-5/You) mentioned 

below or the 7th order Olson equation of α  to the 3rd order. Eq.(36) was derived in this study. Use of Eq.(35) 

for Eq.(25) and Eq.(36) for Eq.(26) is recommended in the case of 3
0 102 −×≤Lh . In short, the Chamberlain 

and Porter[5] equation excluding Eq.(22) indicates more improved accuracy with increasing degree of 

approximation. Eq.(22) is not good for practical use due to its relatively low accuracy. 
 

3.3 2-step AESs with high accuracy applicable to a full range of relative water 

depth 0Lh  

    Highly accurate AESs may be derived by making use of the 1st iteration solution for the dispersion 

relationship Eq.(1) based on Newton’s method as : 

    ( )
( )aaa

aa

aaa

aa

βββ
ββα

βββ
ββαβ 2

22

2

22

tanh1tanh
tanh1

sechtanh
sech

−+
−+

=
+

+
=                                       (37) 

in cases where any of Eqs.(4), (5), (6) and (7) are given as an initial value aβ . The furthest right side term is 
expressed as a function of aβtanh  only, by taking computational efficiency into account. The 2-step solution is 

denoted as Beji-1N, Beji-2N, Vata-1N and Vata-2N in order, by adding ' N ' to each notation. These solutions 
are classified into I-○3 . 
    Fig. 4 describes the relation between relative error ε  and relative water depth 0Lh  for any of Beji-1N, 

Beji-2N, Vata-1N, Vata-2N and YN9. The YN9 is the result obtained under an initial value by use of a modified 
version of the Carvlho 4th AES(Yamaguchi and Nonaka[1]. The absolute value of ε  associated with oscillating 
change is quite small. A range of the relative error and the corresponding 0Lh  is collectively written as 

35) Beji-1N：-1.6 410−× %（ 0Lh =0.009）～2.1 410−× %（ 0Lh =0.367）                   (38) 

36) Beji-2N：-8.2 610−× %（ 0Lh =0.006）～1.1 610−× %（ 0Lh =0.276）                   (39) 

37) Vata-1N：-1.6 610−× %（ 0Lh =0.011）～3.7 710−× %（ 0Lh =0.277）                   (40) 

38) Vata-2N：-6.3 710−× %（ 0Lh =0.006）～8.1 1010−× %（ 0Lh =0.436）                  (41) 

11-8) YN9：-1.1 410−× %（ 0Lh =0.044）～1.1 410−× %（ 0Lh =0.274）                    (42) 
The relative error in this case takes a place corresponding to the accuracy of an initial value. In particular, the 
solution by Vata-2 may be regarded as a numerically quasi-exact solution for the sake of extremely small 

relative error of 610−  to 910− . Also, YN-9 gives about 2 times higher accuracy than Beji-1N but more than 2 
order magnitude-lower accuracy than the other 3 AESs. It may be said that use of an over-complicated AES for 
an initial value does not yield an efficient estimate, because 2 to 4 times iteration of Eq.(37) under the initial 
condition by Eq.(2) gives a numerically exact solution. In the very latest publication, Simarro and Orfila[10] 
indicates that the 1st iteration solution of Newton’s method with use of an initial estimate by Beji-2 gives 
the maximum relative error(absolute value) of 8.2 610−× %, the same value in Eq.(39), and that a higher 
accuracy is attained by using an initial value based on Vata-2. 
    Next, the 1st iteration solution by Newton’s method using Eq.(37) under initial value by any of Hunt 4th, 
5th, 6th and 9th order solutions is obtained in succession. These belong to the group classification of I-○3 . Fig. 
5 shows the relation between ε  and 0Lh  for any of Hunt-4N, Hunt-5N, Hunt-6N and Hunt-9N, in cases 

where ' N ' is added to each notation. Any solution provides asymptotically zero-approaching behavior with 
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either infinitesimal 0Lh ( 00 →Lh ) or infinite 0Lh ( ∞→0Lh ) and positive/ negative change or change 
with seemingly only one positive hump(Hunt-6N) in a middle range of 0Lh . A range of respective relative 
error and the corresponding 0Lh  is written as follows : 

39) Hunt-4N：-1.5 510−× %（ 0Lh =0.042）～2.1 510−× %（ 0Lh =0.249）                  (43) 

40) Hunt-5N：-6.2 610−× %（ 0Lh =0.062）～7.3 610−× %（ 0Lh =0.289）                  (44) 
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Fig. 4 Relation between relative error ε  and relative water depth 0Lh  for any of Beji-1N, Beji-2N, 

Vata-1N, Vata-2N and YN9. 
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Fig. 5 Relation between relative error ε  and relative water depth 0Lh  for any of Hunt-4N, Hunt-5N, 

Hunt-6N and Hunt-9N. 
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41) Hunt-6N：-2.4 810−× %（ 0Lh =0.144）～3.4 510−× %（ 0Lh =0.362）                  (45) 

42) Hunt-9N：-1.8 1010−× %（ 0Lh =0.095）～3.4 810−× %（ 0Lh =0.320）                  (46) 

Hunt-6N yields a positive value-biased change of ε  with 0Lh , which reflects the error characteristics of 

Hunt-6. The relative error ε  becomes smaller with increasing order in the Hunt equations except for Hunt-6N. 

Hunt-9N yields a smaller relative error than Vata-2N and results in a closer estimate to the exact solution. It 

may be concluded that for a practical use, Hunt-4N, the 1st iteration solution by eq.(37) under an initial value 

by Hunt-4 produces a satisfactory estimate for wave length, with a relative error within ± 2 510−× %.  

    In addition, Fig. 6 indicates the relation between ε  and 0Lh  for any of Cham-2N, Cham-3N, 

Cham-4N, Cham-5N, Cham-6N and Cham-7N, each of which is obtained from the Ist iteration solution of 

Eq.(37) under the initial value by any of Eq.(21) to Eq.(26). These are classified into I-○3 . Any ε  changes 

with 0Lh , taking a positive peak and a negative peak, when the difference is prominent. The absolute value of 

ε  is very small. A range of the relative error and the corresponding 0Lh  for each solution are given in 

succession as follows : 

43) Cham-2N：-1.42 410−× %（ 0Lh =0.1130）～6.31 410−× %（ 0Lh =0.2703）              (47) 

44) Cham-3N：-2.21 210−× %（ 0Lh =0.0490）～3.07 410−× %（ 0Lh =0.1880）              (48) 

45) Cham-4N：-3.11 410−× %（ 0Lh =0.00915）～9.56 610−× %（ 0Lh =0.2035）             (49) 

46) Cham-5N：-6.65 610−× %（ 0Lh =0.0886）～1.31 610−× %（ 0Lh =0.1961）              (50) 

47) Cham-6N：-4.83 910−× %（ 0Lh =0.1351）～1.87 710−× %（ 0Lh =0.2870）              (51) 

48) Cham-7N：-8.94 1010−× %（ 0Lh =0.1332）～1.28 810−× %（ 0Lh =0.2500）              (52) 

As indicated above, the absolute value of maxε  decreases with more sophisticated AES-based initial value 

except for the Cham-3N case. In particular, maxε  is (-)6.7 610−× % for Cham-5N, 1.9 710−× % for Cham-6N 

and 1.3 810−× % for Cham-7N. Any of these solutions corresponds to a numerically quasi-exact solution. In a 

practical sense, Cham-2N yields a satisfactory estimate and Cham-5N may be preferable for more accurate 
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Fig. 6 Relation between relative error ε  and relative water depth 0Lh  for any of Cham-2N, Cham-3N, 

Cham-4N, Cham-5N, Cham-6N and Cham-7N. 
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evaluation. Also, the accuracy of Cham-3N is relatively lower than the other cases, reflecting the accuracy of 

Cham-3 used for the initial value computation. 
 

3.4 Application-limited PAESs to shallow water condition or deeper water 

condition 

    In the first part of this section, characteristics of the relative errors associated with the 5 PAESs including 

the Wu and Thornton[1] PAES(WT1) introduced in You[6]~[8] and the Chamberlain and Porter[5] PAES(CP-1), any 

of which is applicable only to shallow water conditions, are discussed. These PAESs are respectively expressed 

as : 

( ){ }ααβ 61121 += ，                           [Ⅱ-①(i)，You-1]                     (53) 

    ( ) ( ){ }221 301611 αααβ ++= ，                  [Ⅱ-①(i)，You-2/WT1[1]]               (54) 

( ) ( ){ }221 36011611 αααβ ++= ，                [Ⅱ-①(i)，You-3/Niel2[1]]               (55) 

( ) ( ){ }221 36013611 αααβ ++= ，                 [Ⅱ-①(i)，CP-1[6]]                    (56) 

( ) ( ) ( ){ }3221 50401736011611 ααααβ +++= ，    [Ⅱ-①(i)，You-4]                      (57) 

( ) ( ) ( ){ } 213221 94516454311 ααααβ +++= ，     [Ⅱ-①(i)，You-5/You[1]]                 (58) 

Eq.(54) is the Wu and Thornton PAES(WT1) proposed in 1986, Eq.(55) the Nielsen 2nd PAES(Niel2) in 1982 

and Eq.(58) the You[6] PAES in 2003. Eq.(58) is in agreement with Eq.(35) or the Olson[1] equation to ( )3O α . 

Accuracy of these PAESs is given in Yamaguchi and Nonaka[1] and in the table mentioned below. Also Eq.(56) 

is the Chamberlain and Porter[5] PAES in 1999. Eqs.(53) to Eq.(58) are classified into II-○1 . Each equation 

asymptotically approaches a long wave theory-based 21α  and then zero with decreasing 0Lh . Also, 

α -expanded equation of Eq.(58) to ( )3O α  is in complete agreement with Eq.(57), as described in You[7]. 

Moreover, Eq.(35) and Eq.(36) are added in the following investigation. 

