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Lignan is a large group of natural products biosynthesized or isolated from many plants,1–4 some of 

them are lariciresinol,5,6 verrucosin,7,8 butyrolactone,9,10 sesamin,11,12 phenprocoumon,13 dihidroguaiaretic acid,14,15 

savinin,16–18 phellinsin19. The isolation, pharmaceutical, synthetic, and chemical research of coumarino-lignans 20–

30and phenylalkylcoumarin-lignan related compounds31–44 have been reported. However, its function in 

agrochemicals has not been known. This research should consider the further metabolism or isomerization of 

usual lignans and clarify the plant growth regulatory activity of coumarin bearing a lignan structure, which is an 

isomer of usual butyrolactone lignan, and anti-phytotoxic fungal β-benzyl-α-benzylidene-γ-butyrolactone with 

the 9,9′-lactone lignan structure. This research focuses on synthesizing γ-butyrolactone and coumarin lignan and 

its biological activities on plant and fungal strains. The E-form of -benzyl--2-hydroxybenzylidene-γ-

butyrolactone could be produced by radical isomerization from Z--benzyl--2-hydroxybenzylidene-γ-

butyrolactone45 even by metabolism in life body. Z-Benzylidene could be converted from 3-(7'-aryl-9'-

hydroxyprop-8'-yl)coumarin through the trans-lactonization. Therefore, this research was conducted with the 

following three main objectives: (1) to synthesize the derivatives of coumarin and benzylidene type lignan; (2) to 

determine the effect of each subtituent in the coumarin ring on the plant growth inhibitory activity; and (3) to 

identify the effects of substituents on the anti-phytotoxic fungal -benzyl--2-hydroxybenzylidene-γ-

butyrolactone with 9,9'-lactone lignan structure.  

A synthesis method of this research is started by synthesizing lactone. Lactones were synthesized by 

stereoselective benzylation of Intermediate-1 followed by reductive gave primary hydroxy group Intermediate 

4. The oxidative cleavage of alkene followed by pyridinium chlorochromate oxidation of the resulting hemiacetal 

gave lactone product Intermediate 5. 
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Scheme 1. Preparation of intermediate 5 (2) 

The aldol condensation of this lactone with 2-benzyloxybenzladehyde using lithium 

diisopropylamide gave aldol product Intermediate-6 as a mixture of -R/-S.  On the other hand, the 

use of potassium bis(trimethysilyl)amide as a base gave predominantly a -S isomer. After conversion 

to styryl lactone Intermediate-7 as a E/Z mixture, debenzylation using BCl3 and re-lactonization by 

treatment with aqueous NaOH followed by diluted aq. HCl gave mixture of E-2-hydroxybenzylidene 

butyrolactone derivative and coumarin-lignan structure. The syntheses of 4-methoxy derivatives were 

started from the aldol condensations of (R)-3-(4-methoxybenzyl)-4-butanolide with benzylated 

salicylaldehyde derivatives bearing different substituents to give the final product of this scheme 2.  

 

Scheme 2. Syntheses of coumarin derivatives and E-2-hydroxbenzylidene butyrolactones 
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Scheme 3. Syntheses of 9’-derivatives of 3-(7'-aryl-9'-hydroxyprop-8'-yl)coumarin-lignan  

In this Scheme 3, the primary hydroxy group of 22 was removed by the conversion to mesylate, 

followed by treatment with NaI and Zn to give dehydroxy derivative 85 (59%) (Scheme 4).  In this 

reaction condition, the rearrangement product 86, in which the 3-position of coumarin is bound to the  

9'-position of the phenylpropyl46 group, was obtained (9%). The primary hydroxy group of 22 was also 

converted to methyl ether 87 (30%) by treatment with Ag2O and CH3I in DMF along with Z-styryl 

lactone 88 (48%) bearing 2-methoxyphenyl group. The other derivatives were synthesized according to 

this synthetic method with modification. 

 

Scheme 4. Syntheses of E-benzylidene butyrolactone derivatives 

The E-2-methoxybenzylidene 92 and ent-92 were prepared by methylation using CH3I and 

Ag2O from phenol 40 and ent-40, respectively. The chemical shift of E-benzylidene olefinic proton of 

92 was resonated at lower field (7.98 ppm) than Z-benzylidene olefinic proton of 88 (7.45 ppm).10,18 The 
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NOE between synthesized E-benzylidene olefinic proton and benzylic proton was not observed. The E-

2-butoxybenzylidene 103 was prepared from 40.  The 2-dehydroxybenzylidene 104 was prepared by 

conversion of phenolic benzylidene 40 to trifluoromethanesulfonate, followed by treatment with 

Pd(PPh3)2Cl2, LiCl, and HCO2NH4. The enantiomeric compounds up to compound number 142 are 

synthesized using the same procedure as these schemes with a different starting material.  

The plant growth regulation activities of our synthesized compounds were evaluated using 

Italian ryegrass and Lettuce seedling. A sheet of filter paper (diameter = 90 mm) was put in a 90 mm 

Petri dish and wetted with 500 μL of test sample solution dissolved in acetone. After the filter paper had 

dried, 3 mL of water was poured into the dish to adjust the final concentration from 1000 to 200 µM. 

Thirty seeds of each plant were placed on the filter paper, and the Petri dishes were sealed with parafilm. 

The Petri dishes were then incubated in the dark at 20°C. The lengths of roots and shoots were measured 

after 5 days for Italian ryegrass seedlings by using an ordinary ruler. The shoot and root lengths of the 

control were 2 and 3 cm for Italian ryegrass seedlings, respectively. Experiments were performed in 

triplicate for each sample at 1000 to 100 µM. The data are presented as percentage differences from the 

control, respectively. 

