Alternate Proofs of Art Gallery Theorems

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Hirokazu Eguchi and Koichi HIRATA[†]

Department of Mathematics, Faculty of Education Ehime University, Matsuyama, 790–8577, Japan (Received September 30, 1998)

Abstract

In this paper we introduce alternate proofs of Chvátal's Art Gallery Theorem and O'Rourke's Mobile Guards Theorem. The main theorems are refined versions of the above theorems.

Keywords: art gallery; vertex guards; mobile guards.

1 Introduction

In 1975 Chvátal [1] proved the following art gallery theorem. In 1978 Fisk [2] showed a simpler proof of the theorem.

Theorem 1 Any polygon of *n* edges can be covered by $\lfloor \frac{n}{3} \rfloor$ vertex guards.

In 1983 O'Rourke [3] proved the following mobile guards theorem.

Theorem 2 Any polygon of $n \ge 4$ edges can be covered by $\lfloor \frac{n}{4} \rfloor$ diagonal guards.

In the paper we will state and prove refined versions of the above theorems. The main results are Theorem 3 and Theorem 4. For simplicity, we discuss only combinatorial guards.

A triangulation graph G of a polygon P with n vertices is a graph obtained by triangulating P with internal diagonals between vertices. The nodes of G correspond to the n vertices of P, and the arcs correspond to the n edges and n-3 diagonals. G has n-2 triangular faces.

Define a guard in a triangulation graph G of a polygon P to be a subset of the nodes of G. Then a vertex guard in G is a single node of G, and a diagonal guard in G is a pair of nodes adjacent across any arc of G. Finally, a collection of guards $C = \{g_1, ..., g_k\}$ is said to dominate G if every triangular face of G has at least one of its three nodes in some $g_i \in C$.

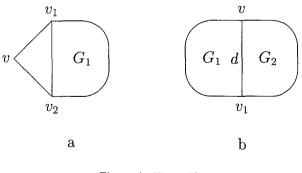


Figure 1: (1) n=3k.

2 Chvátal's art gallery theorem

Theorem 3 Let P be a polygon of $n \ge 3$ vertices and

[†]E-mail: hirata@edserv.ed.ehime-u.ac.jp

G a triangulation graph of P.

- (1) If n=3k, for any given vertex v of G, G can be dominated by k vertices such that one of them coincides with v.
- (2) If n=3k+1, for any given boundary edge e of G, G can be dominated by k vertices such that one of them coincides with an end point of e.
- (3) If n=3k+2, G can be dominated by k vertices.
- *Proof.* The theorem is true for n=3, so assume that n>3, and that the theorem holds for all n' < n.

To prove (1), let v be any given vertex of G and assume n=3k. We will consider possible cases in turn.

Case 1a. Suppose there are no internal diagonals with one end at v. Let vv_1v_2 be the triangle of G whose one vertex at v, and G_1 the remainder of G (see Figure 1a). Since G_1 has n-1=3(k-1)+2 vertices, it can be dominated by k-1 vertices by the induction hypothesis. Together with single vertex guard v of triangle vv_1v_2 , all of G is dominated by k vertices such that one of them coincides with the given vertex v.

Case 1b. Suppose there is at least one internal diagonal with one end at v. Let $d=vv_1$ be such an internal diagonal, which partitions G into two graphs G_1 and G_2 (see Figure 1b). Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2), and put $n_1=3k_1+r_1$ and $n_2=3k_2+r_2$ ($0 \le r_1,r_2 \le 3$). Since $n=n_1+n_2-2$, we have $3k=3(k_1+k_2)+r_1+r_2-2$. Thus (r_1,r_2) must be one of (0,2), (1,1) and (2,0). Each will be considered in turn.

Case 1b.1 $((r_1, r_2) = (0, 2))$. Since G_1 has $n_1 = 3k_1$ vertices, by induction hypothesis it is dominated by k_1 vertices such that one of them coincides with v. Similarly, G_2 has $n_2 = 3k_2 + 2$ vertices, so it is dominated by k_2 vertices. This yields a domination of G by $k_1 + k_2 = k$ vertices which contain the given vertex v.