    Fig. 7 illustrates the relation between ε  and 0Lh  for any of the above-mentioned 8 PAESs. With 

augmentation of 0Lh , Eq.(53)(You-1)-based ε  increasingly deviates from nearly zero to the positive side 

and Eq.(34)(You-4)-based ε  from nearly zero to the negative side. Any of the remaining 3 PAESs, 

Eq.(54)(You-2/WT1), Eq.(55)(You-3/Niel2) and Eq.(58)(You-5/You) has a peak of ε  with respect to 0Lh  

and then shows a rapid fall of ε  to the negative side. It should be added that Eq.(53)(You-1)-based ε  takes a 

peak value at a large 0Lh  of 0.955. 

    Table 2 lists the peak value of relative error peakε  with respect to 0Lh  and the corresponding 

( )peakLh 0 , and ( )rLh 0  yielding any of the reference relative errors rε  of 1 %, 0.5 %, 0.1 %, 0.05 % and 

0.01 % in cases where the notation '+' is given for positive error in the parenthesis and the notation '-' for 

negative error. A smaller ( )rLh 0  is adopted in the multi- ( )rLh 0  cases. Absolute value of relative error ε  

becomes smaller than the reference relative error rε  in a range of 0Lh  less than an indicated ( )rLh 0  

value. The following description may be made from the table : 

(1) An applicability region of each equation naturally becomes narrower with decrease of the reference relative 

error rε .  

(2) The applicability region of Eq.(53)(You-1) is too narrow to be available for a practical use. 

(3) The applicability region of Eq.(54)(You-2/WT1) is somewhat wider than that of Eq.(58)(You-5/You) for 

each of the reference relative errors except for rε =0.01 % case. The region of Eq.(57)(You-4) is relatively 

narrow. 

(4) The applicability region of Eq.(55)(You-3/Niel2) is wide in the case of a larger reference relative error, but 
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rapidly becomes narrower in case of a smaller reference relative error. 

(5) The reference relative error of rε = ± 0.01 % gives fairly small ( )rLh 0  for any of Eq.(53) to Eq.(56). But 

in case of Eq.(58)(You-5/You), ( )aLh 0  takes a relatively large value of 0.185. In short, within an applicability 

region of each equation, Eq.(54)(You-2/WT1) may be applicable for a reasonable estimation of wave length and 

use of Eq.(58)(You-5/You) may be recommended and for more accurate estimation. 

(6) The applicability region of either Eq.(35)(Cham-6L) or Eq.(36)(Cham-7L) is narrower than that of 

Eq.(58)(You-5/You). 

In short, within an applicability region of each equation, Eq.(54)(You-2/WT1) may be available for a reasonable 
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Fig. 7 Relation between relative error ε  and relative water depth 0Lh  for any of You-1, You-2, You-3, 

You-4 and You-5. 
 

Table 2 peak value peakε , corresponding ( )peakLh 0  and reference value rε -based ( )rLh 0  for the shallow 

water case(1). 

 

Name, eq. peakε ・ ( )peakLh 0  
( )rLh 0  

( )%r 1=ε  

( )rLh 0  

( )%.r 50=ε  

( )rLh 0  

( )%.r 10=ε  

( )rLh 0  

( )%.r 050=ε  

( )rLh 0  

( )%.r 010=ε  

You-1，(53) 22.48%・0.955 0.093(+) 0.065(+) 0.029(+) 0.020(+) 0.009(+) 

You-2，(54) -0.034%・0.113 0.369(-) 0.327(-) 0.257(-) 0.233(-) 0.036(-) 

You-3，(55) 0.44%・0.268 0.434(-) 0.405(-) 0.118(+) 0.091(+) 0.051(+) 

CP-1，(56) ―    ― 0.303(-) 0.233(-) 0.084(-) 0.055(-) 0.023(-) 

You-4，(57) ―    ― 0.289(-) 0.245(-) 0.169(-) 0.144(-) 0.100(-) 

You-5，(58) 0.0054%・0.133 0.355(-) 0.310(-) 0.238(-) 0.217(-) 0.185(-) 

Cham-6L(35) -0.489%・0.342 0.455(+) 0.438(+) 0.194(-) 0.163(-) 0.109(-) 

Cham-7L(36) ―    ― 0.249(+) 0.219(+) 0.160(+) 0.139(+) 0.099(+) 
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estimation of wave length and use of Eq.(58)(You-5/You) may be recommended for more accurate estimation. 

    A range of relative error and the corresponding 0Lh  for any of Eq.(53)(You-1), Eq.(56)(CP-1), 

Eq.(57)(You-4), Eq.(35)(Cham-6L/Olson3) and Eq.(36)(Cham-7L/YNH) are written in order as :  

49) You-1：1%（ 0Lh =0.093）～0%（ 0Lh →0）                                     (59) 

50) CP-1：-0.1%（ 0Lh =0.084）～0%（ 0Lh →0）                                    (60) 

51) You-4：-0.01%（ 0Lh =0.100）～0%（ 0Lh →0）                                  (61) 

52) Cham-6L/Olson3：-0.01%（ 0Lh =0.109）～0%（ 0Lh →0）                          (62) 

53) Cham-7L/YNH：0.01%（ 0Lh =0.099）～0%（ 0Lh →0）                            (63) 

    A similar investigation is conducted for the Nielsen 1st PAES(Niel1, group II-○1 (i)), the Venezian 1st 

PAES(Vene1, group II-○1 (i)), the Venezian 2nd PAES(Vene2, group II-○2 (i)) and the 7th order Olson 

PAES(Olson7, group II-○2 (i)), in cases where the error characteristics were discussed in Yamaguchi and 

Nonaka[1]. Table 3 lists the peak value of relative error peakε  with respect to 0Lh  and the corresponding 

( )peakLh 0 , and ( )rLh 0  yielding any of the reference relative errors rε  of 1 %, 0.5 %, 0.1 %, 0.05 % and 

0.01 % for the above-mentioned 4 PAESs as well as Table 2.  Fig. 8 shows the relation between ε  and 

0Lh  for each PAES. The following feature is indicated from the table and the figure : 

(1) The critical value ( )rLh 0  for rε  becomes naturally smaller with the decrease of rε . The degree of 

decrease is greater in NIel1 with low approximation. This tendency is also observed in Vene1. 

(2) The critical value ( )rLh 0  for either Olson7 or Vene2 is relatively large and the reduction rate of ( )rLh 0  

value associated with the lowering of rε  is moderate. This means a wider applicability of either Olson7 or 

Vene2. 

    Next, the Nielsen[1] 3rd PAES(Niel3) and the Wu and Thornton[1] 2nd PAES(WT2) applicable only to 

deeper water cases are written with classification and abbreviated name respectively as : 

( ){ }ααβ 2exp21 −+= ,                                      [II-○1 (ii), Niel3]         (64) 

( ){ }tt ++= 121αβ ， ( ){ }αα 841e26112exp ..t −+−= ,               [II-○1 (ii), WT2]          (65) 

Error characteristics of these PAESs were discussed in Yamaguchi and Nonaka[1]. Also, the newly-investigated 

2 PAESs in this study, that is the Chamberlain and Porter[5] 2nd PAES(CP-2) and the simplified Newman[9] 

PAES(New-2S) with classification and abbreviated name are given in order as : 

  ( ){ }αα ααααβ 422 e542e21 −− −++= ,                          [II-○1 , CP-2]             (66) 

  αα αααβ 422 e265e97381000050 −− −++= ... ,                    [II-○1 (ii), New-2S]        (67) 

    Fig. 9 describes the relation between ε  and 0Lh  for any of Niel3, WT2, CP-2 and New-2S. 

 

Table 3 peak value peakε , corresponding ( )peakLh 0  and reference rε -based ( )rLh 0  for shallow water 

case(2). 

 

Name peakε ・ ( )peakLh 0  
( )rLh 0  

( )%r 1=ε  

( )rLh 0  

( )%.r 50=ε  

( )rLh 0  

( )%.r 10=ε  

( )rLh 0  

( )%.r 050=ε  

( )rLh 0  

( )%.r 010=ε  

Niel1 -0.74%・0.075 0.156(+) 0.032(-) 0.005(-) 0.0025(-) 0.0005(-) 

Vene1 0.048%・0.104 0.258(-) 0.225(-) 0.177(-) 0.166(-) 0.033(+) 

Vene2 －・－ 0.427(-) 0.393(-) 0.326(-) 0.302(-) 0.253(-) 

Olson7 －・－ 0.401(-) 0.375(-) 0.323(-) 0.303(-) 0.264(-) 
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CP-2-based ε  rapidly decreases from a positive value toward zero with increasing 0Lh . A similar behavior 

seems to be observed for New-2S-based ε . Exactly speaking, New-2S-based ε  approaches nearly zero 

taking negative and positive peak with increasing 0Lh , as shown below in Fig. 11. The constant term 

0.00005 in Eq.(67)(New-2S) is a kind of error-adjusting factor. As a matter of fact, removal of this constant 
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Fig. 8 Relation between relative error ε  and relative water depth 0Lh  for any of Niel1, Vene1, Vene2 and 

Olson7. 
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Fig. 9 Relation between relative error ε  and relative water depth 0Lh  for any of Niel3, WT2, CP-2 and 

New-2S. 



27

  

term makes the maximum error twice and yields an improvement of accuracy in a larger region of 0Lh . 

Relative error statistics for both CP-2 and New-2S are summarized as follows : 

54) CP-2：0.686%（ 0Lh =0.2642）～0%（ 0Lh →∞）                                  (68) 

55) New-2S：0.0020%（ 0Lh =0.3183）～0%（ 0Lh →∞）                               (69) 

    Table 4 gives a list of the results for any of Niel3, WT2, CP-2 and New-2S as well as Table 3. In a deeper 

water application case, a smaller ( )rLh 0  signifies a wider application range of the PAES. In this sense, an 

application range of WT2 is rather wide in ≥rε 0.05 % case, while that of either Niel3 or CP-2 is narrower. 

New-2S has a high accuracy of maxε =(-)0.002 %, but the application range is not so wide as that of WT2. 

You[7] states in his paper that Bagatur[11] provides an approximate solution method based on the 

Newton-Raphson method. You[7],[8] discusses characteristics of relative error with any of 21αβ =  and the 

above-mentioned Eq.(53) to Eq.(58) excluding Eq.(56). Also You[7],[8] investigates relative error with Newton’s 

method-based solution giving each of them as an initial value and proposes a preferable use of Eq.(37) 

associated with Eq.(55). But usage of this method may not be recommended, because the maximum relative  

error of 7 310−×  does not necessarily suggest a high accuracy for the application of Newton’s method.  

