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Abstract
In this paper, we study dynamic consumption and employment policies in a Cobb-Douglas
technology economic growth model under uncertainty. Using the viscosity solutions method, we
show that the optimal policies exist in feedback forms. Our results demonstrate that the optimal
shortening of working hours arises from uncertain fluctuations in the stochastic economy.
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1 Introduction

This paper develops a one sector optimal economic growth model which includes random shocks to
production and capital depreciation. Possible sources of shocks include uncertainty about environmental
changes, natural disasters, morale of workers and technological progress/regress. Our analysis is based on a
stochastic version of the Cobb-Douglas economic growth model. The model we propose here differs from
the traditional deterministic one sector optimal growth models in two respects: both consumption and
employment processes are determined to maximize the discounted sum of utilities of a representative
household, and the risk term of the capital accumulation process expands as the each factor of production
increases. Under these circumstances, we obtain the optimal consumption and employment policies and
demonstrate how the risk elements in the model affect the optimal consumption and working hours of the
households.

Following the seminal papers of Koopmans [13] and Cass [2] a number of authors have investigated
various properties of neoclassical optimal growth models which are characterized by additive utilities and the
Solow-Swan model of capital accumulation. The continuous-time stochastic versions of such models are

considered by Merton [14], Chang [3] and Foldes [7]. These studies assume that labor is supplied by each
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household inelastically and is fully employed. More recently Amilton and Bermin [1] extends the model by
allowing the authirities to control the expected growth rate of the labor supply. However, it is also assumed
in their model that the labor supply is fully utilized. In a deterministic economy such a full employment
assumption makes no serious problem, since the more labor force leads to the more consumption in general
(see Section 4 of this paper for details), and the representative household in the economy only cares about
its consumption level. However, once uncertainty is introduced, it becomes unclear whether full
employment is always good for the society or not. Therefore, in our study, we depart from the assumption
of full employment, and focus on the trade-off between the production expansion and the risk increase in the
economy.

The main purpose of this paper is to characterize the optimal consumption and employment policy
functions in feedback forms, under general assumptions on the representative agent’s unility function. We
first present the existence and uniqueness of the accumulation process of the capital stock and verify that the
control problem is meaningful. Given these existence and uniqueness results, we demonstrate that, at least
for some quantity of capital stock, the total labor force in the economy is redundant from the social
planner’s (not from each individual’s) point of view if there exist stochastic fluctuations in the economy.
Our findings clearly indicate the importance of the risk factor in the economy, since the full employment
policy is certainly optimal in the normal deterministic growth models. In a risky economy, it is possible for
the laborers to have more leisure than in a riskless economy to attain optimality. Our analysis of optimal
policies is based on the viscosity solutions method developed by Fleming and Soner [6].

The rest of the paper proceeds as follows. Section 2 provides the stochastic economic growth model
with Cobb-Douglas production technology and introduces the HIB equation we analyze. In Section 3, we
characterize the optimal policies of consumption and employment. In Section 4, we show that, for some
quantity of capital stock, the optimal employment plan induces shortening of working hours. Section 5

concludes the paper. All mathematical technicalities are collected in Appendices A, B and C.

2 The model
The Cobb-Douglas production function is of the form
L' *K* 0<a<l1

where L >0 and K= 0 respectively denote the employment and the capital stock. We call the economic
growth model with such a technology a Cobb-Douglas growth model.

Let us consider the capital accumulation model :
dK; Z[LtlfaKta —0K:i — i K: ]dt-i-ULthdVVt, Ko=k>0, o #* 0, ( 2.1 )

on a complete probability space (Q, F, P), carrying a standard Brownian motion { W+ }, endowed with the
natural filtration 7 generated by o(Ws, s<t). Here Lt =0 and ¢ =0 respectively denote the
employment policy and the total consumption per capital stock at time ¢, and 6 > 0 is the constant expected
capital depreciation rate. The uncertain fluctuations in production and capital depreciation are modeled by
the risk term oL KidW:. A pair (L, ¢) of L={L:} and ¢ ={e:} is called admissible if each of them is
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{F. }-progressively measurable and fulfills

A<Li<1 forall t=0, a.s, (2.2)

0<e<c¢ foral t=0, as.,

where € is some positive constant. We denote by A the set of all admissible policies (L, ¢). Throughout
this paper, we assume that the total labor supply in the economy is fixed and normalized as one. The
policy maker can assign employment between some fixed minimum level A > 0 and unity. We impose the
minimum restriction A for keeping productivity, skill and morale of laborers.