Case 1b.2 $((r_1,r_2)=(1,1))$. Since $n_1=3k_1+1$ and $n_2=3k_2+1$, by induction hypothesis there is a domination of G_1 (resp. G_2) by k_1 (resp. k_2) vertices which contain one of v and v_1 . If one of the dominations contain vertex v, then all of G is dominated by $k_1+k_2=k$ vertices which contain the given vertex v. If both dominations contain vertex v_1 simultaneously, then replace one of v_1 's with v. This yields a domination of G by $k_1+k_2=k$ vertices which contain the given vertex v_1 simultaneously.

Case 1b.3 $((r_1, r_2) = (2, 0))$. This is the mirror image of Case 1b.1.

To prove (2), let $e=v_1v_2$ be given boundary edge of G and assume n=3k+1. Let T be the triangle of G supported by $e=v_1v_2$, with its apex at v_3 . We will consider possible cases in turn.

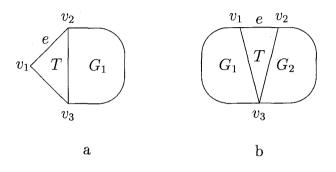


Figure 2: (2) n=3k+1.

Case 2a. Suppose one of v_1v_3 and v_2v_3 , say v_1v_3 , is boundary edge of G. Let G_1 be the remainder of G sharing v_2v_3 (see Figure 2a). Since G_1 has n-1=3k vertices, by the induction hypothesis it can be dominated by k vertices which contain v_2 . Since triangle T is covered by single vertex v_2 , all of G is dominated by k vertices such that one of them coincides with an endpoint v_2 of e.

Case 2b. Suppose both v_1v_3 and v_2v_3 are internal diagonals, and they partition G into three graph G_1 , G_2 and T as in Figure 2b. Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2), and put $n_1=3k_1+r_1$ and $n_2=3k_2+r_2$ ($0\le r_1,r_2<3$). Since $n=n_1+n_2-1$, we have $3k=3(k_1+k_2)+r_1+r_2-2$. Thus (r_1,r_2) must be one of (0,2), (1,1) and (2,0).

Case 2b.1 $((r_1,r_2)=(0,2))$. Since G_1 has $n_1=3k_1$ vertices, by induction hypothesis it is dominated by k_1 vertices such that one of them coincides with v_1 . Since G_2 has $n_2=3k_2+2$ vertices, it is dominated by k_2 vertices by induction hypothesis. Triangle T is covered by single vertex v_1 , thus all of G is dominated by $k_1+k_2=k$ vertices such that one of them coincides with an endpoint v_1 of e.

Case 2b.2 $((r_1,r_2)=(1,1))$. Since $n_1=3k_1+1$ and $n_2=3k_2+1$, by induction hypothesis there is a domination of G_1 by k_1 vertices which contain one of v_1 and v_3 . Similarly, there is a domination of G_2 by k_2 vertices which contain one of v_2 and v_3 . If one of the dominations contains either v_1 or v_2 , then all of G is dominated by $k_1+k_2=k$ vertices which contain

an endpoint of given edge e. If both dominations contain vertex v_3 simultaneously, then replace one of v_3 's with v_1 . This yields a domination of G by $k_1 + k_2 = k$ vertices which contain an endpoint of given edge e.

Case 2b.3 $((r_1, r_2) = (2, 0))$. This is the mirror image of Case 2b.1.

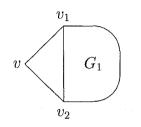


Figure 3: (3) n = 3k + 2.

To prove (3), assume n=3k+2. By Two Ears Theorem, G has at least two ears. Let vv_1v_2 be an ear of G such that v_1v_2 is an internal diagonal, and G_1 the remainder of G sharing v_1v_2 (Figure 3). Since G_1 has n-1=3k+1 vertices, by induction hypothesis it is dominated by k vertices such that one of them coincides with v_1 or v_2 . Since triangle vv_1v_2 is covered by v_1 or v_2 , all of G is dominated by k vertices.

This completes the proof of the theorem.

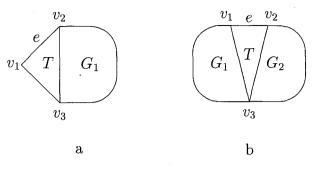
3 O'Rourke's mobile guards theorem

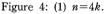
Theorem 4 Let P be a polygon of $n \ge 4$ vertices and G a triangulation graph of P.