 

3.5 CPAESs applicable to a full range of relative water depth 0Lh   

    Combining a shallow water-limited PAES with a deeper water-limited PAES may yield a CPAES 

applicable to a full range of water depth conditions. These trials were conducted by Wu and Thornton[1], You[6], 

Chamberlain and Porter[5] and Newman[9]. But the CPAES by Wu and Thornton[1] yields discontinuity of 

relative error at critical 0Lh  corresponding to an application limit of each PAES, which may not be a 

reasonable behavior. The CPAES by Chamberlain and Porter[5] indicates the same property. 

    First, we investigated the error characteristics of 4 CPAESs such as ○1 the Chamberlain and Porter[5] 

CPAES, ○2 CPAES consisting of You-3(Niel2) and WT-2(Eq.(55)+Eq.(65)), ○3 CPAES combining 

YOU-3(Niel2) and Niel3(Eq.(55) +Eq.(64)), ○4 CPAES combining You-5(You) and Niel3(Eq.(58)+Eq.(64)). 

The 2nd CPAES of the 4 CPAESs is made in this study and the latter 2 CPAESs were proposed by You[6].  

    The CPAES by Chamberlain and Porter[5], its classification, abbreviated name and maximum relative 

error(absolute value) maxε  are expressed as follows : 

Table 4 peak value peakε , corresponding ( )peakLh 0  and reference value rε -based ( )rLh 0  for deeper water cases. 

Name, eq. peakε ・ ( )peakLh 0  
( )rLh 0  

( )%r 1=ε  

( )rLh 0  

( )%.r 50=ε  

( )rLh 0  

( )%.r 10=ε  

( )rLh 0  

( )%.r 050=ε  

( )rLh 0  

( )%.r 010=ε  

Niel3, (64) －・－ 0.268(+) 0.304(+) 0.384(+) 0.416(+) 0.489(+) 

WT2, (65) -0.025%・0.252   0.171(+) 0.186(+) 0.321(-) 

CP-2, (66) －・－  0.300(+) 0.468(+) 0.445(+) 0.529(+) 

New-2S, (67) -0.002%・0.349   0.260(+) 0.276(+) 0.303(+) 
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Eq.(70)(CP-1) is the same form as Eq.(56) and Eq.(71)(CP-2) is the same form as Eq.(66). Their error 

characteristics have been discussed above. Relative errors by both PAESs at the connection point of 

0Lh =0.264 have completely reversed positive and negative signs. Chamberlain and Porter[5] says that 

transformation into the PAESs from the original AES Eq.(24)(Cham-5) made a simplification of the formula 

possible but yielded loss of the high accuracy. In fact, the accuracy of the CPAES becomes 10 times lower than 

that of the original AES. 

    Fig.10 shows the relation between ε  and 0Lh  for any of the above-mentioned 4 CPAESs. In the 

Chamberlain and Porter[5] CPAES, Eq.(70)(CP-1)-based ε  becomes greater toward the side with increase of 

0Lh  and takes -0.678 % at 0Lh =0.2642. On the other hand, Eq.(71)(CP-2)-based ε  gives 0.686 % at 

0Lh =0.2642 and rapidly decreases toward zero from this point with an increase of 0Lh . Accordingly, the 

Chamberlain and Porter[5] CPAES yields the maximum relative error of ε = ± 0.68 % at 0Lh =0.2642, which 

means a significant relative error on the periphery of this critical 0Lh  value. As a final result, we may not be 

able to say from this property that the Chamberlain and Porter[5] CPAES is a practically useful CPAES, although 

it has a simplified formulation. In the cases of the remaining 3 CPAESs, the 2 relative error curves cross each 

other at a certain value of 0Lh  respectively, as shown in Fig. 10. The relative error at a cross point is written 

in succession as : 

56) CPAES consisting of You-3(Niel2) and WT2 

0.186%（ 0Lh =0.152）→0%（ 0Lh →0， ∞ ）                                     (72) 
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Fig. 10 Relation between relative error ε  and relative water depth 0Lh  for any of Niel3, WT2, CP-2 and 

New-2S. 
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57) CPAES consisting of You-3(Niel2) and Niel3 

   -0.118%（ 0Lh =0.376）→0%（ 0Lh →0，∞）                                     (73) 

58) CPAES consisting of You-5(You) and Niel3 

   -0.476%（ 0Lh =0.307）→0%（ 0Lh →0，∞）                                     (74) 

Eq.(73) yields the least relative error(-0.118 %) in the above 3 CPAESs, but as can be seen in Fig. 10 and 

Table 2, You-3/Niel2 gives the peak relative error of 0.44 % at 0Lh =0.268 situating in the applicability range 

and then results in a large relative error throughout a full range of 0Lh .  Eq.(72), CPAES consisting of 

You-3/Niel2 and WT2 is the most proper CPAES of the 3 CPAESs. Remarks are added that the value of 

0Lh =0.376 in Eq.(73) nearly corresponds to that of α =2.37 given in You[6] and that the value of 

0Lh =0.307 in Eq.(74) to that of α =1.94 in You[6]. 

    Next, the Newman[9] PAESs, its classification and abbreviated notation are expressed in order as follows : 
  a) ( )318302 0 .Lh ≤≤α ； 

( ) ( ) ( ){ ( )
( ) ( ) ( ) ( ) }8765

43221

2004049230201252603020082900602001165940

2013255800201726435020110966802333333720000000001

αααα

αααααβ

....

.....

+−+−

++−−=
 

                                                 （Ⅱ-②(i)，New-1）             (75) 

  b) ( )318302 0 .Lh >>α ； ( ) αα 24e21 −=z ， 

5432 000176411000082923900026408630009899981007325001700000001220 z.z.z.z.z.. −−+−++= αβ  

                                                     （Ⅱ-②(ii)，New-2）            (76) 

and New-3 is given by Eq.(76) to ( )4O z  as 
432 00082923900026408630009899981007325001700000001220 z.z.z.z.. −+−++= αβ           

                                                     （Ⅱ-②(ii)，New-3）            (77) 

    Fig.11 illustrates the relation between relative error ε  and relative wave depth 0Lh  for any of 

Eq.(75)(New-1), Eq.(76)(New-2), Eq.(77)(New-3) and Eq.(67)(New-2S). The following features are indicated 

from this figure. 

 (1) Eq.(75)(New-1)-based ε  is very small for 0Lh <0.34 as indicated by Newman[9], but rapidly increases 

for 0Lh >0.34. Looking into ε  with a steep rise indicates ε =1.63 610−× % at 0Lh =0.3183( α =2), 

ε =2.23 510−× % at 0Lh =0.3300, ε =8.24 510−× % at 0Lh =0.3400, ε =5.42 410−× % at 0Lh =0.3600 and 

ε =1.15 310−× % at 0Lh =0.3700. 

 (2) Eq.(76)(New-2)-based ε  rapidly decreases for 0Lh >0.31 and approaches nearly zero( ε =1.2 710−× %) 

with increasing 0Lh . The behavior is represented by ε =1.71 210−× % at the above-mentioned separation 

point of 0Lh =0.3183( α =2), ε =2.06 310−× % at 0Lh =0.3600, ε =7.33 410−× % at 0Lh =0.3800, 

ε =2.59 410−× % at 0Lh =0.400 and ε =1.51 410−× % at 0Lh =0.4100. 

 (3) The 0Lh - ε  curves based on both Eq.(75)(New-1) and Eq.(76)(New-2) cross at 0Lh =0.3705, where 

ε  is equal to=0.0012%. Each equation gives a rather small relative error ε  within its effective range of 

0Lh , but as both ε  curves intersect at 0Lh  situating outside of their effective range of 0Lh , the relative 

error around the crossing point becomes somewhat greater in either case. For example, Eq.(75)(New-1)-based 

relative error ranges from ε =2.30 410−× % at 0Lh =0.35 to ε =1.20 310−× % and Eq.(76)(New-2)-based 

relative error from ε =1.20 310−× % at 0Lh =0.3705 to ε =4.36 410−× % at 0Lh =0.3900. If an application 

limit of Eq.(75)(New-1) and Eq.(76)(New-2) is taken at =α 2( 0Lh =0.3183), as was done by Newman[9], 
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Eq.(75)(New-1) yields ε =1.63 610−× % and Eq.(76)(New-2) ε =1.71 210−× % respectively. The relative error 

at the connection point of α =2( 0Lh =0.3183) becomes discontinuous. Specifically Eq.(76)(New-2) gives 

large relative error around the connection point and introduces significant decrease of accuracy in 

Eq.(76)(New-2)-based CPAES with the connection point of =α 2( 0Lh =0.3183).   

 (4) The 4th order Eq.(77)(New-3)-based ε  decreases more rapidly with increasing 0Lh  than the 5th order 

Eq.(76)(New-2)-based ε  and approaches nearly zero( ε =1.2 710−× %). Eq.(77)(New-3) has a little higher 

accuracy compared to Eq.(76)(New-2). In this context, Eq.(77)(New-3) provides ε =1.31 410−× % at 

0Lh =0.400( ε =2.59 410−× % for Eq.(76)(New-2)) and ε =7.75 510−× %  at 0Lh =0.4100( ε =1.51 410−× % 

for Eq.(76)(New-2)). 

 (5) Eq.(75)(New-1)-based relative error curve crosses the 4th order Eq.(77)(New-3)-based relative error curve 

at the value of 0Lh =0.3650, where ε  takes 8.0 410−× %. That is, CPAES combining Eq.(75)(New-1) with 

Eq.(77)(New-3)in place of Eq.(76)(New-2) yields better accuracy.  