Our objective is to characterize an optimal policy (L*,¢*) € A, which maximizes the expected utility

function given by
J(L ) =E[[ e U(eK)at) (2.3)

where 8> 0 is a discount rate and U(+) is a utility function in C*(0, )N C[0, o), which is assumed to

have the following properties :

U(x): strictly concave on [0, o0), U”(x)<0,

U'(0)=U(0)=0, U (0+)=U(oo)=o0o0. (2.4)

Assuming that the per capita output is a Lipschitz function of the per capita capital stock, Chang and
Malliaris [4] proves the existence and uniqueness of the solution for the Solow equation by applying the
basic theory of stochastic differential equations. However, in economics, the production functions
satisfying Inada conditions are widely used and such functions are clearly non-Lipschitz. The most popular
type of such functions is, without doubt, the Cobb-Douglas function which is extensively used in vast
literature of economic growth studies. Unfortunately, for non-Lipschitz functions, the uniqueness of the
solution for the Solow equation is not satisfied in general. In fact, it is easy to see that the following

simple deterministic equation
dk:/dt = k,"* —Sk:, (zero consumption)

has two solutions

RV=0, t=0
and
; _ ot
B =(G—ge B2 120

for the initial value of per capita capital stock ko = 0. Therefore, when the technology is represented by
such a non-Lipschitz function, there are two paths we can go by, once we used up the whole capital stock in
the economy. This example indicates that, to investigate optimal stochastic growth models under Inada
conditions, it is important to confirm the existence and uniqueness of the positive solution for each type of
production functions respectively. The following proposition provides the existence and uniqueness results
for the Cobb-Douglas growth model by showing that, for each admissible policies, 0 is not an accessible

boundary of the capital stock. We see that the upper bound constraint for consumption ¢ prevents the
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extinction of the capital stock in the economy.

Proposition 2.1 For each (L, ¢)E A, there exists a unique positive solution {Ki} of (2.1), which

satisfies
ElK]<{(1—a)t+k1 V0=, (2.5)
E[K2]<e ™ [2(1—A)t+R20-DTVEA=0 " 2= (1+a)/2. (2.6)

Proof. Let(L, ¢)€ A be arbitrary and set 2+ := K,'~*. Then, by Ito’s formula, {x:} satisfies

dr =(1-a)[ L1~ — (8 + ¢ +%Lﬁ)xt]dt+(1—a/)0thtdW:, zo=k1=¢ >0, (2.7)

By (2.2), there exists a unique solution {x:} of (2.7). By the comparison theorem (Ikeda and Watanabe
[11]), we observe that x+ >0 a.s. Thus (2.1) admits a unique positive solution {K:} such that
supo<:=7E[K,*]< oo for each T> 0.

Let & be the right-hand side of (2.5). Then, it is easy to see that

s =¢rdt, So=k.
By (2.1) and Jensen’s inequality
d(E[K: )< E[K®—0K:i —ciK: ldt < E[K: 1°dt.

Since {0 = E[Kol=Fk, we get E[K: 1< & and (2.5).
Let 7t be the right-hand side of (2.6). Then 7, := e "7 satisfies

dp, =2qtdt, 7,="h>"
Hence
dpe = et (294 + 025, ) dt = (29} + 029 ) dt.
By the same line as above, using Ito’s formula and Jensen’s inequality, we deduce

d(E[K?])= E[2(L} *K* —0K? —c:K? )+ aL2K? | dt
<(2E[KZ1"+02E[K2))dt.

Since 72 = E[KZ1=k?2, we get E[K2]< 7 and (2.6).

3 The Hamilton-Jacobi-Bellman equation

In this section, we completely characterize the value function defined by

V(k)= sup E[jme*ﬂfu(ctmdt], (3.1)

(L, c)eA

and we derive the optimal policy (L*, ¢")€.A. Using dynamic programming technique, we show that V' is

a viscosity solution of the associate Hamilton-Jacobi-Bellman (HJB, for short) equation :
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Bv = m?xl{%dszkzv”-i-L"“k“v’}—é‘kv’-ﬁ-U(k, v’), k>0, (3.2)
A<sL=
where
Ulk, p):= max (U(ck)—ckp), p<R. (3.3)

The definition of viscosity solutions of (3.2) is given as follows.

Definition 3.1 Let v € C(0, o). Then v is called a viscosity solution of (3.2) if
for any ¢ € C*(0, o) and any local maximum point y >0 of v—9,

— Av+ max {%aszkst”+L1’”k“¢'}—5k¢'+U(k, ')

A<L=1

>0, (3.4)

k=y

and

for any ¢ € C*(0, ) and any local minimum point 2> 0 of V=@,

—Bv +An<1§1§1 {%JZL 2h2g” + L1=heg }—Ske' + Uk, @)

<0. (3.5)

k=z

Following Morimoto and Zhou [15], we make use of the comparative results on dynamic programming.

