Multiplicity of $L(k)$ for the Stable Decomposition of $B(\mathbf{Z} / \boldsymbol{p})^{n}$

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

Koichi Hirata
Department of Mathematics, Faculty of Education, Ehime University, Matsuyama, 790 Japan
(Received April 20, 1993)

Abstract

The purpose of the paper is to determine the multiplicity of the indecomposable summand $L(k)$ for the classifying spaces of elementary abelian p-groups.

1. Introduction

Let $B(\mathbf{Z} / p)^{n}$ be the classifying space of an elementary abelian p-group $(\mathbf{Z} / p)^{n}$. We consider the complete stable wedge decomposition of $B(\mathbf{Z} / p)^{n}$.

In [3], Harris and Kuhn showed that the homotopy classes of the indecomposable summands of such decomposition are in one-to-one correspondence with the isomorphism classes of irreducible $\mathbf{F}_{p}\left[M_{n}(\mathbf{Z} / p)\right]$-modules, and a given homotopy type appears with the multiplicity equal to the dimension of the corresponding irreducible module.

In [4], we calculated the multiplicity of certain indecomposable summands in the complete stable decomposition of $B(\mathbf{Z} / p)^{n}{ }_{+}$.

Let $L(k)$ be the indecomposable summand of $B(\mathbf{Z} / p)_{+}^{k}$ associate to the Steinberg module.

The purpose of the paper is to determine the multiplicity of $L(k)$ in the complete stable decomposition of $B(\mathbf{Z} / p)^{n}{ }_{+}$. The main theorem is Theorem 3.4.

In section 2, we review general results of stable splitting and multiplicity of stable summands. In section 3, we determine the multiplicity of $L(k)$.

2. Multiplicity of stable summands

Let p be a prime number and $M_{n}(\mathbf{Z} / p)$ the semigroup of all $n \times n$ matrices with entries in \mathbf{Z} / p.

A p-regular partition, α, is a sequence ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$) of non-negative integers such that $0 \leq \alpha_{i}-\alpha_{i+1} \leq p-1$ for all $i \geq 1$. The number of posibive entries in a p-regular partition α is called the length of α, and we write $l(\alpha)$ for it. Then there are p^{n} such partitions with length $\leq n$. Put $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{l(\alpha)}$.

Let $W^{\alpha}(n)$ be the Weyl module ($\mathbf{F}_{p}\left[M_{n}(\mathbf{Z} / p)\right]$-module) associate to p-regular partition α of length $\leq n$. Let $F^{\alpha}(n)$ be the top composition factor of $W^{\alpha}(n)$. Then $\left\{F^{\alpha}(n) \mid \alpha\right.$ is a $p-$ regular partition of length $\leq n\}$ is a complete set of irreducible $\mathbf{F}_{p}\left[M_{n}(\mathbf{Z} / p)\right]$-modules. For detail, see [5] and [3].

Harris and Kuhn [3] showed that the homotopy classes of the indecomposable summands of $B(\mathbf{Z} / p)_{+}^{n}$ are in one-to-one correspondence with the isomorphism classes of irreducible $\mathbf{F}_{p}\left[M_{n}(\boldsymbol{Z} / p)\right]$-modules.

Let X_{α} be the indecomposable summand of $B(\mathbf{Z} / p)_{+}^{n}$ associate to $F^{\alpha}(n)$. Let $m\left(X_{\alpha}, n\right)$ be the multiplicity of X_{α} in the complete stable splitting of $B(\mathbf{Z} / p)^{n}$.

Then by Harris-Kuhn [3], we have

Theorem 2.1. The multiplicity of X_{α} in $B(\mathbf{Z} / p)^{n}{ }_{+}$is

$$
m\left(X_{a}, n\right)=\operatorname{dim} F^{\alpha}(n)
$$

Since the Weyl module $W^{a}(n)$ is not always irreducible, it is difficult to compute the multiplicity $m\left(X_{\alpha}, n\right)$. In a special case we have :

Theorem 2.2. If the Weyl module $W^{\alpha}(|\alpha|)$ is irreducible then $W^{\alpha}(n)$ is irreducible for $n \geq l(\alpha)$.

To prove the theorem we need the following propositions.

Proposition 2.3. [3, 4] There are non-negative integers $s(\alpha, i)$ for $i \geq 0$ such that
(1) $s(\alpha, i)>0$ if and only if $l(\alpha) \leq i \leq|\alpha|$, and
(2) $m\left(X_{\alpha}, n\right)=\sum_{i=0}^{n}\binom{n}{i} s(\alpha, i)$ for $n \geq 0$.