    The summary of the above discussion is described as follows : 

59) CPAES of New-1( 0Lh <0.3705) and New-2( 0Lh ≥ 0.3705) 

0%（ 0Lh →0）～1.20 310−× %（ 0Lh =0.3705）～0%（ 0Lh →∞）                 (78) 

60) CPAES of New-1( 0Lh <0.3650) and New-3( 0Lh ≥ 0.3605) 

0%（ 0Lh →0）～8.0 410−× %（ 0Lh =0.3650）～0%（ 0Lh → ∞ ）                  (79) 

It should be added that the effect of the constant term of 1.22 710−×  in either Eq.(76)(New-2) or 

Eq.(77)(New-3) on the relative error is extremely small and that its removal from each equation may be 

possible. The PAES for either shallow water region or deeper water region proposed by Newman[9] has very 

high accuracy within each application range but its accuracy is lowered around an actual application limit for 

0Lh  which is situated outside of the recommended application range. Even in this case, the accuracy of the 

above-mentioned CPAES with the maximum relative error of around 0.001% is rather high. 
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Fig. 11 Relation between relative error ε  and relative water depth 0Lh  for any of New-1, New-2, New-3 

and New-2S. 
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    Table 5 indicates a list of relative error range of the investigated solutions, in cases where Table 2 in 

Yamaguchi and Nonaka[1] is reinforced by the results of this study such as No. 23) to 60) and the notations, 

12)Hunt1 and 13) Hunt2 in Table 2 are rewritten as 12) Hunt-5 and 13) Hunt-9 respectively. 

4. Conclusions  

    This study investigates accuracy of approximate and explicit equations (AESs) for the Airy wave theory 

based-wave length presented after the publication of the Yamaguchi and Nonaka[1] report in 2007 and several 

previous AESs non-discussed in the report, and draws out the following results : 

 (1) The 2 AESs by Beji[2](Beji-1, Beji-2) and those by Vatankhah and Aghashariatmadari[3](Vata-1,Vata-2) 

successively published in 2013 yield higher accuracy compared to the previous AESs respectively. In particular, 

the accuracy of Vata-2 consisting of 2 terms is very high, with an absolute value of the maximum relative error 

of 0.001 %. Practically, use of either Beji-2 with the maximum relative error of 0.04 % or Vata-1 with the 

maximum relative error of 0.02 % may be recommended for the sake of its comparatively compact form. 

 (2) Any of the Padé approximation-based Hunt[4] AESs expressed by a power series of 0Lh  gives relatively 

high accuracy, corresponding to the used order number. Respective maximum relative error(absolute value) is 

0.15 % for Hunt-4, 0.08 % for Hunt-5, 0.19 % for Hunt-6 and 0.008 % for Hunt-9. Improvement of Hunt-6 is 

required. The Hunt AESs have a more regular form compared to the AESs expressed by real number-powered 

variables, exponential functions and/or hyperbolic functions, although they seem to  be a lengthy expression 

associated with the use of a polynomial. But, accuracy of Hunt-9(maximum relative error 0.008 %) does not 

exceed that of Vata-2 with 2 complicated terms(0.001%). 

 (3) The maximum relative error(absolute value) associated with each of the Chamberlain and Porter[5] AESs is 

0.16 % for Cham-4, 0.07 % for Cham-5, 0.013 % for Cham-6 and 0.0035 % for Cham-7. Sophistication of the 

AES gives rise to not only higher order accuracy but also more complicated formulation. As for the accuracy, 

Cham-7 is higher than Hunt-9 but lower than Vata-2.  

 (4) Maximum relative error(absolute value) with Newton’s method-based 1st iteration solution which gives 

any of Beji-1, Beji-2, Vata-1 and Vata-2 as an initial estimate is very small such as 2 410−× %, 8 610−× %, 

2 610−× % and 6 710−× % in this order. In particular, a range of relative error in the Vata-2 case is from 

-6 710−× % 7 to 8 1010−× % and the solution with Vata-2 corresponds to a numerically exact solution. This is 

brought about by the high accuracy of Vata-2 used for an initial guess. The maximum relative error is more than 

2 orders of magnitude smaller than that of the previous best estimate.  

(5) Maximum relative error(absolute value) of Newton’s method-based 1st iteration solution which gives any of 

Hunt-4, Hunt-5, Hunt-6 and Hunt-9 as an initial estimate is 2 510−× %, 7 610−× %, 3 510−× % and 3 810−× % in 

this order. The magnitude is comparable to the result of (3) or slightly smaller. 

 (6) Maximum relative error(absolute value) of Newton’s method-based 1st iteration solution which gives any 

of Cham-2, Cham-3, Cham-4, Cham-5, Cham-6 and Cham-7 as an initial estimate is 6 410−× %, 3 410−× %, 

7 610−× %, 2 710−× % and 1 810−× % in succession. The magnitude becomes smaller according to this order, 

reflecting the accuracy of an initial estimate. Cham-5-based 1st iteration solution of Newton’s method gives a 

fairly satisfactory evaluation with the maximum relative error of 7 610−× %, even when a highly accurate 

estimate would be requested. 
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Table 5 Summary of error range of the investigated approximate solutions. 
 

No. formula relative error（%） No. formula relative error（%） 

1) Eckart 0～5.24 11-6) YN7 －0.0012～0.0012 

2) Iwagaki －3.05～3.14 11-7) YN8 －9×10-4～8×10-4 

3) Carv14 －2.45～3.28 11-8) YN9 －1.1×10-4～1.1×10-4 

4) FM －1.39～1.66 11-9) YN10 －7×10-6～4×10-5 

5) YN1 －1.52～1.55 12) Hunt-5 －0.070～0.078 

6) Carv9 －1.12～0 13) Hunt-9 －0.0082～0.0054 

7) Guo －0.75～0.75 14) Niel1 ±0.74（ *Lh 0 ≦0.192） 

8) YN2 －0.73～0.73 15) Niel2 ±0.44（ *Lh 0 ≦0.401） 

9) Carv5 －0.21～0.27 16) Vene1 ±0.048（ *Lh 0 ≦0.165） 

10) Carv4 －0.12～0.20 17) WT1 －0.034～0（ *Lh 0 ≦0.219） 

11-1) Fenton －0.051～0.0084 18) Niel3 －0.55～0（ *Lh 0 ≧0.300） 

11-2) YN3 －0.0040～0.012 19) WT2 ±0.025（ *Lh 0 ≧0.195） 

11-3) YN4 ―0.029～0.0067 20) You ±0.0054（ *Lh 0 ≦0.179） 

11-4) YN5 －0.0049～0.0049 21) Olson ±3×10-5（ *Lh 0 ≦0.186） 

11-5) YN6 －4×10-4～1.4×10-3 22) Vene2 －2×10-4～6×10-6（ *Lh 0 ≦0.159） 

23) Beji-1 －0.15～0.19 24) Beji-2 －0.044～0.042 

25) Vata-1 －0.019～0.019 26) Vata-2 －0.0012～0.0012 

27) Hunt-4 －0.15～0.14 28) Hunt-6 －0.19～0 

29) Cham-2 －0.742～0 30) Cham-3 0.0～2.81 

31) Cham-4 －0.162～0 32) Cham-5 －0.071～0 

33) Cham-6 －0.013～0 34) Cham-7 －0.0035～0.0013 

35) Beji-1N －1.6×10-4～2.1×10-5 36) Beji-2N －8.2×10-6～1.1×10-6 

37) Vata-1N －1.6×10-6～3.7×10-7 38) Vata-2N －6.3×10-7～8.1×10-10 

39) Hunt-4N －1.5×10-5～2.1×10-5 40) Hunt-5N －6.2×10-6～7.3×10-6 

41) Hunt-6N －2.4×10-8～3.4×10-5 42) Hunt-9N －1.8×10-10～3.4×10-8 

43) Cham-2N －1.4×10-4～6.3×10-4 44) Cham-3N －2.2×10-2～3.1×10-4 

45) Cham-4N －3.1×10-4～9.6×10-6 46) Cham-5N －6.7×10-6～1.3×10-6 

47) Cham-6N －4.8×10-9～1.9×10-7 48) Cham-7N －8.9×10-10～1.3×10-8 

49) You-1 0～1（ *Lh 0 ≦0.093） 50) CP-1 -0.68～0（ *Lh 0 ≦0.264） 

51) You-4 －0.01～0（ *Lh 0 ≦0.100） 52) Cham-6L -0.01～0（ *Lh 0 ≦0.109） 

53) Cham-7L 0～0.01（ *Lh 0 ≦0.099） 54) CP-2 0.69（ *Lh 0 ≧0.264） 

55) New-2S 0.0020～0（ *Lh 0 ≧0.3186） ；   ( ) *
c LhLh 00 =  

56) You-3（Niel2）+WT2 0（ 0Lh →0）～0.186（ 0Lh =0.152）～0（ 0Lh →∞） 

57) You-3（Niel2）+Niel3 0（ 0Lh →0）～0.118（ 0Lh =0.376）～0（ 0Lh →∞） 

58) You-5（You）+Niel3 0（ 0Lh →0）～-0.476（ 0Lh =0.307）～0（ 0Lh →∞） 

59) New-1+New-2 0（ 0Lh →0）～0.0012（ 0Lh =0.3705）～0（ 0Lh →∞） 

60) New1+New-3 0（ 0Lh →0）～0.0008（ 0Lh =0.3650）～0（ 0Lh →∞） 
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(7) The You[6]~[8] equations with several orders applicable only to shallow water conditions and their 

equivalences transformable to each other to ( )3O α  such as Cham-6L and Cham-7L, yield relatively high 

accuracy within their limiting ranges. Compactness and accuracy of any of the You[6]~[8] equations suggests an 

efficiency for practical use within its application range. In the case of reference relative error of 0.05 %, the 

limiting range of 2α -based Eq.(54)(You-2/WT1) is 0Lh <0.233 and that of 3α -based Eq.(58)(You-5/You) is 

0Lh <0.217. Eq.(54)(You-2/WT1) has a wider application range than Eq.(58)(You-5/You), but in the 0.01 % 

relative error case, the 2α -based Eq.(54)(You-2/WT1) does not have any application range. 

 (8) A limited accuracy and application range of the Chamberlain and Porter[5] CP-2 PAES for deeper water 

conditions are not beneficial to its use. The Newman[9] New-2S PAES has a high accuracy but a narrow 

application range of larger 0Lh  value. This suggests its incompatibility with CPAES. 