Theorem 3.2 Assume (2.4). Then the value function V of (3. 1) is nondecreasing, continuous on 0,

©0) and the dynamic programming principle holds for V, i. e.,

V(k)= sup E[‘[e’f”‘U(cth)dt+e’ﬁ’V(Kf)] (3.6)

(L, c)eA

for any Tt = 0.

Proof. See Appendix A.
Our method is often referred to as the viscosity solutions method which is extensively developed by
Fleming and Soner [6]. Since the existence of a viscosity solution substantially follows from the dynamic

programming principle for the value function, we can state the following.

Theorem 3.3 Assume (2.4). Then the value function V is the viscosity solution of the HJB equation
(3.2).

Proof. Let® € C?(0, o) and 2> 0 be such that V(x)—¢(x)=V(z)—¢(2)=0 for x near z. Let {K:}
be the solution of (2.1) with Ko =2 corresponding to any constant policy (L, ¢)€ A such that Lt = L,
ct=c forallt=0. By (3.6), we have

o(z)> E[Are’ﬁ’U(cKz Vdt+e P o(K.)]

for sufficiently small 7. Applying Ito’s formula to ¢, we have
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102L2k2¢"+L1’“k“¢’78k¢’+U(ck)fckgv’} dt].

-
2 k=K,

OzE[‘[e*/”{fﬂqur

By (2.6), we note that

E[ sup |Ki —2[*]< CE[/T(IHKtIz)dt] 0 as £ 0

0<t<r 0

for some constant C > 0, independent of . Dividing both sides by = and letting 7 — 0, we deduce (3.5).
Similarly, by the same arguments as Fleming and Soner [6], we can obtain (3.4).

Next, we show the existence of a classical solution of the HIB equation.

Theorem 3.4 Assume (2.4). Then the value function V is the C*(0, o) solution of the HJB equation
32).

Proof. See Appendix B.

Now, let T1(k) and ®(k) be the maximizers of the HIJB equation (3.2) for V respectively. By
Theorems 3. 2 and 3. 3, we observe that V' = 0 and the maximum of %Gszk V7 + L1k V'’ is attained at
L=1ifV”=0. Thus

_(1-a)kV'(k) . .
nr) =1 gmeyrp ) VIR0 (3.7)
1 if V”(k)=0,
o(k)=1(k, V'(k)), (3.8)
where
A if Vi <A
Glx)={zV1+a §f A< gVi+e <, (3.9)
if 1< xl/(l+01)’
and
7\—1 f ;o —
Ik, py={ U7 PVR LU R <p, (3.10)
c otherwise.
By the regularity of the value function, we can derive the optimal policy in a feedback form.
Theorem 3.5 Assume (2.4). Then the optimal policy (L*, ¢ )€ A for (2.3) is given by
Ly =11(K,), (3.11)
o =0(K), (3.12)
where {K["} is the solution of
dK; =[T1(K )" (K )~ 6K —@ (K ) K/ ldt+ o1 (K, ) K/ dW:, K =k > 0. (3.13)
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Proof. See Appendix C.

4 Existence of surplus workers

In this section, we illustrate that the economy, facing some quantity of capital stock, has redundant
labor force from the viewpoint of social optimality. Finding a quantity of capital stock which yields
shortening of working hours is tedious but straightforward.

In order to make the significance of the risk elements clear, let us consider the deterministic version of
our Cobb-Douglas growth model (i.e., 0 =0) first. Then the HIB equation can be rewritten as

Bv= max (L' “k“v’})=0kv'+U(k, v’)

AsL=
=k —okv' +U(k, v'), k>0.
Thus the optimal employment policy leads to full employment L =1 at every moment of time.
In the present case, by (3.7) and Theorem 3.5, the laborers are always fully employed if
m(k)=1 forall k>0. (4.1)

The optimal employment policy is the same as in the traditional deterministic optimal growth models.

Furthermore, V solves

ﬂvzéawvwkw'—akvwU(k, V'), k>0, (4.2)
By the same line as Appendix C, we see that the uniqueness of (4.2) holds. Hence we have
Vik)= sup EL[ e @Uleki)dr), (4.3)
(1, c)e A

where { K¢} denotes the solution of (2.1) with 1 replacing L, i. .,
dK: =[ K — 0K —ciKi dt+ oKidW:, Ko=k> 0.
Furthermore, we can state that if (4. 1) is satisfied, then
I is concave on (0, ). (4.4)
Indeed, let ki >0, i =1, 2, and € > 0 be arbitrary. Then, by (4.3), there exists (1, ¢'”)&E A such that
Vik)-e<E[[ e UK )at), (4.5)

where { K, } is the solution of (2.1) corresponding to (1, ¢)€ A with K;” =ki. For0<&<1, we set

N Ect(l)Kt(l) +( 1 7E)Ct(2)Kt(2)

Ct EKt(1)+(1*§)Kz(2)

Clearly (1, €) belongs to A. Define

(K ) —6K:—C:K: |dt+oK:dWe, Ko =Eki+(1—E&)ko,
EKV+(1-8) K%,

t

> S

t
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By concavity, we have
Ki<ébt(1-8)ket [ [(K)~3K.~iR Jdt+o [ K.aw.
By the comparison theorem, we get
K/ <K: forall t=0, a.s.