- (1) If n=4k, for any given boundary edge e of G, G can be dominated by k diagonals such that one of them coincides with e.
- (2) If n=4k+1, for any given vertex v of G, G can be dominated by k diagonals such that one of their endpoints coincides with v.
- (3) If n=4k+2, for any given boundary edge e of G, G can be dominated by k diagonals such that one of their endpoints coincides with an end point of e.
- (4) If n=4k+3, G can be dominated by k diagonals.

Proof. The theorem is true for n=4, so assume that n>4, and that the theorem holds for all n' < n.

To prove (1), let $e = v_1v_2$ be given boundary edge of G and assume $n=4k \ge 8$. Let T be the triangle of G supported by $e = v_1v_2$, with its apex at v_3 . We will consider possible cases in turn.





Case 1a. Suppose one of v_1v_3 and v_2v_3 , say v_1v_3 , is boundary edge of G. Let G_1 be the remainder of G sharing v_2v_3 (see Figure 4a). Since G_1 has n-1=4(k-1)+3 vertices, by the induction hypothesis it can be dominated by k-1 diagonals. Together with single diagonal guard e of triangle T, all of G is dominated by k diagonals including given edge e.

Case 1b. Suppose both v_1v_3 and v_2v_3 are internal diagonals, and they partition G into three graph G_1 , G_2 and T as in Figure 4b. Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2).

Case 1b.1 $(n_1=3)$. Assume one of n_1 and n_2 , say n_1 , is equal to 3, and G_1 is a triangle $v_1v_3v_4$. Since $n_2=4(k-1)+2\geq 6$, by induction hypothesis G_2 is dominated by k-1 diagonals. Together with single diagonal guard e of quadrilateral $v_1v_2v_3v_4$, all of G is dominated by k diagonals including given edge e.

Now assume $n_1, n_2 \ge 4$, and put $n_1 = 4k_1 + r_1$ and $n_2 = 4k_2 + r_2$ ($0 \le r_1, r_2 \le 4$). Since $n = n_1 + n_2 - 1$, we have $4k = 4(k_1 + k_2) + r_1 + r_2 - 1$. Thus (r_1, r_2) must be one of (0,1), (1,0), (2,3) and (3,2). Only two of these cases are distinct.

Case 1b.2 $((r_1,r_2)=(0,1))$. Since G_1 has $n_1=4k_1$ vertices, by induction hypothesis it is dominated by k_1 diagonals such that one of them coincides with v_1v_3 . Since G_2 has $n_2=4k_2+1$ vertices, by induction hypothesis it is dominated by k_2 diagonals such that one of their endpoints coincides with v_3 . Replace the diagonal guard v_1v_3 with $e=v_1v_2$, then all of G is dominated by $k_1+k_2=k$ diagonals including given edge e.

Case 1b.3 ($(r_1,r_2)=(2,3)$). Since G_1 has $n_1=4k_1$ +2 vertices, by induction hypothesis it is dominated by k_1 diagonals. Similarly, G_2 is dominated by k_2 diagonals. Together with single diagonal guard e of

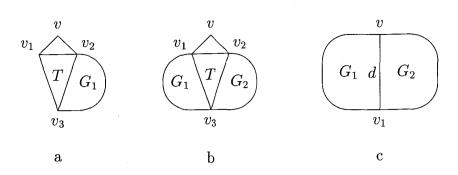


Figure 5: (2) n = 4k + 1.

T, all of G is dominated by $k_1+k_2+1=k$ diagonals including given edge e.

To prove (2), let v be given vertex of G and assume $n=4k+1\geq 5$. We will consider possible cases in turn.

First, suppose there are no internal diagonals with one end at v. Let vv_1v_2 be the triangle of G whose one vertex at v, and G' the remainder of G. Let Tbe the triangle of G' supported by v_1v_2 , with its apex at v_3 .

Case 2a. Suppose one of v_1v_3 and v_2v_3 , say v_1v_3 , is boundary edge of G'. Let G_1 be the remainder of G' sharing v_2v_3 (see Figure 5a).

Case 2a.1. Suppose n=5. Then G is a pentagon and dominated by single diagonal guard vv_2 .

