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   If Fermat's equation cr a + fi e +r a

given, where cr, P, rare integers ofa

  Abstract

= O, g.c.d.(aPr, Åí ) = 1 has solutions,

 certain algebraic number field.

then a criterion is

  1. Introduction

   Following notations will be used :

   Let 2 be a fixed odd prime unmber, k=Q(O be the cyclotomic number field defined

by C=exp(2ni/a ), E be an algebraic number field such that its degree is n, g.c.d.(n, 2)

::= 1 and its discrimiant is prime to 2. Moreover let K=kE, A=1-4 the prime ideal in fe

dividing E, and

i.(M)=daiog d,M,, (eV) .=, (.=i, •--, 2- 2), i,-,(M) =da- h;o,g-\(eV) ,=,+M(iS-i

Kummer's logarithmic differential quotients of M.

   Now, Fermat's cubic over quadratic number fields studied by R. Fueter[3], W. burn-

side[2], A. Aigner[1] and others. And they established many beautiful theorems.

   In this paper we shall investigate general Fermat's equation

  (1) crg+BQ+rg::= O, g.c.d.(crpr, e) =: 1,
where a, P, r are integers of K.
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  2. The case of cyclic number field E

   In this section let a be a prime ideal or completely decomposed in E.

   The purpose of this section is to prove following theorem which is a generalization of

Vandiver's theorem[7].
                                             '                              '

   Theorem 1. SmpPose that there exist numbers e, (i--1, •••, n-1) ofK such that

   (a) Principal ideal (Åíi) is a th Power of an ideal in K,

   (b) Eiil (mod. 2),
    (c) Eiai ••• 6.a-"-ii=-1 (mod. E2) zlf' and only zllC air=O (mod. 2) for all i=1, -••, n-1,

   (d) NEiil (mod. Åí2), where N denotes the relative norm with resPect to Klk.

Besides, zf Fermat's equation (1) has solutions, then we have '
                 fa(t) SE{1 .e-,(M)}['O (mod. 'a), a=2, •••, a- 2

annd

                             fa-i(t) iO (mod. E),

where

                                     a-1
                               fa (t) = Z ma-i tm,
                                     m=1
criiiao, P!Po, riro (mod. 2) (cro, Po, ro are integers ofE), SE is the absolute trace from E, t

denotes a rational integer (We are able to take it so.) such that

                      -t--Åít'• igil• etl• sll• glt• or :t• (mod. 2),

and M=-1 (mod. 2) such that the Principal ideal (M) is g th Power of an ideal in K.

   In order to prove theorem 1 we need following lemmas.

   Lemma 1. Let Åí be aprime ideal in E, and assume that cri (i=1, •-•, m) are elements
of E, such that the determinant det(crf•') is congruent to O modulo a, where i=1, -••, m, 7'=O,

••• , m-1 and o is a generator of the Galois group with resPect to extention EfQ. Then cri, -••,

a. are linear dePendent over the residue field Zl2Z (Z denotes the ring of rational integers.)

and the reverse is trzae.

   Proof. We may assume that g.c.d.(cri, 2) == 1 (i=1, •••, m). We wili prove above lem-

ma by induction on m. Let m=1 then the above is ovbious. Next assume that above is true
for m-1. And we put cri=criB- (i=2, •••, m), then det(P:') =-O (mod. 2) with Po=1, so

that we have det(rg•') =-O (mod. Åí) (i--1, •••, m-1 : 7'=O, •••, m-2), where ri=Pf•-Pi•

Now if r,=-O (mod. 2), then we have cri+i-cai (mod. 2) for some rational integer.c-,ior

if g.c.d.(ri, e) = 1 (i=1, •••, m-1), then we have from the hypothesis of induction Z ci
                                                                           i=1riiO (mod. E) with some rational integers ci (i=1, •••, m-1) and some ci is not con-

gruent to O modulo E. This concludes the proof. The revese is obvious.
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   Following lemma is obvious.

   Lemma 2. Let 2 be comPletely decomPosed in E, and assume that cri (i=1, •••, n-1)
                                          jare elements of E, such that the determinant det(cr:•) is congruent to O modulo Z and SE(ai)

ii!O (mod. a), where ir-1, -J•, n-1, 1'=O, •••, n-2, a is the same meaning as in lemma l

and Z is a Prime ideal in E dividing a. Then cri, •••, a.-i are linear dePendent over the

residue field Z12Z.

   Lemma 3. With the same assumPtions as in above theorem we have

                                6a=-6 (mod. 2)

where ti=Pl(cr+P) anda is the same meaning as in lemma 1.

   Proof. We put A=z (cr+CP)1(a+P) ==1-S2, then we have from Hasse[4]

                 SE (ZS.,i(-1)" la (Ei) 1aN. (A)1 iO (mod. a),

so that .                          SE{ai(1)S(1)}=-O (mod. a),

where Ei=1+ai E (cri=cri(C)). Therefore we have

          ' ' ':t:,i aia)a'6a)o'-=o (mod. a), i=i, •••, n-i.

       n-1
NOW, if ,Z.IliCi cr,(1)!O (mod. a), then

                            n-1
                    eC,i•••ES"[li" (1+ci crie) ii 1 (mod. Åí2),
                            i--1
where ci are rational integers. By the condition (c) we have

                          ci!•••ic.uni=-O (mod. a).

Hence we have from lemma 2 3
                          '
                                sa!6 (mod. 2).