It follows from (2.4) and (4.5) that

V(Ek +(1—&)ks) > E[[;we*ﬂfU(aK )at]
=Bl e U@R ) dr]
:E[/Oooe*B’U(écf“K,“’+(1f§)c,‘2’Kl‘2’)dt]
2EE[jwe"”U(c}“K,‘“)]dt+(le)E[/)me’ﬁ’U(ct‘z’Kt‘“)dt]

>EV(k)+(1-E)V(ks)—e.

Therefore, letting € — 0, we obtain (4. 4).

Now, let us examine the issue of surplus workers. By (3.7), our model exhibits surplus workers if
(k)<1 for some k>0. (4.6)

The question arises, can the positive liesure existence condition (4.6) actually be satisfied in our model ?
In case of 0 # 0, we shall show that (4.6) generally holds. Suppose that (4.1) is fulfilled. Then, by
(4.4), we note that

—a2k2 V" <(1—a)keV’, (4.7)
and
0<V' (R)E<V(k)-V(0+)<V(k) for k>0. (4.8)

By (4.2) and (4.8), we get

(B+8+¢)V= aglk”V,*(SkV,‘FU(Ek)*EkV’+(6+E)V

>U(ck) — oo as k — oo,
Hence, by (4.4) again
V' (k)>0 forall k>0. (4.9)
Also, by (4.2)
0<BV<(ke—8k)V' +U(Tk).

Thus, by (2. 4)

Ulck) Ttk

R T U'(c0)cld=0 as k — oo, (4.10)

V' <
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Furthermore, by (4.7) and (4. 10)

. V7 (k) . Vi(k)
nghfc}o(a'—l)k”’z Skh}?go o* =0

Therefore, by L’Hospital’s rule
lim V' (k)

k — 00 k”71

=0. (4.11)
We set H(k)=V'(k)k'“. By (4.11), there exists k« =7, for any # € N, such that
H’(kﬂ ): V”(kﬂ )k»}7a+(1_a)V,(k;1 )k;fa < 0

Hence, by (4.7)

(I_Q)V,(kn )S _V”(kn )kn < l;a V’(kn ) kﬂa

kirgzkn .

Thus, by (4.9), we deduce
1<k&Ye? — 0 as n — oo,

which is a contradiction. Therefore we obatin (4. 6).

5 Conclusion

This paper developed an optimal stochastic growth model characterized by uncertainty about the capital
accumulation process, in which the authorities determines both consumption and employment policies. We
apply the viscosity solutions method to obtain the optimal policies in feedback forms under rather mild
assumptions on the utility function. Our results are normative, in the sense that they rigorously show the
optimal positive paths of capital stock, consumption and employment if the regulation of the households’
working hours and consumption is possible.

Furthermore, while it is not obvious whether the optimal policies involve full employment all the time
or not, we found out that the optimal unemployment actually occurs for some quantity of capital stock in our
stochastic economy. We notice that this result requires no extra specifications or assumptions on the
primitives of the model.

The optimal unemployment or leisure in our model should be regarded as the consequence of the risk
averse behavior of the representative agent. Our findings obtained here indicate that it is possible that the
full employment policy is socially unoptimal in the risky economy, and if so, we must lower the output

level less than full employment level to achieve social optimality.

Appendix A : Proof of Theorem 3. 2

To prove the theorem, we need the following two lemmas.

Lemma A.1 For each (L, ¢)€ A, let {K'"}, i=1, 2, be two solutions of (2.1) with K)" =ki >0,
Then there exits Ce > 0, for any € > 0, such that
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EHK,H)*K[MHS Cs|k1*k2‘+6(1+t1/(17“)+k1+k2).

