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Abstract

In this paper we introduce alternate proofs of Chvdtal’s Art Gallery Theorem and O’Rourke’s Mobile

Guards Theorem. The main theorems are refined versions of the above theorems.
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1 Introduction

In 1975 Chvidtal [1] proved the following art
gallery theorem. In 1978 Fisk [2] showed a simpler
proof of the theorem.

Theorem 1 Any polygon of n edges can be covered
by L-g—_l vertex guavds.

In 1983 O’Rourke [3] proved the following mobile
guards theorem.

Theorem 2 Any polygon of n=4 edges can be covered
by LZ— | diagonal guards.

In the paper we will state and prove refined
versions of the above theorems. The main results are
Theorem 3 and Theorem 4. For simplicity, we discuss
only combinatorial guards.

A triangulation graph G of a polygon P with n
vertices is a graph obtained by triangulating P with
internal diagonals between vertices. The nodes of G
correspond to the » vertices of P, and the arcs
correspond to the # edges and »—3 diagonals. G has
n—2 triangular faces.
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Define a guard in a triangulation graph G of a
polygon P to be a subset of the nodes of G. Then a
vertex guard in G is a single node of G, and a diagonal
guard in G is a pair of nodes adjacent across any arc
of G. Finally, a collection of guards C={gy,...,g;} is
said to dominate G if every triangular face of G has

at least one of its three nodes in some g;eC.

U1 v

v Gl Gl d G2
Vg U1
a b

Figure 1: (1) n=3k.

2 Chvatal’s art gallery theorem

Theorem 3 Let P be a polygon of n=3 vertices and
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G a triangulation graph of P.

(1) If n=3k, for any given vertex v of G, G can be
dominated by k vertices such that one of them
coincides with v.

(2) If n=3k+1, for any given boundary edge e of
G, G can be dominated by k vertices such that one
of them coincides with an end point of e.

(3) If n=3k+2, G can be dominated by k vertices.

Proof. The theorem is true for =3, so assume
that #>>3, and that the theorem holds for all »" <.

To prove (1), let v be any given vertex of G and
assume n=3k. We will consider possible cases in
turn.

Case la. Suppose there are no internal di-
agonals with one end at ». Let vovv; be the triangle
of G whose one vertex at v, and G; the remainder of
G (see Figure 1a). Since G; has n—1=3(—-1)+2
vertices, it can be dominated by k2 —1 vertices by the
induction hypothesis. Together with single vertex
guard v of triangle vy v,, all of G is dominated by %
vertices such that one of them coincides with the
given vertex v.

Case 1b.
diagonal with one end at ». Let d=vv; be such an

Suppose there is at least one internal

internal diagonal, which partitions G into two graphs
G, and G, (see Figure 1b). Let n;>3 (resp. #,>3) be
the number of vertices of Gi (resp. Gs), and put
n=3k1+n and ny=3ks+7, (0<r,r,<3). Since n=
n+n,—2, we have 3k=3(ki+ky)+r+r,—2. Thus
(r1,72) must be one of (0,2), (1,1) and (2,0). Each will
be considered in turn.

Case 1b.1 ((r1,75)=(0,2)). Since G; has #n;=3k;
vertices, by induction hypothesis it is dominated by
kq vertices such that one of them coincides with ».
Similarly, G, has #n;=3k,+2 vertices, so it is domi-
nated by %, vertices. This yields a domination of G
by ki+k,=k vertices which contain the given vertex
v.

Case 10.2 ((r,r)=(1,1)).  Since n;=3%;+1 and
7n,=3k2+1, by induction hypothesis there is a domi-
nation of G, (resp. Gs) by k; (resp. ky) vertices which
contain one of v and v;. If one of the dominations
contain vertex v, then all of G is dominated by %+
ky=Fk vertices which contain the given vertex v. If
both dominations contain vertex »; simultaneously,
then replace one of w»;'s with v. This yields a
domination of G by k,+ky=Fk vertices which contain
the given vertex v.
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Case 1b.3 ((r,72)=(2,0)).
image of Case 1b.1.

This is the mirror

To prove (2), let e=v1v; be given boundary edge
of G and assume #=3k+1. Let T be the triangle of
G supported by e =v,v,, with its apex at v;. We will

consider possible cases in turn.
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Figure 2: (2) n=3k+1.
Case Za. Suppose one of vv; and vy, say

v1v3, is boundary edge of G. Let Gy be the remainder
of G sharing wv,v3 (see Figure 2a). Since G; has
n—1=3k vertices, by the induction hypothesis it can
be dominated by % vertices which contain »,. Since
triangle T is covered by single vertex v,, all of G is
dominated by k£ vertices such that one of them
coincides with an endpoint v, of e.