The plant growth inhibitory activity of 3-(7'-aryl-9'-hydroxyprop-8'-yl)coumarin, which is a 

structural isomer of a popular butyrolactone type lignan biosynthesized by plants, was shown for the 

first time. The R-configuration in the 7'-aryl-9'-hydroxyprop-8'-yl moiety was more effective than S-

configuration. Especially, the stereospecificity was observed in the growth inhibitory test against lettuce 

shoots and roots. The derivatives bearing R-configuration was stereoselectively synthesized in this 

research. It was shown that the hydroxy group at the 9'-postion was important for the activity. Among 

the aryl derivatives, the most effective derivatives against ryegrass roots were 3'-methoxy, 4'-methoxy, 

and 4'-trifluoromethyl derivatives 21, 22, 34 (IC50 = 0.22-0.26 mM). The activities against ryegrass 

shoots were not observed. On the other hand, 2'-methoxy derivative 20 was most potent against lettuce 

shoots (IC50 = 0.34 mM) and 4'-methoxy derivative 22 was most effective against lettuce roots (IC50 = 

0.36 mM).   

Derivatives of a lignan-type coumarin bearing a phenylpropanoid unit at the 3-position 22-68 

were synthesized to clarify the effect of each substituent in the coumarin ring on the plant growth 

inhibitory activity. No remarkable growth inhibitory activity against the shoots of either lettuce or Italian 

ryegrass seedlings was observed. For lettuce roots, the growth inhibitory activity of the 8-OCH3 
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derivative 56 was 1.6-times higher than the compound without substituents 22. The activities of the other 

derivatives were lower against lettuce roots. For Italian ryegrass roots, the 5-CH3 derivative 61 had the 

highest activity among the 5-substituted derivatives, suggesting that a hydrophobic group at the 5-

position is advantageous. No activity was found for the 6-substituted derivatives. Of the 7-substituted 

derivatives, only the 7-OCH3 derivative 55 was potent, displaying the same level of activity as the 

compound without substituents 22. As for the 8-position, the hydrophobic electron donating group was 

suggested, thus the 8-OCH3, 8-CH3 derivatives 56, 64 were more effective. This is the first report on the 

effect of substituents at each position from the 5-position to the 8-position on a coumarin ring with 

phenylpropanoid unit. 

The antifungal assay of our synthesized compounds was evaluated using A. alternata15,47–54 

Japanese pear pathotype and C. lagenarium55. Thirty microliters of dimethyl sulfoxide solution 

containing each test compound was added to 3 mL of PDA at 50°C, followed by rapid mixing, and the 

resultant mixture was poured into a Petri dish (diameter 50 mm) to prepare the PDA agar plate containing 

the test compound. Dimethyl sulfoxide without any test compound served as the negative control. After 

inoculating each strain on the center of the PDA agar plate and incubation at 28°C for 3 days for A. 

alternata and A. citri and for 5 days for C. lagenarium, respectively, the diameter of the mycelial colony 

was measured with a caliper. All assays were performed in triplicate. 

The previous research showed that butane-type15,56 lignan and tetrasubstituted 

tetrahydrofuran57,58 lignan with the phenolic group have significantly different activity against Alternaria 

alternata. Alternaria alternata is a pathogenic fungus47–54,59 caused black spots and other diseases on many 

plant variants including Japanese pear, tomato, and rice. The recent experiment introduced a new type 

of lignan without any hydroxy group for Alternaria alternata Japanese pear pathotype and Colletotrichum 

lagenarium55 antifungal tests. 

The regiospecific and enantiospecific antifungal activities of -benzylidene--benzyl--

butyrolactone were found out, 3R-E--benzyl--benzylidene compound 92 showing higher activity than 

Z-form and S-configuration. The importance of 2-OCH3 group and the double bond of benzylidene 

structure for the increased activity was confirmed by the syntheses of the compounds without 

benzylidene structure or 2-OCH3 group. The more effective compounds were searched by syntheses and 

biological assay of the novel derivatives bearing different substituents on the two aromatic rings. The 

more effective antifungal derivatives were (2-OCH3, 4'-CH3)-derivative 96, (2-OCH3, 4'-CF3)-derivative 
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102, (2-OCH3, 6-CH3, 4'-OCH3)-derivative 112, (2-OCH3, 6-F, 4'-OCH3)-derivative 116, and (2-OCH3, 

6-Br, 4'-OCH3)-derivative 120, whose EC50 values were 0.1-0.3 mM against A. alternata Japanese pear 

pathotype. It was assumed that some size of the hydrophobic group at 4'-position on the benzylic 

aromatic ring and hydrophobic group at 6-position on the benzylidene aromatic ring would accelerate 

the activity. The remarkable activities were not found against C. lagenarium, only 3-CH3 derivative 109 

showed weak activity against C. lagenarium (EC50 = 240 mM). Some effective derivatives 102, 112, 

116, and 120 were subjected to the tests against other Alternaria species. Although the remarkable 

activities were not observed, (2-OCH3, 4'-CF3)-derivative 102 and (2-OCH3, 6-CH3, 4'-OCH3)-

derivative 112 showed EC50 values of 150 mM and 145 mM, respectively, against Alternaria citri. The 

species-specific antifungal effects against A. alternata Japanese pear pathotype were clarified.       

This research developed outstanding antifungal lignans of -benzyl--benzylidene--

butyrolactones without a phenolic group that was more potent than previously synthesized 

tetrahydrofuran type lignan with phenolic and electron withdrawing groups.57 The more selective 

toxicity against A. alternata was also observed in benzylidene compound. This is a first report on the 

antifungal benzylidene with lignano-9,9'-lactone structure biosynthesized by some plants.1   
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