By (2.7), we have

dlzi—y )= —(1—a) (04 +5LL2) (2 —y, )dt+(1—a) oL (20 —y, ) dW,

2

which implies

xi=y, =(zo—yo)expl—(1-a)([ (6+c.+% L2)ds)+ [ (1-a)oLud.).

t t
) )
By (2.2), we note that
t tg? o
E[exp{l oL dW: 744 LE)ds)]= 1.
Then

t t 2
E[u-,—ytv]gm—yowE[exp% dLdes—A o L) ds)]

=kl =RtV <k — k2,

where § = 1/(1—a)>1. By Young’s inequality, for any & >0

Yy
20—y =1 ot 1d

<Olr—yl(x’t+y"")

<0l (L e =yl + 05 (@ g ) ), 2y o

0

Hence, there exists Ce > 0 such that
|2t —y?|< Celax—yl’ +e(1+x? +y?), x, y=0.
Thus, by (2.5), we deduce

E[|K'" =K"= Ellxf —y!]
< CeEllxi—y, "]+ eE[1+xf +yf ]
< Celki—ko|+eE[1+ KV + K™ ]
< Celbi—ha|+e{1420 (£ + k) +20 (+9 + ko)),

which implies (A. 1).

Lemma A.2 Under (2.4), there exists ®0 > 0 such that

0<V(k)<k+@®, k>0,

(A1)

(A.2)

(A.3)
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and there exists Co >0, for any 0 >0, such that

|V(k1)—V(k2)|S Cp|k1—k2‘+p(1+k1+kz), ki, ks> 0. <A4)

Proof. We take E1, Z2 > 0 such that
B+06>E5,, ke<Z,+Z.k Vk=0.

Then we see that @(%):=k+ 0, satisfies

fﬂméozwe”ﬂk“—&k)@#U(k, ®)< B +E +Uo(U") (1)< 0
for a suitable choice of ® > 0. By Ito’s formula, we have

0<e”@(K:)
:®(k)+4/0‘t€7’83{—ﬂ®([{3 )+[L317HKSQ_(()\K5 _CsKs]G,(Ks)

t
+lotikier (K))dst /0 0560 (K ) LK. dWs

t t
i@(k)*/o e #U(¢sKs )ds+_/0‘ e %60 (Ks )L K:dWs.

Taking the expectation of the both sides, by (2.6), we obtain (A.3).
Under (2.4), for any 0 >0, there exist Zo >0 such that U(x)<p for all xr<wx,. Taking
Co = U (x0)> 0, we have

|U(x)-U(y)l< Colz—yl+o, x, y=0. (A.5)
Therefore, by (A.1), we deduce that

V()= V(k)l< sup E[Ame’/”IU(cth(“)—U(cth‘z')ldt]

(L, c)e A

< sup C,:E[Ame"”\K,(“—K,‘Z’Idt]-&-p/ﬁ

(L, c)eA

< CpE[[we*/“ {Celbi—Ro|+e(1+tV09) + i+ ko )} dt ]+ 018,

which implies (A. 4).

Proof of Theorem 3. 2

By (A.2) and (A.4), it is clear that V is nondecreasing and continuous. To prove the theorem, let

V(k) denote the right-hand side of (3.6). Define

i =Koy, Wi=Wie—Ws,

Ct = Ct+r, Li= L.

>

Then { W} is a Brownian motion and (K} satisfies
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dK: =[Li “K{—6K:—¢éK:)dt+oL.K:dW:, Ko=K-.
Using the conditional expectation E[+|F: ], we have

E e Uk di| FA=EL[ e UK )il E1=Jk (L &), a.s.
Thus

7 (L, c)=E['/O.Te””U(cht)dt+[we’ﬁ‘U(cth)dt]

< E[.[e"”U(cth Vdt+e # V(K. ).

Taking the supremum, we obtain V (k)< V(k).
To prove the reverse inequality, we fix any € >0. Select a sequence {Sj: j=1, ..., n+1} of

disjoint subsets of (0, ) such that

n

diam(S;)<v, US;, =(0, R) and S,+1 =[R, o)

i=1

for v, R >0 chosen later. We pick £ € S; and (LY, ¢"') € A such that
V(kY)—e </Jiw (LY, ¢eV), j=1, ..., n+1 (A.6)

By the same argument as (A.4), we can show that

ey (L9, €)= Ji, (LY, )| +|V (k)= V(ke)|< Cslkl—kz\+%(1+k1+kz), ki, k2 >0

for some constant Ce > 0. Taking 0 <v <1 such that C:v < &/2, we have

[Ji (LY, €V) = Ji, (LY, e9)|[+|V (k)= V(k2)|< e(1+k1),

: (A.7)
k1, szS/, ]21, 2, e, n

If K- €S;, we see by (A.6) and (A.7) that

T (L9, €)= Ji (LY, ¢9)—J,0 (LY, ¢9) 4], (LY, )
>—e(1+K)+V(EV)—¢
>-2e(1+K:)+V(K:)—e (A.8)
>—-3e(1+K)+V(K:), 7=1, 2, ..., n.
By definition, there exists (L, ¢)€ A such that
V(k)-e <EL[ o Uleki)dt+e#V(K)].

