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                            Abstract

   The purpose of the paper is to determine the multiplicity of the indecomposable summand

L(k) for the classifying spaces of elementary abelian P-groups.

  1. Introduction

   Let B(ZIP)" be the classifying space of an elementary abelian P-group (ZIP)". We con-

sider the complete stable wedge decomposition of B(ZIP)"..

   In [3], Harris and Kuhn showed that the homotopy classes of the indecomposable sum-

mands of such decomposition are in one-to-one correspondence with the isomorphism

classes of irreducible Fp[M.(ZIP)]-modules, and a given homotopy type appears with the

multiplicity equal to the dimension of the corresponding irreducible module.

   In [4], we calculated the multiplicity of certain indecomposable summands in the com-

plete stable decomposition of B(Zlp)"..

   Let L(k) be the indecomposable summand of B(ZIP)le+ associate to the Steinberg

module.

   The purpose of the paper is to determine the multiplicity of L(k) in the complete stable

decomposition of B(ZIP)"+. The main theorem is Theorem 3.4.
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   In section 2, we review general results of stable splitting and multiplicity of stable sum-

mands. In section 3, we determine the multiplicity of L(fe).

  2. Multiplicity of stable summands.

   Let P be a prime number and M.(ZIP) the semigroup of all nÅ~n matrices with entries

in Z/p.

   A p-regular Partition, cr, is a sequence (ai, cr2,..., cr.,...) of non-negative integers such

that OSai-cri+i:{:P-1 for all i->1. The number of posibive entries in a P-regular partition

cr is called the length of cr, and we write l(or) for it. Then there are P" such partitions with

length s:n. Put icr =:cri +cr2+`''+cri(ce)•

   Let Wcr(n) be the Weyl module (Fp[M.(ZIP)]-module) associate to P-regular partition

cr of lengthE{n. Let F"(n) be the top composition factor of Wor(n). Then {.Fcr(n) ia is aP-

regular partition of lengthE{n} is a complete set of irreducible Fp[M.(Z/P)]-modules. For

detail, see [5] and [3].

   Harris and Kuhn [3] showed that the homotopy classes of the indecomposable sum-

mands of B(ZIP)"+ are in one-to-one correspondence with the isomorphism classes of ir-

reducible Fp[M.(ZIP)]-modules.

   Let X. be the indecomposable summand of B(Z!P)"+ associate to I7cr(n). Let m(X., n)

be the multiplicity of X. in the complete stable splitting of B(ZIP)"..

   Then by Harris-Kuhn [3], we have '

   Theorem 2.1. The maltiplicity of X. in B(Zlp)". is

                                 '       m(X., n) ==dim Fcr(n). • .
   Since the Weyl module vacr(n) is not always irreducible, it is difficult to compute the

multiplicity m(X., n). In a special case we have :

   Theorem 2.2. If the Waylmodule VVcr(ia ) is irreducible then MZcr(n) is irreducible for

n21(a) .

   To prove the theorem we need the following propositions.

   Proposition 2.3. [3, 4] There are non-negative integers s(cr, i) fori->O such that

   (1) s(cr, i)>O zf and only zf' l(cr)f{i-< cri, and

   (2) 'm (X., n) = ,::, (7. )s (a, i) for nl}i o.

   In a similar way we can easily prove the following :

   Proposition 2.4. There are non-negative integers s'(cr, i) for i->O szach that
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   (1) s'(cr, i) >O i and only zf l(cr)Si-< La[,

   (2) O-<s(cr, i) E{ls'(a,'i) fori->O, and

   (3) dim VVicr(n)=,Z:,(7.)s'(a, i) forn}io.

   Proof of Theorem 2.2. Since Ma(Icr1) is irreducible, we have

   dim vv,cr(i.i)-,zilg(iz.i[),r(., i) =lg(i(}.{i),(., i).

       '
   Therefore, by the above propositions, s'(cr, i) =s(cr, i) for i->O. This implies dim IIicr(n)

==dim Fcr(n), hense the theorem holds.

  3. Multiplicity of L(k)

    Let L(le) be the indecomposable summand of B(ZIP)k+ associte to the P-regular parti-
  '
tion cr(le)= (le(P-1), (le-1) (P-1),...,2(P-1), P-1). For detail, see [6] and [3].

                                                         '               '             '
   Theorem 3.1. [6] The multiplicity ofL(le) in B(Zlp)k. is

      m (L (fe) , fe) = dim Wcr (le) (fe) =p (S) .

   In order to compute the multiplicity m(L(le), n) of the indecomposable summand L(le)

in B(ZIP)"+ for lef{n, we use the following properties of the Weyl module Wa(h)(n).

   Proposition 3.2. The dimension of the Weyl module Wcr(k)(n) is

      dim wav(k)(n)-,ti., el•p'i!i"(.-i4EliltPi))!!•

                                                                        '   Proof It is an immediate consequence from Corollary 8.1.17 of James-Kerber [5].
                                                                         '

   Proposition 3.3. The Weyl module VIZa(le)(n) is an irreducible module, that is

       Wcr (le) (n) =Fcr(le) (n) .

   Proof. Since associated Young diagram [a(le)] of cr(le) has no P-hooks, its P-core is

[a(k)]. Therefore, Theorem 2.19 of Carlisle [1] implies the proposition.

   By the above two propositions, we have the following theorem and corollary :

   Theorem 3.4. The multiplicily ofL(k) in B(Z/p)". is

      m(L(k), n) -t/.i{, ell'!iÅéikkA ;tPi')!!•

   Corollary 3.5. ForP=:2, the multiplicity ofL(k) in B(Z12)". is

      M (L (le) , n) = tlC.[, (2i -ii) n (" L le 1. 1+2i) .
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