 (9) CPAES tends to yield a decrease of its accuracy at around a critical 0Lh  value connecting a PAES for 

shallow water use with a PAES for deeper water use. For this reason, overall accuracy of CPAES is lowered, 

even if each PAES gives high accuracy within the application range. 

 (10) CPAES consisting of You-3(Niel2) and WT2 with the maximum relative error of 0.118 % at the 

connection of 0Lh =0.152 is available for a moderately accurate application and CPAES consisting of New-1 

and New-3 with the maximum relative error of 0.0008 % at the connection point of 0Lh =0.365 is 

recommended for a highly accurate application. The latter CPAES with 0.0008 % error indicates a further 

higher accuracy than a single expression-based Vata-2 with 0.0012 % error. On the other hand, both the Wu and 

Thornton[1] CPAES composed of WT1 and WT2 and the Chamberlain and Porter[5] CPAES composed of CP-1 

and CP-2 give unfavorable discontinuity of the relative error at the connection point of 0Lh  respectively.    

 (11) In summary, it may be said that Vata-1 with the maximum relative error of 0.02 % makes it possible to 

easily estimate the wave length with a satisfactory accuracy for a full range of 0Lh . Needless to say either any 

single expression-based AES of Cham-7, Vata-2 and Hunt-9 or New-1 and New-3-composed CPAES is 

available for more accurate estimation and thus, Newton’s method-based 1st iteration solution with an initial 

guess based on one of these AESs is applicable for extremely high accuracy estimation. 
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Appendix A 

1. PAESs for wave length computation based on long wave approximation 

    Expanding the dispersion relationship based on the Airy wave theory by fixing the power number in the 

total form of a polynomial under the assumption of <α 1 yields each of the following PAESs to ( )3O α  in 
succession : 

    ( ) ( ) ( ){ }3221 50401736011611 ααααβ +++= ，[You-4]                               (A-1) 

    ( ) ( ) ( ){ } 213221 94516454311 ααααβ +++= ，[You-5/You]                            (A-2) 

    ( ) ( ) ( ){ } 213221 1891451311 −
++−= ααααβ ，[Cham-6L/Olson3]                        (A-3) 

    ( ) ( ) ( ){ } 413221 9454457321 −
−+−= ααααβ ，[Cham-7L/YNH]                        (A-4) 

  Eq.(A-1) is equal to the You-4 given in Eq.(57), Eq.(A-2) the You-5/You given in Eq.(58), Eq.(A-3) the 
Cham-6L/Olson3 corresponding to the 3rd order Olson[1] PAES and Eq.(A-4) is a PAES derived newly in this 
study. These PAESs are transformable to each other to ( )3O α . As shown in Fig. A-1, the accuracy obtained by 
computation is ranked with very small difference from lowest Eq.(A-1)(You-4) to highest 
Eq.(A-3)(Cham-6L/Olson3) throughout Eq.(A-4)(Cham-7L/YNH) and Eq.(A-2)(You-5/You) in its order, in 
cases where the number enclosed in the parentheses of the notation in the figure indicates the order number of 
the total polynomial. Each PAES provides high accuracy for a range of 0Lh  less than 0.02 and approaches 
the exact solution with decreasing α . The relative error (absolute value) of each PAES at 0Lh =0.02 is 
1.25 410−× % for Eq.(A-1)(You-4), 1.24 410−× % for Eq.(A-2)(You-5/You), 1.00 410−× % for 
Eq.(A-3)(Cham-6L/Olson3) and 1.04 410−×  % for Eq.(A-4)(Cham-7L/YNH) respectively, that is around 

410− %. When the level of the relative error(absolute value) is taken as either 0.01% or 0.1%, which is much 
higher than the 410− % level, the corresponding 0Lh  is 0.100(0.169 in the 0.1% case) for Eq.(A-1) (You-4), 
0.185(0.238) for Eq.(A-2)(You-5/You), 0.109(0.194) for Eq.(A-3)(Cham-6L/Olson3) and 0.099(0.160) for 
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Fig. A-1 Relation between relative error ε  and relative water depth 0Lh  for any of You-4, You-5/You, 

Cham-6L/Olson3 and Cham-7L/YNH. 
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Eq.(A-4)(Cham-7L/YNH). 
    In the following sections, the error behavior of Beji-nL , Vata-nL, Hunt-nL and Cham-nL PAESs 
respectively reduced to long wave conditions is investigated by taking Eq.(A-1)(You-4) with the simplest form 
for a standard PAES in the long wave region, in cases where n is a specified number of each PAES and ' L ' is 
added to describe long wave conditions. 

2. Long wave approximation to Beji-n and Vata-n AESs 

Long wave approximation(LWA)-based PAES for any of Eq.(4)(Beji-1), Eq.(5)(Beji-2), Eq.(6)(Vata-1) and 

Eq.(7)(Vata-2) lβ  and the residual expression from Eq.(A-1)(You-4) to ( )2O α  β  denoted by addition of 

'R', as exemplified by Beji-1LR with underline in succession as : 

    ( )( )333223121 721220706657422061332871101 ...
l ... αααααβ +−++= ，[Beji-1L]          (A-5) 

    ( ) ( ){ }23121 36049332871061 ααααβ ++−= .. ，[Beji-1LR]                           (A-6) 

    ( )( )093092209121 16887870275922406121224801 ...
l ... αααααβ +−++= ，[Beji-2L]         (A-7) 

    ( ) ( ){ }209121 36049212248061 ααααβ ++−= .. ，[Beji-2LR]                          (A-8) 

    ( )( )3352221 026602250195526537061159613501 αααααβ ... .
l +−++= ，[Vata-1L]         (A-9) 

    ( ){ }221 360490070540 αααβ +−= . ，[Vata-1LR]                                   (A-10) 

    ( )( ) A... .
l ++−++= 3652221 00679370004076221061040762201 αααααβ ， 

      ( )5432667021 7059084002433021330443392794352623321 z.z.z.z.z.A . −+−+−= α ， 
1320.z α= ，[Vata-2L]           (A-11) 

    
{

( )} 12)-(A     2LR]-[Vata,O705908400243302
133044339279435262332011259040

959022182702216950221

5630221431022129902116702121

...

....

..
.....

ααα

ααααααβ

+−+

−+−+−=
 

in cases where subscript ' l ' is added to β  in order to distinguish the LWA-based PAES from the original AES. 

The 1st term and 2nd term(A term) in Eq.(A-11) are called Vata-21L and Vata-22L respectively. As the 

above-mentioned LWA-based PAESs include the aα  terms with a different real power number a, their mutual 
relationship is not so clear in the derived form. 
    Also, the 2nd term in Eq.(7)(Vata-2) named Vata-22 is transformed into  
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The A term(Vata-22L) in the above-mentioned Eq.(A-11) valid for <α 0.01 is obtained by taking notice of ○2

1
50512848560 ≈
.. αα  which ranges from 0.99872 for α =0.01 to nearly 1 for 0≈α  such as 0.9999399 for 

α =0.001 and by approximating ○3 the 3rd term with use of the 5th order polynomial of z. Accuracy of the 
polynomial with an absolute error less than 0.001 is very high for a range of <α 0.01. 

    Fig. A-2 indicates the relation between any of various kinds of Vata-2-based wave number characteristics 
and relative water depth 0Lh . These are ○1 Vata-21- and Vata-22-based dimensionless wave numbers 1β  



37

  

and 2β , ○2 Vata-21L- and Vata-22L-based dimensionless wave numbers L1β  and L2β , ○3 the sums such as 
( )21 βββ +=app  and ( )LLappL 21 βββ += , and ○4 percentage of relative difference between appLβ  and appβ  

defined by =Lδ ( ) 2101 ×−appappL ββ . Since accuracy of Vata-2-based appβ  is very high, Lδ  would be 
nearly regarded as the exact solution( exacβ )-based ( ) 2101 ×−exacappL ββ  , that is a relative error of LWA-based 

appLβ . It is observed from this figure that Vata-21-based 1β  is an order of magnitude greater than 
Vata-22-based 2β  and that 2β  plays the role of correction term to 1β . While the effect of LWA on 1β  or 

2β  becomes slightly greater with increasing 0Lh , it may not be as significant within the range of 0Lh  
given in the figure. This results in a gross agreement between 1β  and L1β  and between 1β + 2β  and 

L1β + L2β  respectively. But, Vata-2L-based relative difference of wave number Lδ  rises gradually and then 
rapidly with increasing 0Lh  for a range of 0Lh >0.01. In this connection, Lδ  takes 0.0095% at 

0Lh =0.01, 0.30% at 0Lh =0.05 and 1.08% at 0Lh =0.1. If a critical value for relative wave number 
difference is given as 0.1%, then an effective range of LWA for Vata-2 would be 0Lh <0.03. Of course, the 
effective range depends on a selected critical value. The critical value of 0Lh  for a 1% relative wave number 
difference becomes somewhat larger such as 0.0957~0.1.  
    Fig. A-3 illustrates the relation between relative difference of wave number Lδ  and relative water depth 

0Lh  for any of Beji-1L/Beji-1, Beji-2L/Beji-2, Vata-1L/Vata-1 and Vata-2L/Vata-2, in cases where 
LWA-based dimensionless wave number appLβ  and the original equation-based dimensionless wave number 

appβ  are used. Each relative difference Lδ  rapidly develops toward the positive or negative side with 

augmentation of 0Lh  in a range of 0Lh >0.005~0.01. If a reference level to Lδ  is taken as either 1 % or 
0.1%, the critical 0Lh  is 0.0281 (0.00974 in the case of 0.1 %) for Beji-1, 0.0980(0.0541) for Beji-2, 
0.102(0.0496) for Vata-1 and 0.0957(0.0295) for Vata-2. For Beji-1, the critical 0Lh  takes a smaller value. 
For any of Beji-2, Vata-1 and Vata-2, it gives a comparable value of 0.01 for Lδ =1% and nearly twice the 
difference such as from 0.03 to 0.05 for Lδ =0.1%. 
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Fig. A-2 Change of any of dimensionless wave numbers 1β , 2β , L1β , L2β , appβ , appLβ  and relative 

difference of wave number Lδ  associated with increase of relative water depth 0Lh  in the case of Vata-2. 
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3. Long wave approximation to Hunt-n AESs 