Define

Li = Lilj< +Lt(j)rl(rgt} il K-€S;,7=1, ..., n+1,
cf =cily<y +Ct(f),l(,£” it KeeS;,7=1, ..., n+1,
Lo={L7), e :={cf )

Then, (L7, ¢*) belongs to A. Let {K[} be the solution of
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dK; =[(L7 )"~ (K7 )" = 0K/ —ci K7 Vdt+oLiKrdWi, Ki =k > 0.
Clearly, K/ = K: a.s. if t<t. Moreover, for each /=1, ..., #, we have on {K: € S;}

t+r t+z
K, = K- +/ [(L&)' (K )“—O0KS — cfK< 1ds +/ oLs K¢ dWs

T

t : B t B -
:Kf+f0 [(LS(”)“"(K;H)"—8K;+,—cs(”K;H]ds+£ oLVK: AW, a.s.

Hence, K/.. coincides with the solution K,” of (2.1) with K\”' = K- corresponding to (L“’, ¢”’) and
{W:} on{K: €S;}. Thus

Je (L @)= EL[ e #Uler, Kz a7

:E[Ame*/”U(c,‘”Kt‘”)dtl]-'f] (A.9)
=Jk (LY, ¢V), as on {(K-€S;), j=1,2, ..., n.

By Proposition 2. 1 and (A. 3), for each 2 >0, we choose R > 0 such that

sup E[V(K)ligorl<s sup E[O(K:) g on ]

(L, c)e A (L, c)eA

< sup R%E[K,Z +0OK: ] (A.10)

(L, c)eA

Co 2
<% (1+k+Ek?%)<e,

where the constant Co > 0 depends only on 7 and ®o. By (A.6)-(A.10), we have

E[/me*B’U(chf)dt]: E[E[ﬂooe*‘”U(chf)dtlf,]]
=Ele i (L7, &)]

=E[> e #Jx (LY, ¢V)1lxcs,) ]
=1

n+1

ZE[Z eiﬁr{V(Kr)*gs(];%’Kr)}I(K,esj)]

>Ele*{V(K:)=V(K:) Lig. o) } ] - 3eE[ 1+ K- ]
>Ele #V(K:)]—e—3eC(1+k)

for some constant C > 0, independent of €. Thus
V(k)zE[./().Te*’”U(chf)dt+fme*ﬁfU(c[Kf)dt]
2E[Are’/”U(aKt)dt—&-e’ﬁ’V(Kr)]—s—SeC(1+k)
>V(k)—2e—3eC(1+Fk).

Therefore, letting € — 0, we obtain V(k)< V(k). The proof is complete.

__.13.__
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Appendix B : Proof of Theorem 3. 4

To prove the theorem, we consider the boundary value problem :

Bw = max {%oszkzw”vLL"“kaw’}—(‘)‘kw’+l](k, w’) in (a, b)

A<L<1

w(a)=V(a), w(b)=VI(b),

(B.1)

for any fixed 0 <a <b.

Lemma B.1 Assume (2.4). Let wi € Cl(a, b), i=1, 2, be two viscosity solutions of (B.1). Then

we have W1 = W2,
Proof. Suppose that there exists o €(a, b) such that

w1 (x0)> w2 (x0).

Then we can find T €(a, b) such that

wo:= sup {wi(x)—w:(x)}=w(x)—w:(x)>0.

rela, b]
Define

Y, (z, y):= wl(x)—Wz(y)—%lx—y\z, neN

Then, for each # € N, there exists (22, y,)€[a, b]* such that

lyn(‘r’ly yn): sup ‘}Iﬂ(‘ry y)2‘Pn(f, f):w (BZ)

(z, y)ela, b]?

Hence

%\xn =y, P<wi () —w2(y,),
and

lxn =y, =0 as n —oo. (B.3)
Since W, (&0, ,) =W, (2, 2») and w2 is uniformly continuous, we have

%‘l‘n_y,lPSwz(l'n)_wz(yn)4’0 as n — oo, (B.4)
By (B.2), (B.3) and (B.4), extracting a subsequence, we deduce that

(xn, y,) > (2, 2)€(a, b)* as n — . (B.5)

Now, by (B.5), we may consider (£», y,)€(a, b)*. By Ishii’s lemma (Crandall, Ishii and Lions
[5]), there exist X, Y€ R such that
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(n(xn—y,), X)eT* wi(xn),
(n(xn—y,), YVET w:(y,), (B.6)