Case 2b.
ternal diagonals, and they partition G into three graph
Gy, Gy and T as in Figure 2b. Let #,>3 (resp. #,>3)
be the number of vertices of Gy (resp. Gz), and put
m=3k1+7r; and ny=3ky+7; (0<r,7,<3). Since n=
n+n,—1, we have 3k=3(ki+ks)+r +7r,—2. Thus
(r1,72) must be one of (0,2), (1,1) and (2,0).

Case 2b.1 ((r1,72)=(0,2)). Since G; has n;=3k;
vertices, by induction hypothesis it is dominated by

Suppose both vv; and vv3 are in-

k1 vertices such that one of them coincides with
v1. Since Gy has ny=3k,+2 vertices, it is dominated
by k, vertices by induction hypothesis. Triangle T is
covered by single vertex v, thus all of GG is dominated
by ki+ky;=F vertices such that one of them coincides
with an endpoint »; of e.

Case 2b.2 ((r,79)=(1,1)).  Since n,=3k;+1 and
#ny=3k,+1, by induction hypothesis there is a domi-
nation of G; by k; vertices which contain one of
vy and vs. Similarly, there is a domination of G, by
ko vertices which contain one of v, and v;. If one of
the dominations contains either v, or v, then all of

G is dominated by k;-+ky=F vertices which contain
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an endpoint of given edge e. If both dominations
contain vertex vs simultaneously, then replace one of
vs’s with v;. This yields a domination of G by &+
ko=Fk vertices which contain an endpoint of given
edge e.

Case 2b.3 ((r1,72)=(2,0)).
image of Case 2b.1.

This is the mirror
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Figure 3: (3) n=3k+2.

To prove (3), assume n=3%k+2. By Two Ears
Theorem, G has at least two ears. Let vv,v, be an ear
of G such that vy, is an internal diagonal, and G, the
remainder of G sharing vv, (Figure 3). Since G; has
n—1=3k+1 vertices, by induction hypothesis it is
dominated by % vertices such that one of them
coincides with v, or v,. Since triangle vv,v, is covered
by v, or vy, all of G is dominated by % vertices.

This completes the proof of the theorem.

3 O’Rourke’s mobile guards theorem

Theorem 4 Let P be a polygon of n=>4 vertices and
G a triangulation graph of P.

Q) If n=4k, for any given boundary edge ¢ of G,
G can be dominated by k diagonals such that one
of them coincides with e.

@) If n=4k+1, for any given vertex v of G, G can
be dominated by k diagonals such that one of their
endpoints coincides with v.

3) If n=4k+2, for any given boundary edge ¢ of
G, G can be dominated by k diagonals such that
one of their endpoints coincides with an end point
of e.

4) If n=4k+3, G can be dominated by k diagonals.

Proof. The theorem is true for n=4, so assume
that #>4, and that the theorem holds for all »” <.
To prove (1), let e=vv; be given boundary edge
of G and assume n=4k>8. Let T be the triangle of
G supported by e =vv,, with its apex at v3. We will
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consider possible cases in turn.
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Figure 4: (1) n=4k.
Case 1la. Suppose one of 03 and vy, say

v103, is boundary edge of G. Let Gy be the remainder
of G sharing v,v3 (see Figure 4a). Since G; has
n—1=4(k—1)+3 vertices, by the induction hypothesis
it can be dominated by £—1 diagonals. Together with
single diagonal guard ¢ of triangle 7, all of G is
dominated by £ diagonals including given edge e.

Case 1b.
ternal diagonals, and they partition G into three graph
Gi, Go and T as in Figure 4b. Let ;>3 (resp. #;>3)
be the number of vertices of Gy (resp. Gy).

Case 1b.1 (n;=23).
7y, is equal to 3, and G, is a triangle v v3vs. Since
ny=4(k—1)+2>=6, by induction hypothesis G, is
dominated by %£—1 diagonals. Together with single

Suppose both v,v3 and v,z are in-

Assume one of #, and #,, say

diagonal guard e of quadrilateral v 050304, all of G is
dominated by % diagonals including given edge e.