   Next lemma is due to Morishima[6].

haveLeMMa 4' SblPPOSe that cr, Bare integers ofKand g.c.d.(cr+p, Åí) =1. Then we

                                    '
                      ia(cr.++CEP)i,Åí., i'x.,,(cr, p) (mod. a),

                       (a=1, ••-, 2- 2; i=O, 1, -•-, 2- 1)

where x.,,(cr, P) is an integer ofE and inaePendent of i.

   Moreover zf'

                             criiiao, B-Po (mod. 2),

then we have
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                                    '
                        Xa,a(cr, P) iila(craOo++CpBoO) (mOd- E)

                                              '                               (a =1, ---, 2- 2)

where cro, Po are integers of E.

   Proof. We have
         '   1.(a.++4eP)=[-.1:.l, 6(en")" (1-ew)n]ja=',

            =[-.$., 6(en')" ,1.il), .C,(-1)re irv]ia=),

            =,I.:o i'S .$.i.1.illo nCr acs (-1)n'+i rS [s(ev)n]sa=-os),

            (m) "d mf(e v)
where [IC(ev)],..o- dv. . Hence we have
                       v=O
                     i,(a.++CiP)i,S, i' x.,,(cr, p) (mod 2).

Since

la(cr.O,++\P,O)='la (1-6(1)2)

         i[-.;I.ll. i 6(Åí)" (i-ev)n]ia=)o

         !.Åí.ia(S)" ,2.]]o nC,(-1)r'i ra (mod. !)

we have

                       la(cr.O,++CpB,O)!xa,a(a, p) (mod• 2).

   We now are able to prove theorem 1.

   Proof of theorem 1. Let

                         Ai-cri.ZP (i-O, ---, 2- 1).

Then we have from Hasse[4]

                SE le.Z:,i (-1)" le (A9• ')1a-.(A{D) ii O (mod. Åí),

where S= (C -F Cr) is the substitution and r is a primitive root of mod.

                .a-1
                 Åí rai' SE{(-1)a1.(Ai)1g-.(M)}iO (mod. e),
                 a==1
accordingly

               SE{1, (Ai)1 o.-,(M)}!O (mod. a), a=1, -••, 2- 1.

We also have from lemma 4
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                    a                    Z i' SE{Xa,p(cr, P)1c-a(M)}-O (mOd. 2)
                    p=O
                        <a::=1, •••, a- 2; i=O, ••-, E- 1)

and hence

                     SE{Xa,v(cr, B) 1c-a (rm}='O (mod. E).

                          (a=1, •-•, 2- 2; v=O, -••, a)

In particular we have

                     SE{Xa,a (cr, B) lc-a (M)}=-O (mod• 2)

and from lemma 4
                   SE (la(cr.Oo++CpBoO)1 e"a (M)) !i O (mod. 2).

Hence we have from lemma 3 and Hasse[5]

                f,(t)SE{1 cm, (M)}iiO (mod. E), a==2, ••', a- 2.

Now, we have from Fermat's relation (1)

                            cro+Po+ro=-O (mod. e)

and
                        (cre+Po) e- cr oC +P// (mod. 22).

Hence
                            fa-i(t)iO (mod. 2).

   3. The case of Abelian number field E

   In this section with E we denote an absolute Abelian number field such that the in-

variant of Galois group with respect to EIQ is {ni, •••, n,} (ni-i f nb i=2, •••, r) and (g(nrmi),

 g) == 1, where g denotes Euler's function.

   Lemma 5. IfE==Ei•••E. then let 2 be aPrime ideal or comPletely decomPosed in Ei

(i=1, ••-, r). And suPPose that there existnntmbers E(i, 1'i) ir'i==1, •••, mi-1) in each comPosite

fields kEi' such that

    (a) the PrinciPal ideal E(i, ]'i) is 2 th Power of an ideal in leE,',

    (b) 6(i, ]'i)El (mod. 2),

    (c) e(i, 1)ai-••e(i, m)amil (mod. 22) (where m=mi-1) zfand only zf ajiO (mod. 2)

       for all 1'=1, -••, m,

    (d) NiE(i, j'i) il (mod. S2),

where Ei, Ei' , Ni denote the cyclic numberfield with degree ni, any subfield with degree mi ofEi

and the relative norm with resPect to kEi' 1le, resPectively. Besides, i Fermat's equation (1) has

solutions, we have

                               6a!6 (mod. 2),
where 5=Pf(cr+P) and o denotes any element of Galois grouP with resPect to EfQ.

   Proof. We shall prove the above by induction on degree n. Let n=1, 2, then we have
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the above by lemma 3. Now, assume that lemma 5 is true from 1 to n-1. Then we have

from Hasse[4] and the hyposeses of induction

                               P-1 ,
                               Z 6a'=c (mod. 2),

where P, a(;1), c denote any prime factor of n, any element with order P of Galois group

with respect to EIQ and a rational integer, respectively. Accordingly, if r=1, we have from

lemma 3 tia-6 (mod. 2), or if r>1, then we have

                         P-1 P-I P-1                     p6r Z 6a tk T"k+ Z Z 6a 'k T'k iii!c (mod. 2)

                         i,1,k==O iJ'=O k==1
where a, T(-E1) denote any independent elements (i.e. oiTj--1 if and onlY if ai=Tj=1.) with

order P of Galois group with respect to EIQ and c is a rational integer. Hence we have

                                 saiti (mod. 2).

   By Iemma 5 we can prove follwoing theorem.

                  '   Theorem 2. Under the same assumPtions as in lemma 5 we have the congruences of

theorem 1.

                                                            '
   Remark. If a is comPletely decomposed over Galois number field E, then we can Prove

theorem 1.
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