<X 0 > < 1 —1)
<3n
0 —-Y -1 1
where ]_“, 7 respectively denote the second-order superjets and subjets. From the equivalent definition

of viscosity solutions, it follows that

2 ~
BWI(xn)S max {%L JC”X"FLI ‘x ( n_l/n)}_axﬂn(xn_y,1)+U(Irz, n(Irz_y,I)),

A<L=1

2 ~
ﬂwz(y,l)ZAlZl}'di(l{%Lzy,,X‘l“Ll ayn (x’liyﬂ)}iaynn(xﬂiyn)+U(ynx ”(x”iyn)y

Thus

Blw: (xn)—w2(y, )} < max {—Lz(an yY)+ Lz —yd)n(xn—y,))

A<sL<1

_5n(x” — Y )ZJ’_ U(x’ly n(x” —Yn ))_U(yn’ n(x” — Y ))

S%(an v2Y) +n(xs—yi )2 —y,)

+ N(x”y (x” y}l))_[](yrzy n(x”_yn))-
By (B.4) and (B.6), we get

o2 2 ;
2 (x}lX Z/»fY) 30‘274 (I’l — Y )ZH O,

n(xi—ys)(xn—y, ) <maa* ' (xn—y,)* >0 as n —oo.
Moreover, by (3.3), (A.5), (B.4) and (B.5)

Ulxn, n(xn—y,))—Uly,, n(x.—y,))< max |Ulexs)—Uley, )| +nlx. —y,

O<c<t
< Cp ‘xn —Y, ‘+,0+7’l|.xn —Y, ‘2_’ 0

as n —oo then o —0.
Therefore, by (B.2) and (B.5), we deduce that
O<w< wl(i‘)fuu(i‘)g 0,

which is a contradiction. Interchanging w1 and w2, we obtain W1 = Wz,
Lemma B.2 Assume (2.4). Then there exists a unique solution w € C*(a, b)NCla, b] of (B.1).

Proof. For each L, ¢ €[0, 1]1nQ, denote ©=(L, ¢). We define
Fg(k,z,p,r):—Bz+{%L202k2r+L1*“k”p}—8kp+{U(ck)—cxp},

(k, 2z, p, r)e(a, b) xR
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Then F* has the following properties :
F.1: (2 p, r)—F%(k, 2, p, 7) : convex,
F.2: z — F°(k, 2, p, ) : nonincreasing,
F.3: 0<(Aca)*/2<Ff<(ab)?*/2
F.4:|F/|, [F2\ [Fg L [F, L [Fel< C
F.5: [F/ [Fgl< C(1+[pl+]7]),
where the constant C > 0 is independent of @(%, 2, p, 7).
According to Gilbarg and Trudinger [10, Thm. 17. 18], there
we C?(a, b)nCla, b] of

Sl;lpr(k, w, w, w’)=0 in (a, b),
w(a)=V(a), w(b)=V(b),

which is equivalent to (B. 1).

Proof of Theorem 3. 4

exists a unique solution

By Lemma B.2, w € C*(a, b)nCla, b] is a viscosity solution of (B.1). By Theorem 3.3, V is a

viscosity solution of (B.1). By Lemma B.1, we have w =V on [a@, 0]. Therefore, we deduce

Ve C2(0, o). The proof is complete.

Appendix C : Proof of Theorem 3.5

Before going into the proof of the theorem, we prepare the following lemma. Let v € C*(0, o0) be

the nonnegative nondecreasing solution of (3.2) and 7, ¢ denote IT, ® of (3.7) and (3.8) with v

replacing V.

Lemma C.1 We make the assumption of Theorem 3.5. Then n(k) is locally Lipschitz on (0, o).

Proof. Define the pairwise disjoint open sets Oi, i =1, 2, ..., 7, by

(F>0: A" <g(k)<1, v"(k)<0},

{k>0:g(k)< A 0" (k)< 0},
:{k>0 g(k)>1, v"(k)<0},

Os=int{k>0:g(k)= A" 0" (k)< 0},

Os=int{k>0:g(k)=1, v”"(k)<0},

Os =int{k>0:0"(k)=0},

O:={k>0:0"(k)>0},

where g(k):=(1—a)k“v’/6’k*(—v") and int denotes the interior of {-}.

O=U1Li=12 ..7,
1€J;

where J; is a countable collection of non-overlapping closed intervals /.