Now assume #,,#,>4, and put ny=4k;+7; and
ne=4ko+ 1, (0<r,7,<4). Since n=n;+n,—1, we have
4k =4(k1+ky)+r+7,—1. Thus (r,7;) must be one of
(0,1), (1,0), (2,3) and (3,2). Only two of these cases are
distinct.

Case 1b.2 ((ri,72)=(0,1)). Since G; has n;=4k;
vertices, by induction hypothesis it is dominated by
ki diagonals such that one of them coincides with
v103. Since G, has ny=4%k,+1 vertices, by induction
hypothesis it is dominated by %k, diagonals such that
one of their endpoints coincides with »;. Replace the
diagonal guard v,v3 with e=wvv,, then all of G is
dominated by k;+k;=Fk diagonals including given
edge e.

Case 1b0.3 ((r,7:)=(2,3)). Since G; has n;=4k,
+2 vertices, by induction hypothesis it is dominated
by k; diagonals. Similarly, G, is dominated by £k,
diagonals. Together with single diagonal guard e of
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Figure 5: (2) n=4k+1.

T, all of G is dominated by k;+k;+1=F diagonals
including given edge e.

To prove (2), let » be given vertex of G and
assume n=4k+1>5. We will consider possible cases
in turn.

First, suppose there are no internal diagonals with
one end at v. Let vv1v, be the triangle of G whose
one vertex at v, and G’ the remainder of G. Let T
be the triangle of G’ supported by v vy, with its apex
at vs.

Case 2a.
v1vs, is boundary edge of G'. Let G; be the remainder

Suppose one of 303 and w.ws, say

of G sharing v,v; (see Figure 5a).
Case 2a.1.
and dominated by single diagonal guard vv,.
Case 2a.2. Suppose n>5. Since Gy has
n—2=4(k—1)+3>4 vertices, by the induction
hypothesis it can be dominated by 2—1 diagonals.

Suppose #=5. Then G is a pentagon

Together with single diagonal guard vv, of quad-
rilateral vv1v3v,, all of G is dominated by %2 diagonals
such that one of their endpoints coincides with given
vertex v.
Case 2b.
ternal diagonals, and they partition G’

Suppose both »v3; and vv; are in-
into three
graph Gy, Gy and T as in Figure 5b. Let #,>3 (resp.
7,>>3) be the number of vertices of G; (resp. Gy).
Since n=4%k+1>6, we have #>9.

Case 2b.1 (n,=3).
7y, is equal to 3, and G, is a triangle v,v3v,. Since
ne=4(k—1)+2=>6, by induction hypothesis G, is
dominated by %.—1 diagonals. Together with single

Assume one of #; and n,, say

diagonal guard »v; of pentagon vv w.wsvs, all of G is
dominated by % diagonals such that one of their
endpoints coincides with given vertex v.

Now assume #,7,>4, and pﬁt ny =4k +r and
no=4ka+7; (0<r1,7,<4). Since n=n,+n,, we have
4k =4k 1+ ko)+r +r,—1. Thus (r(,7,) must be one of
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(0,1), (1,0), (2,3) and (3,2). Only two of these cases are
distinct.

Case 2b.2 ((r1,72)=(0,1)).  Since G; has n;=4k;
vertices, by the induction hypothesis it can be
dominated by k; diagonals such that one of them
coincides with »,23. Since Gz has ny;=4k,+1 vertices,
by the induction hypothesis it can be dominated by
k diagonals such that one of their endpoints coincides
with v3. Replace vyw; with vvy, then all of G is
dominated by %,+k;=F diagonals such that one of
their endpoints coincides with given vertex v.

Case 2b.3 ((r1,72)=(2,3)). Since Gy has n;=4k;
+2 vertices, by the induction hypothesis it can be
dominated by k; diagonals. Similarly, G can be
dominated by k, diagonals. Together with single di-
agonal guard vy, of quadrilateral vviwsvs, all of G is
dominated by k,+k,+1=F diagonals such that one of
their endpoints coincides with given vertex ».

Case Zc.
internal diagonal with one end at ». Let d=vv, be

Now suppose there is at least one

such an internal diagonal, which partitions G into two

graphs G; and G, (see Figure 5c). Let #,>3 (resp.

#,>>3) be the number of vertices of G; (resp. Go).
Case 2¢.1 (n;=3).