Case 2a.2. Suppose n > 5. Since G_1 has $n-2=4(k-1)+3 \ge 4$ vertices, by the induction hypothesis it can be dominated by k-1 diagonals. Together with single diagonal guard vv_2 of quadrilateral $vv_1v_3v_2$, all of G is dominated by k diagonals such that one of their endpoints coincides with given vertex v.

Case 2b. Suppose both v_1v_3 and v_2v_3 are internal diagonals, and they partition G' into three graph G_1 , G_2 and T as in Figure 5b. Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2). Since $n=4k+1\ge 6$, we have $n\ge 9$.

Case 2b.1 $(n_1=3)$. Assume one of n_1 and n_2 , say n_1 , is equal to 3, and G_1 is a triangle $v_1v_3v_4$. Since $n_2=4(k-1)+2\geq 6$, by induction hypothesis G_2 is dominated by k-1 diagonals. Together with single diagonal guard vv_1 of pentagon $vv_1v_4v_3v_2$, all of G is dominated by k diagonals such that one of their endpoints coincides with given vertex v.

Now assume $n_1, n_2 \ge 4$, and put $n_1 = 4k_1 + r_1$ and $n_2 = 4k_2 + r_2$ ($0 \le r_1, r_2 \le 4$). Since $n = n_1 + n_2$, we have $4k = 4(k_1 + k_2) + r_1 + r_2 - 1$. Thus (r_1, r_2) must be one of

(0,1), (1,0), (2,3) and (3,2). Only two of these cases are distinct.

Case 2b.2 $((r_1,r_2)=(0,1))$. Since G_1 has $n_1=4k_1$ vertices, by the induction hypothesis it can be dominated by k_1 diagonals such that one of them coincides with v_1v_3 . Since G_2 has $n_2=4k_2+1$ vertices, by the induction hypothesis it can be dominated by k_2 diagonals such that one of their endpoints coincides with v_3 . Replace v_1v_3 with vv_1 , then all of G is dominated by $k_1+k_2=k$ diagonals such that one of their endpoints coincides with endpoints coincides with given vertex v.

Case 2b.3 $((r_1,r_2)=(2,3))$. Since G_1 has $n_1=4k_1$ +2 vertices, by the induction hypothesis it can be dominated by k_1 diagonals. Similarly, G_2 can be dominated by k_2 diagonals. Together with single diagonal guard vv_1 of quadrilateral $vv_1v_3v_2$, all of G is dominated by $k_1+k_2+1=k$ diagonals such that one of their endpoints coincides with given vertex v.

Case 2c. Now suppose there is at least one internal diagonal with one end at v. Let $d=vv_1$ be such an internal diagonal, which partitions G into two graphs G_1 and G_2 (see Figure 5c). Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2).

Case 2c.1 $(n_1=3)$. Assume one of n_1 and n_2 , say n_1 , is equal to 3, and G_1 is a triangle vv_1v_2 . Since $n_2=4k\geq 4$, by induction hypothesis G_2 is dominated by k diagonals such that one of them coincides with d=v v_1 . Since the triangle G_1 is covered by d, all of G is dominated by k diagonals such that one of their endpoints coincides with given vertex v.

Now assume $n_1, n_2 \ge 4$, and put $n_1 = 4k_1 + r_1$ and $n_2 = 4k_2 + r_2$ ($0 \le r_1, r_2 < 4$). Since $n = n_1 + n_2 - 2$, we have $4k = 4(k_1 + k_2) + r_1 + r_2 - 3$. Thus (r_1, r_2) must be one of (0,3), (1,2), (2,1) and (3,0). Only two of these cases are distinct.

Case 2c.2 ($(r_1, r_2) = (0, 3)$). Since G_1 has $n_1 = 4k_1$ vertices, by induction hypothesis it is dominated by

 k_1 diagonals such that one of them coincides with d=v v_1 . Similarly, G_2 is dominated by k_2 diagonals. Thus all of G is dominated by $k_1+k_2=k$ diagonals such that one of their endpoints coincides with given vertex v.

Case 2c.3 $((r_1, r_2) = (1, 2))$. Since G_1 has $n_1 = 4k_1 + 1$ vertices, by induction hypothesis it is dominated by k_1 diagonals such that one of their endpoints coincides with v. Similarly, G_2 is dominated by k_2 diagonals. Thus all of G is dominated by $k_1+k_2=k$ diagonals such that one of their endpoints coincides with given vertex v.