    The LWA-based expression for Hunt-4 lβ , aβ  to ( )2O α  and residual of aβ  to ( )2O α  from 

Eq.(A-1)(You-4) β  are written as  

    ( ) 2143221 0609240402330001444033401 αααααβ ....l −+−+= ，[Hunt-4L]              (A-14) 

    { }221 014665016701 αααβ ..a −+=                                                 (A-15) 

    ( )221 0452210 ααβ .−×= ，[Hunt-4LR]                                            (A-16) 
in cases where lβ  is obtaied by inverting the denominator in Hunt-4 and its truncation to ( )4O α , and aβ  is 
derived by transformation of the whole polynomial with 1/2 power into a usual polynomial. For any of Hunt-5, 
Hunt-6 and Hunt-9, lβ , aβ  and β  are described as follows respectively : 

    ( ) 21543221 02210802816503254700368350347801 ααααααβ .....l +−+−+= ，[Hunt-5L]   (A-17) 

    ( )221 0335380173901 αααβ ..a −+=                                                 (A-18) 

    { }221 0640940007230 αααβ .. −= ，[Hunt-5LR]                                     (A-19) 
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    ( ) ( ){ }221 36011611 αααβ ++=a                                                    (A-21) 

    ( )321 O ααβ ×= ，[Hunt-6LR]                                                    (A-22) 
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Fig. A-3 Relation between relative difference of wave number Lδ  and relative water depth 0Lh  for any of 

Beji-1L/Beji-1, Beji-2L/Beji-2, Vata-1L/Vata-1 and Vata-2L/Vata-2. 
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( )221 03058601666701 αααβ ..a ++=                                                (A-24) 

( )221 0000300 ααβ .×= ，[Hunt-9LR]                                              (A-25) 

It is noted that the decimal equal to the fraction in the last term of Eq.(A-20) is 0.00032535.  
    Fig. A-4 shows the relation between relative difference of number Lδ  and relative water depth 0Lh  
for any of Hunt-4L/Hunt-4, Hunt-5/Hunt-5, Hunt-6L/Hunt-6 and Hunt-7L/Hunt-7. The critical value of 0Lh   
for a reference level(absolute value) of Lδ  with 1% or 0.1% is 0.081(0.042 in the case of 0.1%) for Hunt-4, 
0.135(0.086) for Hunt-5, 0.449(0.276) for Hunt-6 and 0.367(0.279) for Hunt-9. The critical 0Lh  becomes 
greater with the improved degree of the approximation in Hunt-n AESs. One exception is that the critical 0Lh  
for Hunt-6 is larger than that for Hunt-9 at the 1% level of Lδ . The critical 0Lh  for each of Hunt-n AESs 

tends to take a generally larger value compared to that for any of the other AESs, because the number of terms 
in the LWA-based Hunt-nL equation is greater than at least 4.     

4. Long wave approximation to Cham-n AESs 

    For any of Cham-n AESs (n=2, 3, 4, 5), LWA-based lβ , whole polynomial with usual form to ( )2O α  

aβ  and residual of aβ  to ( )2O α  from Eq.(A-1)(You-4) β  are written in succession as follows : 

    ( ) ( ){ } 21321 451311 −
+−= αααβ l ，[Cham-2L]                                      (A-26) 

    ( ) ( ){ }221 241611 αααβ ++=a                                                    (A-27) 

    ( ){ }221 901 ααβ ×= ，[Cham-2LR]                                              (A-28) 

10–4 10–3 10–2 10–1 100
–5

–4

–3

–2

–1

0

1

2

3

4

5

h/L0

Hunt–4L/Hunt–4

Hunt–5L/Hunt–5

Hunt–6L/Hunt–6

Hunt–9L/Hunt–9

 δ
L 
(%

)

2 5 2 5 2 5 2 5

 
Fig. A-4 Relation between relative difference of wave number Lδ  and relative water depth 0Lh  for any of 

Hunt-4L/Hunt-4, Hunt-5L/Hunt-5, Hunt-6L/Hunt-6 and Hunt-9L/Hunt-9. 
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    ( ) ( ){ } 213221 31321 αααβ −+=l ，[Cham-3L]                                       (A-29) 

    ( ){ }221 311 ααβ +=a                                                            (A-30) 

    ( ) ( ){ }221 36010961 αααβ +−= ，[Cham-3LR]                                    (A-31) 

    ( ) ( ) ( ){ } 213221 135191311 ααααβ −++=l ，[Cham-4L]                              (A-32) 

    ( ) ( ){ }221 241611 αααβ ++=a                                                    (A-33) 

    ( ) 221 901 ααβ ×= ，[Cham-4LR]                                                (A-34) 

    ( ) ( ) ( ){ } 413221 452152321 −
++−= ααααβ l ，[Cham-5L]                            (A-35) 

    ( ) ( ){ }221 3607611 αααβ −+=a                                                  (A-36) 

    ( ) 221 201 ααβ −×= ，[Cham-5LR]                                             (A-37) 

It should be noted that Eq.(A-26) lacks the ( )2O α  term and that Eq.(A-29) the ( )αO  term. In addition, 

LWA-based PAES for Cham-6(Cham-6L) and LWA-based PAES for Cham-7(Cham-7L) are given by Eq.(35) 

and Eq.(36) in this text respectively. 
    Fig. A-5 indicates the relation between relative difference of wave number Lδ  and relative water depth 

0Lh  for any of Cham-nL/Cham-n(n=2, 3, 4, 5, 6 and 7). In the case of reference absolute value of Lδ =1% or 
0.1%, critical 0Lh  is 0.232(0.149 for 0.1% level) for Cham-2, 0.125(0.070) for Cham-3, 0.248(0.127) for 

Cham-4, 0.145(0.084) for Cham-5, 0.455(0.198) for Cham-6 and 0.249(0.159) for Cham-7 in this order. The 
critical 0Lh  for Cham-3 or Cham-5 is relatively small and the critical 0Lh  is rather large for Cham-6. Any 
of Cham-2, Cham-4 and Cham-7 takes middle value between the above-mentioned 2 0Lh  values 

respectively. 

    As a compendium of Sections 2., 3. and 4., Table A-1 indicates a list of 0Lh  yielding a relative 
difference of wave number Lδ  of either 0.1% or 1 % level for each of the investigated AESs. Critical value of 
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Fig. A-5 Relation between relative difference of wave number Lδ  and relative water depth 0Lh  for any of 

Cham-2L/Cham-2, Cham-3L/Cham-3, Cham-4L/Cham-4, Cham-5L/Cham-5, Cham-6L/Cham-6 and 
Cham-7L/Cham-7. 
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0Lh  where the effect of LWA starts emerging in the approximate computation of wave number significantly 
changes depending on the kind and the approximation order of AESs. The critical value of 0Lh  is greater in 
the cases of higher order Hunt-n and Cham-n AESs and smaller in the cases of Beji-n and Vata-n AESs. 

5. Comparison of residual terms in LWA solutions 

    Residual terms with a different power number of α  in LWA solutions which were described in Sections 
2, 3 and 4 make mutual comparison in analytical form difficult. In this section, the magnitude of residual in 
each LWA-based PAES is investigated by taking Eq.(A-1)(You-4)-based β  as a reference value, in cases 
where β  may be close to the exact solution with relative error less than 1.3 410−× % for a range of 

0Lh <0.02. 
    Table A-2 summarizes the coefficients of the residual terms to ( )2O α , percentage of relative residual 
β  to Eq.(A-1)(You-4)-based β  ; ββ  for any of 0Lh = 310− , 5 410−×  and 410−  and its order placed 

from the largest ββ  in the 12 LWA-based PAESs. Both Cham-6 and Cham-7 are excluded, because either 
of their LWA-based PAESs, that is Eq.(35)(Cham-6L/Olson3) and Eq.(36)(Cham-7L/YNH) coincides with 
Eq.(A-1)(You-4) to ( )3O α . The order in any of the 3 0Lh  groups is the same except for the 4th, 5th and 6th 

ββ .  The residual equations such as Cham-3LR, Beji-1LR and Beji-2LR give the 1st, 2nd and 3rd largest 
residual in this order. Each residual equation keeps ( )αO  term with the coefficient of 1/6 in its expression of 
( )2O α . Also, either Vata-11LR or Hunt-5LR keeps ( )αO  term. But, the contribution of the ( )αO  term to the 

total residual is not significant within an indicated 0Lh  range, because magnitude of the coefficient in ( )αO  
term is about 1/25 compared to that(1/6) in any of Cham-3LR, Beji-1LR and Beji-2LR. Since the residual 
equation Vata-2LR consists of 7 aα  terms with a gradually increasing power number a between ( )αO  and 
( )2O α , relative estimation of the contribution rate of each term is a hard task. All terms-based contribution, 

which takes the 4th largest place for the 0Lh = 410−×  case and the 6th largest place for both the 

0Lh =5 410−×  and 310−  cases is not classified into a group with the highest rank. 
    Fig. A-6 shows the relation between the relative residual of wave number ββ  and 0Lh  for the 1st 

largest to the 6th largest residual case such as Cham-3LR, Beji-1LR, Beji-2LR, Vata-2LR, Hunt-5LR and 
Vata-1LR. As indicated in Table A-2, the residuals computed by Cham-3LR and Beji-1LR increase toward the 
negative side more rapidly compared to the residuals of the other expressions. 
 

Table A-1 List of critical 0Lh  yielding relative wave number difference of 0.1 % or 1 % level by long 

wave approximation. 
 

App. eq. 
0Lh ( Lδ %) 

App. eq. 
0Lh ( Lδ %) 

App. eq. 
0Lh ( Lδ %) 

0.1% 1% 0.1% 1% 0.1% 1% 

Beji-1 0.010 0.028 Hunt-4 0.042 0.081 Cham-2 0.149 0.232 

Beji-2 0.054 0.098 Hunt-5 0.086 0.135 Cham-3 0.070 0.125 
Vata-1 0.050 0.102 Hunt-6 0.276 0.449 Cham-4 0.127 0.248 

Vata-2 0.030 0.096 Hunt-9 0.279 0.367 Cham-5 0.084 0.145 
      Cham-6 0.198 0.455 

      Cham-7 0.159 0.249 
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Table A-2 Coefficients of residual terms and relative residual with its order. 
 