In a similar way we can easily prove the following :

Proposition 2.4. There are non-negative integers $s^{\prime}(\alpha, i)$ for $i \geq 0$ such that
(1) $s^{\prime}(\alpha, i)>0$ if and only if $l(\alpha) \leq i \leq|\alpha|$,
(2) $0 \leq s(\alpha, i) \leq s^{\prime}(\alpha, i)$ for $i \geq 0$, and
(3) $\operatorname{dim} W^{\alpha}(n)=\sum_{i=0}^{n}\binom{n}{i} s^{\prime}(\alpha, i)$ for $n \geq 0$.

Proof of Theorem 2.2. Since $W^{\alpha}(|\alpha|)$ is irreducible, we have

$$
\operatorname{dim} W^{\alpha}(|\alpha|)=\sum_{i=0}^{|\alpha|}\binom{|\alpha|}{i} s^{\prime}(\alpha, i)=\sum_{i=0}^{|\alpha|}\binom{|\alpha|}{i} s(\alpha, i) .
$$

Therefore, by the above propositions, $s^{\prime}(\alpha, i)=s(\alpha, i)$ for $i \geq 0$. This implies dim $W^{\alpha}(n)$ $=\operatorname{dim} F^{\alpha}(n)$, hense the theorem holds.

3. Multiplicity of $\boldsymbol{L}(\boldsymbol{k})$

Let $L(k)$ be the indecomposable summand of $B(\mathbf{Z} / p)_{+}^{k}$ associte to the p-regular partition $\alpha(k)=(k(p-1),(k-1)(p-1), \ldots, 2(p-1), p-1)$. For detail, see [6] and [3].

Theorem 3.1. [6] The multiplicity of $L(k)$ in $B(\mathbf{Z} / p)_{+}^{k}$ is

$$
m(L(k), k)=\operatorname{dim} W^{\alpha(k)}(k)=p^{\left(\frac{k}{2}\right)} .
$$

In order to compute the multiplicity $m(L(k), n)$ of the indecomposable summand $L(k)$ in $B(\boldsymbol{Z} / p)^{n}$ for $k \leq n$, we use the following properties of the Weyl module $W^{\alpha(k)}(n)$.

Proposition 3.2. The dimension of the Weyl module $W^{\alpha(k)}(n)$ is $\operatorname{dim} W^{\alpha(k)}(n)=\prod_{i=1}^{k} \frac{p^{i} i!(n-k-1+i p)!}{(i p)!(n-k-1+i)!}$.
Proof. It is an immediate consequence from Corollary 8.1.17 of James-Kerber [5].

Proposition 3.3. The Weyl module $W^{\alpha(k)}(n)$ is an irreducible module, that is

$$
W^{\alpha(k)}(n)=F^{\alpha(k)}(n) .
$$

Proof. Since associated Young diagram $[\alpha(k)]$ of $\alpha(k)$ has no p-hooks, its p-core is $[\alpha(k)]$. Therefore, Theorem 2.19 of Carlisle [1] implies the proposition.

By the above two propositions, we have the following theorem and corollary :
Theorem 3.4. The multiplicity of $L(k)$ in $B(\mathbf{Z} / p)^{n}+$ is

$$
m(L(k), n)=\prod_{i=1}^{k} \frac{p^{i!}!(n-k-1+i p)!}{(i p)!(n-k-1+i)!} .
$$

Corollary 3.5. For $p=2$, the multiplicity of $L(k)$ in $B(\mathbf{Z} / 2)_{+}^{n}$ is $m(L(k), n)=\prod_{i=1}^{k} \frac{i!}{(2 i-1)!!}\binom{n-k-1+2 i}{i}$.

Koichi Hirata

References

[1] D.P. Carlisle, The modular representation theory of $G L(n, p)$, and applications to topology, Ph. D. thesis, University of Manchester, 1985.
[2] D. P. Carlisle and N. J. Kuhn, Smash products of summands of $B(\mathbf{Z} / p)_{+}^{n}$, Algebraic Topology, Contemporary Mathematics, vol. 96, AMS, 1989, 87-102.
[3] J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian p-groups, Math. Proc. Camb. Phil. Soc., 103 (1988), 427-449.
[4] K. Hirata, On the multiplicity of indecomposable stable summands for the classifying spaces of elementary abelian p-groups, Mem. Fac. Educ. Ehime Univ., Nat. Sci., 11 (1991), 1-11.
[5] G. James and A. Kerder, The Representation Theory of the Symmetric Group, Encyclopedia of Math., vol. 16, Addison-Wesley, 1981.
[6] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology, 22 (1983), 285-298.