#, is equal to 3, and Gy is a triangle vv;v,. Since

Assume one of #; and #,, say

1y =4k >4, by induction hypothesis G; is dominated by
k diagonals such that one of them coincides with d=v
v;. Since the triangle Gy is covered by d, all of G is
dominated by % diagonals such that one of their
endpoints~ coincides with given vertex wv.

Now assume #ny,n,>4, and put #;=4k;+7; and
Ho=4ky+ 1, (0<r,72,<4). Since n=n;+n,—2, we have
4k =4(k1+ks)+r +7—3. Thus (r,72) must be one of
0,3), (1,2), (2,1) and (3,0). Only two of these cases are
distinct.

Case 2¢.2 ((r1,72)=(0,3)). Since Gy has n, =4k,
vertices, by induction hypothesis it is dominated by
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£, diagonals such that one of them coincides with d=v
v;. Similarly, G, is dominated by k, diagonals. Thus
all of G is dominated by k,+k%,=F diagonals such that
one of their endpoints coincides with given vertex v.

Case 2¢.3 ((r,72)=Q1,2)). Since G; has n;=4k
+1 vertices, by induction hypothesis it is dominated
by £k, diagonals such that one of their endpoints
coincides with ». Similarly, G; is dominated by %,
diagonals. Thus all of G is dominated by ki+ky=Fk
diagonals such that one of their endpoints coincides
with given vertex v.

To prove (3), let e=vv; be given boundary edge
of G and assume n=4k+2>6. Let T be the triangle
of G supported by e=v,v;, with its apex at v;. We

will consider possible cases in turn.
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Figure 6: (3) n=4k+2.
Case 3a. Suppose one of vyv3 and vy, say

v1v3, is boundary edge of G. Let G; be the remainder
of G sharing wvyws (see Figure 6a). Since G, has
n—1=4k+1>5 vertices, by the induction hypothesis
it can be dominated by % diagonals such that one of
their endpoints coincides with vs. Since the triangle T
is dominated by the vertex wj, all of G is dominated
by k£ diagonals such that one of their endpoints
coincides with an endpoint of given edge e.

Case 3b.
ternal diagonals, and they partition G into three graph
Gi, Gy and T as in Figure 6b. Let #,>3 (resp. #;>3)
be the number of vertices of Gy (resp. Go).

Case 3b.1 (n,=3).

#ny, is equal to 3, and Gy is a triangle »,v3v4. Since

Suppose both »yw; and v.w; are in-

Assume one of #; and #n,, say

ny =4k >4, by induction hypothesis G, is dominated by
%k diagonals such that one of them coincides with
vov3. Since the quadrilateral vwovsvs is covered by
vavs, all of G is dominated by % diagonals such that
one of their endpoints coincides with an endpoint of
given edge e.
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Now assume #,m;>4, and put n;=4k;+7 and
no=4ky+7, (0<r,7<4). Since n=n;+n,—1, we have
4k =4(ky+ks)+r+7.—3. Thus (r1,7,) must be one of
0,3), (1,2), (2,1) and (3,0). Only two of these cases are
distinct.

Case 3b.2 ((r1,72)=(0,3)). Since G, has ny =4k,
vertices, by induction hypothesis it is dominated by
k, diagonals such that one of them coincides with
v1v3. Since Gy has ny=4k,+3 vertices, by induction
hypothesis it is dominated by %, diagonals. Since the
triangle T is covered by v(vs, all of G is dominated
by ki+ky;=F diagonals such that one of their en-
dpoints coincides with an endpoint of given edge e.

Case 1b.3 ((r,72)=(1,2)). Since Gy has n;=4k;
+1 vertices, by induction hypothesis it is dominated
by k; diagonals such that one of their endpoints
coincides with »;. Similarly, G, is dominated by £k,
diagonals. Since the triangle T is covered by vy, all
of G is dominated by k;+k,=F diagonals such that
one of their endpoints coincides with an endpoint of

given edge e.

U1

V2
Figure 7: (4) n=4k+3.

To prove (4), assume #n=4k+3>7. By Two Ears
Theorem, G has at least two ears. Let vv,v, be an ear
of G such that »,v, is internal diagonal, and Gy the
remainder of G sharing »,v, (Figure 7). Since Gy has
n—1=4k+2 vertices, by induction hypothesis it is
dominated by /£ diagonals such that one of their
endpoints coincides with one of »; and wv,. Since
triangle vvyw, is covered by vy or vy all of G is
dominated by %2 diagonals.

This completes the proof of the theorem.
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