Name of 
approx. 

Coeff. of residual terms 
Percentage of residual to original eq. 

( )4-Youββ % and order 

α  2α  aα  3
0 10−=Lh  4

0 105 −×=Lh  4
0 10−=Lh  order 

Beji-1LR -1/6 49/360 0.332871 31.α  -0.058 -0.034 -0.0082 2 

Beji-2LR -1/6 49/360 0.212248 091.α  -0.020 -0.013 -0.0036 3 

Vata-1LR -0.007054 49/360  -0.0039  *5 -0.0021  *5 -0.00044 6 
Vata-2LR -0.125905  sum of 6 terms -0.0011  *6 -0.00099  *6 -0.00064 4 

Hunt-4LR  -0.044522  -1.8 410−×  -4.5 510−×  -1.8 610−×  8 

Hunt-5LR 0.00723 -0.064094  0.0043  *4 0.0022  *4 0.00045 5 
Hunt-6LR 0 0      

Hunt-9LR  0.000030  1.2 710−×  3.0 810−×  1.2 910−×  11 

Cham-2LR  1/90  4.4 510−×  1.1 510−×  4.4 710−×  9 
Cham-3LR -1/6 109/360  -0.10 -0.052 -0.010 1 

Cham-4LR  1/90  4.4 510−×  1.1 510−×  4.4 710−×  9 

Cham-5LR  -1/20  -2.0 410−×  -4.9 510−×  -2.0 610−×  7 
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Fig. A-6 Relation between percentage of residual wave number against You-4 PAES-based wave number 
ββ  and relative water depth 0Lh  for any of Beji-1LR, Beji-2LR, Vata-1LR, Vata-2LR, Hunt-5LR and 

Cham-3LR. 
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6. Summary 

    The above discussion leads us to the following summary : 

1) The critical value of 0Lh  where the effect of long wave approximation(LWA) appears in the AES-based 
wave number computation depends significantly on the kind and degree of approximation of AES to be applied. 
The critical value is comparatively larger in the case of any of the higher-order Hunt-n and Cham-n AESs, while 
it is smaller in the case of any of Beji-n and Vata-n AESs. 
2) Either Cham-3- or Beji-1-based wave number computation yields larger relative error compared to the other 
AESs-based computations even in a range of 0Lh <0.001 where long wave approximation valid for 

0Lh <0.02 condition works with satisfactory accuracy. This is due to their basic characteristics that either of 
the AESs deviates from long wave theory-based AES with a magnitude of ( )αO  in a long wave approximation 
range. 
 

Appendix B 

Accuracy of Newton’s method-based 2-step AES 

    Table B-1 shows the order descending from the largest absolute value of the maximum relative error 
indicated with a bold-faced figure ( )1

maxε , the AES name and a range of relative error ( )1ε  for each of 25 kinds 
of single expression-based (1-step) AESs in the left column and the order of the maximum relative error in 
bold-faced type ( )2

maxε , the name, the range of relative error ( )2ε  for each of 25 kinds of Newton’s 
method-based 2-step AESs associated with an initial value estimated by the 1-step AES on the same line and the 
the maximum relative error ratio γ  defined by ( )2

maxε / ( )1
maxε  in the right column. This table is made from Table 

5 in this text by re-arrangement of AESs on the basis of the magnitude of the maximum relative error ( )1
maxε . 

Each column in the list includes an AES(Vata-0 or Vata-0N) to be newly discussed in Appendix C. The 25 kinds 
of 1-step AESs are classified into 7 groups according to the magnitude of the maximum relative error ( )1

maxε  at 
the first stage to make the discussion easier. 
    In the table, the order of 2-step AES-based the maximum relative error ( )2

maxε  roughly corresponds to the 
order of 1-step AES-based maximum relative error ( )1

maxε . A range of the maximum relative error ratio γ  is 
between 210−  and 6104 −× . The tendency is that the smaller the maximum relative error ( )1

maxε  of the initial 
estimate based on 1-step AES is, the smaller the maximum relative error ratio γ  becomes. In this context, the 
maximum relative error ratio γ  takes a rough value such as (1) 210−  for the case of ( )1

maxε =1.5~5%, (2) 310−  
for the case of ( )1

maxε =0.75~1.1%, (3) 4102 −×  for the case of ( )1
maxε =0.15~0.3%, (4) 410−  for the case of 

( )1
maxε =0.07% and (5) 6104 −×  for the case of ( )1

maxε =0.01%. It can be said again that the smaller the maximum 
relative error of the initial estimate ( )1

maxε  is, the greater the degree of improvement in the accuracy of 2-step 
AES becomes. This reflects the characteristics of Newton’s method associated with a quadratic convergence. 
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Appendix C 

Addition of a new AES to the filing list  

    After the completion of writing our text with two appendices A, B, we discovered that Vatankhah and 

Aghashariatmadari[13] had published a paper related to a new AES in an international journal by 

Elsevier(Coastal Engineering). They proposed a Newton's method-based 2-step AES (named Vata-0N here) 

with the maximum relative error maxε =2.8 710−× % which exceeds the accuracy of 2-step AES (Beji-2N) of 

maxε =8.2 610−× % associated with an initial estimate by 1-step AES (Beji-2) and gave the following equation to 

1-step AES (Vata-0) to be used in an initial estimation. 

    ( ){ }[ ] ( ) 2136619860 tanh19818631exp1 ααααβ .. .. +−+= ,  [Vata-0， maxε =0.021%]              (C-1)   

The equation preceding to Eq.(C-1) named Vata-1 is expressed in Eq.(6) of the text as 

    ( ){ }[ ] ( ) 21351 tanh22518351exp1 ααααβ ... +−⋅+= ,  [Vata-1， maxε =0.019%],  (6)            (C-2)   

Table B-1 Order of maximum relative error, name and range of relative error for 1-step AES and 2-step AES and ratio of 

maximum relative error. 

 

group order formula relative error 
( )1ε (%) order formula relative error 

( )2ε (%) 
( ) ( )12

maxmax εε  

① 

1 Eckart[1] 0～5.24 1 Fenton[1] -0.051～0.0084 9.7×10-3 
2 Carv14[1] -2.45～3.28 3 YN4[1] -0.029～0.0067 8.8×10-3 
3 Iwagaki[1] -3.05～3.14 2 YN3[1] -0.040～0.012 1.3×10-2 
4 Cham-3 0～2.81 5 Cham-3N -0.022～3.1×10-4 7.8×10-3 

② 
5 FM[1] -1.39～1.66 4 FM-N[1] -0.0085～0.023 1.4×10-2 
6 YN1[1] -1.52～1.55 6 YN5[1] -0.0049～0.0049 3.2×10-3 
7 Carv9[1] -1.12～0 7 YN6[1] -4×10-4～1.4××××10-3 1.3×10-3 

③ 
8 Guo[1] -0.75～0.75 8 YN7[1] -0.0012～0.0012 1.6×10-3 
9 YN2[1] -0.73～0.73 9 YN8[1] -9××××10-4～8×10-4 1.2×10-3 

10 Cham-2 -0.74～0 10 Cham-2N -1.4×10-4～6.3××××10-4 8.5×10-4 

④ 

11 Carv5[1] -0.21～0.27 13 YN9[1] -1.1××××10-4～1.1××××10-4 4.1×10-4 
12 Carv4[1] -0.12～0.20 14 YN10[1] -7×10-6～4××××10-5 2.0×10-4 
13 Beji-1 -0.15～0.19 12 Beji-1N -1.6××××10-4～2.1×10-5 8.4×10-4 
14 Hunt-6[5] -0.19～0 15 Hunt-6N -2.4×10-8～3.4××××10-5 1.8×10-4 

⑤ 

15 Cham-4 -0.16～0 11 Cham-4N -3.1××××10-4～9.6×10-6 1.9×10-3 
16 Hunt-4[5] -0.15～0.14 16 Hunt-4N -1.5×10-5～2.1××××10-5 1.4×10-4 
17 Hunt-5[1] -0.070～0.078 18 Hunt-5N -6.2×10-6～7.3××××10-6 9.4×10-5 
18 Cham-5 -0.071～0 19 Cham-5N -6.7××××10-6～1.3×10-6 9.4×10-5 

⑥ 
19 Beji-2 -0.044～0.042 17 Beji-2N -8.2××××10-6～1.1×10-6 1.9×10-4 
20 Vata-0 -0.016～0.021 22 Vata-0N -2.8××××10-7～2.8××××10-7 1.3×10-5 
21 Vata-1 -0.019～0.019 20 Vata-1N -1.6××××10-6～3.7×10-7 8.4×10-5 

⑦ 

22 Cham-6 -0.013～0 23 Cham-6N -4.8×10-9～1.9××××10-7 1.5×10-5 
23 Hunt-9[1] -0.0082～0.0054 24 Hunt-9N -1.8×10-10～3.4××××10-8 4.1×10-6 
24 Cham-7 -0.0035～0.0013 25 Cham-7N -8.9×10-10～1.3××××10-8 3.7×10-6 
25 Vata-2 -0.0012～0.0012 21 Vata-2N -6.3××××10-7～8.1×10-10 5.3×10-4 
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Only a small difference in both equations is found in the constant terms and the power index of α  term, but a 
large alteration may occur with the increase of the number of free parameters as the power number of α  term 
preceding the exponential function term is changed from the integer number of 1 to a real number 0.986. Also, 
Vata-0-based maxε  of 0.021% is slightly greater than Vata-1-based maxε  of 0.019% and Eq.(C-1) may be 

regarded as a modified or an extended version of Eq.(6) or Eq.(C-2). 
    Fig. C-1 shows the relation between the relative error ε  and relative water depth 0Lh  for either 
Vata-0 or Vata-1. Vata-0 yields an oscillating relative error around zero with increase of 0Lh , as does Vata-1. 
A range of the variation and the corresponding 0Lh  value are as follows. 
    61) Vata-0：-0.016%（ 0Lh =0.268）～0.021%（ 0Lh =0.493）                           (C-3)   

Also, Vata-1-based result in Eq.(11) of the text is rewritten as 

25) Vata-1：-0.019%（ 0Lh =0.064）～0.019%（ 0Lh =0.011）,  (11)                      (C-4)   
Vata-0-based maximum relative error(absolute value) maxε  is 0.021 %, which is indeed slightly greater than 

0.019% associated with Vata-1, and then a range of relative error ε  is somewhat biased to the positive side in 
comparison with that associated with Eq.(11) in the text, that is Eq.(C-4). 

