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Abstract

If Fermat's equation a' +8+74= 0, gcd.(afy, 0) = 1 has solutions, then a criterion is
given, where «, B, 1 ave integers of a certain algebraic number field.

1. Introduction

Following notations will be used :

Let £ be a fixed odd prime unmber, 2=Q ({) be the cyclotomic number field defined
by {=exp(2ri/l ), E be an algebraic number field such that its degree is #, g.c.d.(n, {)
= 1 and its discrimiant is prime to £ . Moreover let K=kE, A=1—{ the prime ideal in £
dividing ¢, and

d*log M(e?)

_dvllog M(e?) +M(l)—l
dv*

(@=1, -, 0—2),1,_,(M)= do b1 0

v=0 =0

1,(M) =

Kummer’s logarithmic differential quotients of M.
Now, Fermat’s cubic over quadratic number fields studied by R. Fueter[3], W. burn-
side[2], A. Aigner[1] and others. And they established many beautiful theorems.
In this paper we shall investigate general Fermat’s equation
ey al+Bt+7rt=0, gc.d.(afy, ) =1,
where «a, 8, 7 are integers of K.
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2. The case of cyclic number field E

In this section let { be a prime ideal or completely decomposed in E.
The purpose of this section is to prove following theorem which is a generalization of
Vandiver’s theorem[7].

Theorem 1. Suppose that theve exist numbers ¢; (i=1, -, n—1) of K such that
(@) principal ideal (¢;) is 0 th power of an ideal in K,
(b) =1 (mod. (),
(¢) & - g7=1 (mod. L2) if and only if ;=0 (mod. 0) for all i=1, -, n—1,
(d) Neg=1 (mod. £ 2), where N denotes the relative norm with vespect to K/k.
Besides, if Fermat's equation (1) has solutions, then we have
fo@BSel (., (M)}=0 (mod. 0), a=2, -, § — 2
and
Fi-1@=0 (mod. ¢),
where
-1
fi)= m; meltm,
a=ay, B=Po, r=70 (mod. 1) (ag, By, 7o ave integers of E), Sg is the absolute trace from E, {
denotes a rational integer (We ave able to take it so.) such that
—tE&, & @, Lo % 0 T0 (od. g),
ao’ Bo’ 1o Po To Qo
and M=1 (mod. 1) such that the principal ideal (M) is 0 th power of an ideal in K.

In order to prove theorem 1 we need following lemmas.

Lemma 1. Let { be a prime ideal in E, and assume that a; (i1=1, -+, m) are elements
of E, such that the determinant det(a}’j) 1s congruent to 0 modulo (, where i=1, ---, m, j=0,
-, m—1 and o is a genevator of the Galois group with respect to extention E/Q. Then oy, -,
a,, ave linear dependent over the residue field ZIUZ (Z denotes the ring of rational infegers.)
and the reverse is frue.

Proof. We may assume that g.c.d.(e;, §) =1 (¢=1, -, m). We will prove above lem-
ma by induction on m. Let m=1 then the above is ovbious. ‘Next assume that above is true
for m—1. And we put a;=a8;—; (=2, ---, m), then det(ﬁfj) =0 (mod. () with gy=1, so
that we have det(r;’j)EO (mod. ) (=1, -, m—1:j=0, ---, m—2), where 7,=5; — B:
Now if 7,=0 (mod. £ ), then we have a;.1=cq; (mod. () for some rational integermc_,lor
if gcd. (7, £) =1 (=1, ---, m—1), then we have from the hypothesis of induction D, ¢;
7;=0 (mod. {) with some rational integers ¢; (=1, ---, m—1) and some ¢; is noti=clor1-
gruent to 0 modulo £. This concludes the proof. The revese is obvious.
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Following lemma is obvious.

Lemma 2. Let { be completely decomposed in E, and assume that «; (1=1, -+, n—1)
are elements of E, such that the determinant det (a?j) is congruent to 0 modulo £ and Sp(a;)
=0 (mod. (), where i=1, -, n—1, j=0, -, n—2, ¢ is the same meaning as m lemma 1
and ¥ is a prime ideal in E dividing (. Then oy, -+, a, 1 are linear dependent over the
residue field Z/1Z.

Lemma 3. With the same assumptions as in above theorem we have
8°=4 (mod. 2)
where §=p/(a+B) and ¢ is the same meaning as in lemma 1.
Proof. We put A= (a+{p)/(a+8)=1—051, then we have from Hasse[4]

t—1
Sk {Z (=1el, (¢ 1,_, (A); =0 (mod. 1),
a=1

so that
Sele;(1)6(1)}=0 (mod. 1),
where ¢,=1+¢; § (a;=a;({)). Therefore we have

n—1 . X
> (1) §(1)7’=0 (mod. ), i=1, -, n—1.
7=0

n—1

Now, if X ¢;a;(1)=0 (mod. £), then
=1

n—1
e e i=11 A+eal) =1 (mod. L4),
i<l
where ¢; are rational integers. By the condition (c) we have
G==¢,.1=0 (mod. ().
Hence we have from lemma 2, 3

0°=45 (mod. 1).
Next lemma is due to Morishima[6].