Each Oi can be expressed as

We split the proof into several
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steps.
(1) LetO<a<b be arbitrary. For any I €7, we have

A <g<1,v"<0 on L:=Inla, b]. (c.1)

Substituting (3.7) and (3. 8) into (3.2), we get

,81):%azﬁ(k)zkzv”+7r(k)"“k“v’—8kv’+U(¢(k)k)—¢(k)kv’. (C.2)

Hence

Q :=Bv+okv' —U(p(k)k)+¢ (k) kv’

_1, (=a)kv \yyva o, ((L=@)RV 1 w150 e,/ (c.3)
2 G (—pry) R e ) kv
Also, by (C.1) and (C.2)
QzlazAzkzv"JrAl’“k“v/ 2{lA2a1_1+A1’“}k"v’ 2L+1A1’“ inf {k<v’}>0.
2 27 Alte 2 kel

Multiplying both sides of (C.3) by (—v”)""“"""“/Q | we get

(—v”)(k”)/(lﬂ):[—%dz{1;2(1k"’zv'}w“”)kz-i-{16_2ak”’zv'}“ﬁmlw'k”v']/Q. (C.4)

By (3.8), we note that

(U ) Y w (k) if U'(ck)<v’ (k),
ck otherwise.

——(U(p(R)k)—p(k) kv (k))
|=U ) (k)0 (k) if U'(ck)<v’'(k),
leur(er)—e (k)—ckv” (k) otherwise.

By (C.3), this yields that

sup| Q" (k)]< oo

kel

Differentiating (C. 4), we have

Va

suplo” (k)|< oo,

kel
and thus

suplg’ (k)< co.

kel

Therefore, by (3.7), 7 is Lipschitz on /.
(2) Letli=Inla, b] forI€J;, i=2, 4. By (3.7) and (3.9), 7(k)=A on I;. Thus 7 is Lipschitz
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on 1.

(3) Let I =Inla, b] for I€J;, i=3,5 6,7 By (3.7) and (3.9), 7(k)=1 on ;. Thus 7 is
Lipschitz on /i

(4) Let0<a<hk <k:-<0b. We take a sequence of J; =[a;, b;]1€T; for some 1 €{1, 2, ..., 6} such
that

[ k1, k2]=the closure of U J;,
j=1
where @ = ki if ki €J; and b; = k2 if k2 €J;. By (1)-(3), we have

|7 (ki) =7 (k) =127 (a;) -7 (b < Xz (a; ) —x(b;)]

SZ Cla,- *bj ‘Z C|k1*k2‘
7
for some constant C > 0. Therefore 7 is Lipschitz on [a, b1, and then locally Lipschitz on (0, ©0).

Proof of Theorem 3. 5

We set A(k)=T1(k)" “k“—8k—®(k)k and B(k)=oll(k)k. By (3.7), (3.8) and Lemma C.1,
we observe that A(k) and B(k) are locally Lipschitz on (0, o). Taking into account A(0)= B(0)=0,
we can obtain their locally Lipschitz extensions on R, also denoted by A (%) and B(k). Furthermore,

A(R)|+|B(E)|< ke +0k+eck+|olk
<1+(1+8+¢2+|ol)k if E=0.

Thus, by a standard result on SDEs (Friedman [9]), there exists a unique solution {K; } of (3.13). By the
same calculation as (2.7), we have K" >0 a.s.

Now, in view of (A.3), let the nonnegative, nondecreasing solution » of (3. 2) satisfy
0<v(k)<k+O1, k=0 (C.5)

for some constant ®1 > 0. Applying Ito’s formula to (3.2), by (3.11) and (3.12), we have

e to(K) = v(k)+fte*53{—Bv+(7z(k)""k“—8k—¢(k)k)v’

0

+%627r(k)2kzv”}

t
dsJ% e 5o (K )on (K ) K dWs
.

k=K

= v(k)*l;te’ﬂSU(¢(Ks*)KS*)ds+M¢,

where M: =[5 e #v' (K)o (K, ) K;dWs.  Hence
tATn
E[eﬂg(MT”’U(K,*A,”)]:v(k)—E[/(; e—/fsU(cs*Ks*)ds] (CA6>

for a localizing sequence {7x } of stopping times of {M:} with 72 T 0. By (3.13) and (2.6), we see that

sup E[(K;,,, )?]< oo,

Thus, by (C.5), {e #")v(K;,,, )} is uniformly integrable in 7. Letting n — oo in (C.6), we get
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Ele#o(K )= v(k)~EL[ ¢ #U(c:K: ) ds).
By (C.5) and (2.5)

Ele #v(K/)]<E[e ®(K;+0,)]>0 as t — oo,
Therefore we deduce

v(k):E[Ame’ﬂsU(c;‘K;)ds].
By the same calculation as above, we have

v E[[ e UleK ) ds]

for all (L, ¢)€ A. This yields the optimality of (L", ¢*). We remark that under (C.4), we have v =V
and the uniqueness of (3.2) holds. The proof is complete.
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