   Fig. C-2 illustrates the relation between relative error ε  and relative water depth 0Lh  for either 

Newton's method-based Vata-0N or Vata-1N, in cases where 1-step AES such Vata-0 or Vata-1 is used for an 
initial estimation respectively. A very small relative error ε  associated with Vata-0N varies accompanying a 
positive or negative peak with increase of 0Lh . A range of the relative error ε  including the corresponding 

0Lh  is indicated as 

    62) Vata-0N：-2.8 710−× （ 0Lh =0.053）～2.8 710−× （ 0Lh =0.271）                       (C-5)   
As indicated in Eq.(40) of the text, Vata-1N-based result is rewritten as 

37) Vata-1N：-1.6 610−× %（ 0Lh =0.011）～3.7 710−× %（ 0Lh =0.277）,  (40)              (C-6)   

A range of relative error related to Vata-0N keeps a balance between the positive and the negative maximum 

value, while a range with Vata-1N shows some imbalance between the negative and the positive maximum 
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Fig.C-1 Relation between relative error ε  and relative water depth 0Lh  for either Vata-0 or Vata-1. 
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value and the Vata-0N related maximum relative error of maxε =2.8 710−× % coincides with that given by 

Vatankhah and Aghashariatmadari[13]. This value signifies nearly one order of magnitude decrease of the error 

compared to the maximum relative error of (-)1.6 610−× % associated with Vata-1N. We can see a similar 

relation between FM+FM-N and YN1+YN5 for 1-step AES and 2-step AES in Yamaguchi and Nonaka[1], which 

realizes a proper balance between the negative and positive maximum relative error associated with 2-step AES 

and the resulting decrease of the maximum relative error by using 1-step AES with a modified power index for 

an initial estimation. 

    Table B-1 reinforced by the results with Vata-0 and Vata-0N tells us that Vata-0N-related maxε  of 

2.8 710−× % is smaller than Vata-2N-related maxε  of (-)6.3 710−× % but greater than any of Cham-6N-related 

maxε  of 1.9 710−× %, Hunt-9N-related maxε  of 3.4 810−× % and Cham-7N-related maxε  of 1.3 810−× %. In any 

case, it might be said that Vata-0N associated with a proper balance between the positive and negative 

maximum relative error of maxε = 71082 −×± . % yields a very highly accurate estimate. 
    Next, the long wave approximation(LWA)-based equation(PAES) to nearly ( )3O α  for Vata-0 and that for 

Vata-1 are written in order as  

    ( ) ( ){ }7183986235222986021 O0258677201859372061155206301 ....
l ... ααααααβ ++−++= ，[Vata-0L] 

                                                                         (C-7)   

    ( )( )3352221 026602250195526537061159613501 αααααβ ... .
l +−++= ，[Vata-1L]，(A-9)     (C-8)   

Eq.(C-8) is the same equation as Eq.(A-9) in the text. Also, the residual of Eq.(C-7) from Eq.(A-1)(You-4) in  

Appendix A to ( )2O α  β  named Vata-0LR and that corresponding to Eq.(C-8), that is Eq.(A-10) in  

Appendix A named Vata-1LR are expressed as follows respectively: 

( ) ( ){ }2986021 360496115520630 ααααβ +−= .. ，[Vata-0LR]                             (C-9)   

    ( ){ }221 360490070540 αααβ +−= . ，[Vata-1LR]，(A-10)                              (C-10)   
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Fig.C-2 Relation between relative error ε  and relative water depth 0Lh  for either Vata-0N or Vata-1N. 
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    Fig. C-3 illustrates the relation between relative difference of wave number Lδ  , defined in Section 2 of 
Appendix A and relative water depth 0Lh  for either Vata-0L/Vata-0 or Vata-1L/Vata-1. 
Vata-0L/Vata-0-related Lδ  falls rapidly from zero toward a negative large value with increase of 0Lh  and 
the behavior is very similar to that of Vata-1L/Vata-1-related Lδ . Table C-1 reinforces Table A-1 by adding 

0Lh  value yielding a relative difference of wave number Lδ  of either 0.1% or 1% level for Vata-0L. The 

0Lh  value at each level is in close agreement with that for Vata-1L.  

  In addition, Table C-2 shows a list of the coefficients of the residual terms to ( )2O α , percentage of 

relative residual β  to Eq.(A-1)(You-4)-based β ; ββ  for any of 0Lh = 310− , 4105 −×  and 410−  and 

its order placed from the largest ββ  in the 13 LWA-based PAESs including Vata-0L. The coefficient of 

( )2O α  term in Eq.(C-9) coincides with that in Eq.(C-10). The sum of the 1st and 2nd terms in Eq.(C-9) is 
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Fig. C-3 Relation between relative difference of wave number Lδ  and relative water depth 0Lh  for either 

Vata-0L/Vata-0 or Vata-1L/Vata-1. 
 

Table C-1 List of critical 0Lh  yielding relative wave number difference of 0.1 % or 1 % level by long  

wave approximation reinforced by addition of Vata-0-based results. 
 

App. eq. 
0Lh ( Lδ %) 

App. eq. 
0Lh ( Lδ %) 

App. eq. 
0Lh ( Lδ %) 

0.1% 1% 0.1% 1% 0.1% 1% 

Beji-1 0.010 0.028 Hunt-4 0.042 0.081 Cham-2 0.149 0.232 

Beji-2 0.054 0.098 Hunt-5 0.086 0.135 Cham-3 0.070 0.125 

Vata-0 0.051 0.102 Hunt-6 0.276 0.449 Cham-4 0.127 0.248 

Vata-1 0.050 0.102 Hunt-9 0.279 0.367 Cham-5 0.084 0.145 
Vata-2 0.030 0.096    Cham-6 0.198 0.455 

      Cham-7 0.159 0.249 
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approximated as 

( ){ } ( )ααα 0000025001570611552060 9860 .~.. . ≈−  for α = 510− ~ 3105 −×                   (C-11)   

because αα ≈9860.  such as ○1 59860 1017491 −×= ..α  for α = 510− , ○2 49860 1013761 −×= ..α  for α = 410− , 

○3 39860 1010151 −×= ..α  for α = 310−  and ○4 39860 1038505 −×= ..α  for α = 3105 −× . Vata-0LR-based β  

takes a positive value for α  less than around 3105 −× (to be accurate, around 3102 −×  as seen in Fig. C-4) 

and Vata-1LR-based β  gives a negative value for the same range of α  at least. Both β s take opposite 

sign, as indicated by ββ  for any of 0Lh = 310− , 4105 −×  and 410−  in Table C-2. 
    Fig. C-4 illustrates the relation between the relative residual of wave number ββ  and relative water 
depth 0Lh  for either Vata-0LR or Vata-1LR. With augmentation of 0Lh  Vata-0LR-based residual ββ  

increases from nearly zero, takes a positive and a small negative peak and then rapidly becomes greater. On the 
other hand, Vata-1LR-based residual ββ  gives a negative value decreasing with augmentation of 0Lh  

and turns into an increasing trend toward a positive value after reaching a negative peak. A smaller absolute 
value of residual associated with Vata-0LR than that with Vata-1LR shows that Vata-0L is a closer approximate 
solution to the long wave theory compared to Vata-1LR. 
    As discussed above, Vata-0-related relative error is similar to Vata-1-related relative error in a rough 
estimate but availability of Vata-0 for 1-step AES estimator does not exceed that of Vata-1 and is somewhat  
lower, because a balance between the positive and negative maximum relative error is slightly worse in Vata-0 
than in Vata-1. However, accuracy of 2-step AES using Vata-0 for an initial estimation of wave length is nearly 
one order of magnitude higher than that using Vata-1, in cases where the maximum relative error takes a 

significantly small value such as 2.8 710−× %. Vata-0-based 2-step AES has a very high accuracy. Accordingly, 

Table C-2 Coefficients of residual terms and relative residual with its order reinforced by addition of 
Vata-0LR-based results. 

 

Name of 
approx. 

Coeff. of residual terms 
Percentage of residual to original eq. 

( )4-Youββ % and order 

α  2α  aα  3
0 10−=Lh  4

0 105 −×=Lh  4
0 10−=Lh  order 

Beji-1LR -1/6 49/360 0.332871 31.α  -0.058 -0.034 -0.0082 2 
Beji-2LR -1/6 49/360 0.212248 091.α  -0.020 -0.013 -0.0036 3 

Vata-0LR -1/6 49/360 0.155206 9860.α  0.00051 0.00063 0.00035 7 
Vata-1LR -0.007054 49/360  -0.0039  *5 -0.0021  *5 -0.00044 6 
Vata-2LR -0.125905  sum of 6 terms -0.0011  *6 -0.00099  *6 -0.00064 4 

Hunt-4LR  -0.044522  -1.8 410−×  -4.5 510−×  -1.8 610−×  9 

Hunt-5LR 0.00723 -0.064094  0.0043  *4 0.0022  *4 0.00045 5 
Hunt-6LR 0 0      

Hunt-9LR  0.000030  1.2 710−×  3.0 810−×  1.2 910−×  12 

Cham-2LR  1/90  4.4 510−×  1.1 510−×  4.4 710−×  10 
Cham-3LR -1/6 109/360  -0.10 -0.052 -0.010 1 

Cham-4LR  1/90  4.4 510−×  1.1 510−×  4.4 710−×  10 

Cham-5LR  -1/20  -2.0 410−×  -4.9 510−×  -2.0 610−×  8 
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it may be concluded that Vata-0 is a very efficient 1-step AES estimator for use in a Newton's method-based 
2-step AES. 
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Fig. C-4 Relation between percentage of residual wave number against You-4 PAES-based wave number
ββ  and relative water depth 0Lh  for either Vata-0LR or Vata-1LR. 