Lemma 4. Suppose that «, p are inlegers of K and g.c.d.(a+p8, 0) = 1. Then we
have

1<‘i{+—$>s§) ivx,, (e, B (mod. 1),
(a=1, -, 4 — 2;i=0,1, ---, L — 1)
where x,,(a, B) is an integer of E and independent of i.
Moreover if
a=ag P=p; (mod. 1),
then we have
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xa,a(a’ ﬁ>51a<%§£}0> (mOd Q)

(e=1, -, L —2)
where wy, By are integers of E.
Proof. We have

1Q<M>:[_i % (1_61,”)”}@

a+18 n=1 =0
— J— o 5( v)n < J— Fp 170 (a)
_[ o ;0 C(—Drei LO
:;) Z Z L [5@”)”];41 OS):

. Hence we have

where [f(e?) ];’ﬁi)z

1q<“+w>zi i 2., (a, §) (mod. 1),
v=>0

Since

1<0‘°+Cﬁ°> 1, 1—5(1)2)

ao T Bo
E[_ i 5(;);1 (1_ev)n}<a>

v=0

1
=3 AT S 1) e (mod. ©)
r=0

we have

agtLBo\
1”< 030+500>_xa,a(“, B) (mod. 0).

We now are able to prove theorem 1.
Proof of theorem 1. Let

atlB g . g
A_a+ﬁ (=0, -, £ — 1).

Then we have from Hasse[4]
01

Y (Dl A1, (M)} =0 (mod. L),
a=1
where S=({ — {”) is the substitution and 7 is a primitive root of mod. §. And hence

£—1

Y, 79 Spl(= D7 L(A)1 - (M)} =0 (mod. 0),

accordingly
Se{l, A1, _,(M)}=0 (mod. 0), a=1, -, § — 1.

We also have from lemma 4
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a

> i Spixg, (e, Bl (M) }=0 (mod. £)

v=0
(a=1, -, L —2; =0, -, 0 — 1)
and hence
Seixa,(a, B) 1, (M)}=0 (mod. £).
(@=1, -, § — 2;v=0, -, a)
In particular we have
Sglx,, (a, ) 1,_, M)}=0 (mod. {)
and from lemma 4
Sg {h(%ﬁﬁ t—a (ﬂ/f)} =0 (mod. £).
Hence we have from lemma 3 and Hasse[5]
LSl -, M}I=0 (mod. £), a=2, -, 4 — 2.
Now, we have from Fermat’s relation (1)
agt+Bot+ro=0 (mod. )
and
(ag+B0) ‘= a¢+p¢ (mod. £2).
Hence
fo 1()=0 (mod. ).

3. The case of Abelian number field E

In this section with E we denote an absolute Abelian number field such that the in-
variant of Galois group with respect to E/Q is {ny, ---, #,} (n;,_11#n;, 1=2, .-+, ) and (¢(n7"1),
) =1, where ¢ denotes Euler’s function.

Lemma 5. If E=EE, then let | be a prime ideal or completely decomposed in E;
(t=1, ---, ). And suppose that there exist numbers ¢(i, j;) G;=1, -, m;—1) in each composite
Jfields RE; such that

(a) the principal ideal ¢ (i, j;) is  th power of an ideal in kE; ,

(b) €(i, 75=1 (mod. 0),

() e, D¢, m)*=1 (mod. (2) (where m=m,~1) if and only if ¢;=0 (mod. ()

Jor all =1, ---, m,

(d) Ni(i, 7)=1 (mod. (1),
where E;, E; , N; denote the cyclic number field with degree n;, any subfield with degree m; of E;
and the relative norm with respect to kE; Ik, respectively. Besides, if Fermat’'s equation (1) has
solutions, we have

=5 (mod. £,

where =0/ (a+p) and ¢ denotes any element of Galois group with respect to E/Q.

Proof. We shall prove the above by induction on degree n. Let n=1, 2, then we have
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the above by lemma 3. Now, assume that lemma 5 is true from 1 to #—1. Then we have

from Hasse[4] and the hyposeses of induction
=1
> '=c (mod. ),
<0

where p, ¢(#1), ¢ denote any prime factor of %, any element with order p of Galois group
with respect to £/Q and a rational integer, respectively. Accordingly, if »=1, we have from
lemma 3 §°=4§ (mod. 1), or if >1, then we have

ik _jk 71 ,D* ik ]k
pa—z 50f+2250 =c¢ (mod. 2)
1,7,k=0 1j=0 k=

where ¢, 7(#1) denote any independent elements (i.e. ¢'7=1 if and only if ¢'=v=1.) with
order p of Galois group with respect to £/Q and ¢ is a rational integer. Hence we have
0°=0 (mod. 2).

By lemma 5 we can prove follwoing theorem.

Theorem 2. Under the same assumptions as in lemma 5 we have the congruences of

theorem 1.

Remark. If [ is completely decomposed over Galois number field E, then we can prove

theovem 1.
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