To prove (3), let $e=v_1v_2$ be given boundary edge of G and assume $n=4k+2\geq 6$. Let T be the triangle of G supported by $e=v_1v_2$, with its apex at v_3 . We will consider possible cases in turn.

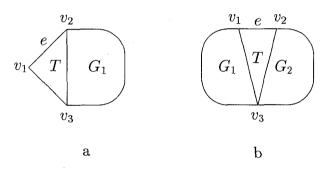


Figure 6: (3) n = 4k + 2.

Case 3a. Suppose one of v_1v_3 and v_2v_3 , say v_1v_3 , is boundary edge of G. Let G_1 be the remainder of G sharing v_2v_3 (see Figure 6a). Since G_1 has $n-1=4k+1\geq 5$ vertices, by the induction hypothesis it can be dominated by k diagonals such that one of their endpoints coincides with v_2 . Since the triangle T is dominated by the vertex v_2 , all of G is dominated by k diagonals such that one of their endpoints coincides with an endpoint of given edge e.

Case 3b. Suppose both v_1v_3 and v_2v_3 are internal diagonals, and they partition G into three graph G_1 , G_2 and T as in Figure 6b. Let $n_1 \ge 3$ (resp. $n_2 \ge 3$) be the number of vertices of G_1 (resp. G_2).

Case 3b.1 $(n_1=3)$. Assume one of n_1 and n_2 , say n_1 , is equal to 3, and G_1 is a triangle $v_1v_3v_4$. Since $n_2=4k \ge 4$, by induction hypothesis G_2 is dominated by k diagonals such that one of them coincides with v_2v_3 . Since the quadrilateral $v_1v_2v_3v_4$ is covered by v_2v_3 , all of G is dominated by k diagonals such that one of their endpoints coincides with an endpoint of given edge e.

Now assume $n_1, n_2 \ge 4$, and put $n_1 = 4k_1 + r_1$ and $n_2 = 4k_2 + r_2$ ($0 \le r_1, r_2 \le 4$). Since $n = n_1 + n_2 - 1$, we have $4k = 4(k_1 + k_2) + r_1 + r_2 - 3$. Thus (r_1, r_2) must be one of (0,3), (1,2), (2,1) and (3,0). Only two of these cases are distinct.

Case 3b.2 ($(r_1, r_2) = (0, 3)$). Since G_1 has $n_1 = 4k_1$ vertices, by induction hypothesis it is dominated by k_1 diagonals such that one of them coincides with v_1v_3 . Since G_2 has $n_2 = 4k_2 + 3$ vertices, by induction hypothesis it is dominated by k_2 diagonals. Since the triangle T is covered by v_1v_3 , all of G is dominated by $k_1+k_2=k$ diagonals such that one of their endpoints coincides with an endpoint of given edge e.

Case 1b.3 $((r_1, r_2)=(1, 2))$. Since G_1 has $n_1=4k_1$ +1 vertices, by induction hypothesis it is dominated by k_1 diagonals such that one of their endpoints coincides with v_1 . Similarly, G_2 is dominated by k_2 diagonals. Since the triangle T is covered by v_1 , all of G is dominated by $k_1+k_2=k$ diagonals such that one of their endpoints coincides with an endpoint of given edge e.

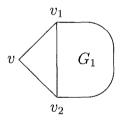


Figure 7: (4) n = 4k + 3.

To prove (4), assume $n=4k+3\geq 7$. By Two Ears Theorem, G has at least two ears. Let vv_1v_2 be an ear of G such that v_1v_2 is internal diagonal, and G_1 the remainder of G sharing v_1v_2 (Figure 7). Since G_1 has n-1=4k+2 vertices, by induction hypothesis it is dominated by k diagonals such that one of their endpoints coincides with one of v_1 and v_2 . Since triangle vv_1v_2 is covered by v_1 or v_2 , all of G is dominated by k diagonals.

This completes the proof of the theorem.

References

- V. Chvátal, A combinatorial theorem in plane geometry, J. Combinatorial Theory Ser. B 18 (1975), 39-41.
- [2] S. Fisk, A short proof of Chvátal's watchman theorem, J. Combinatorial Theory Ser. B 24 (1978), 374.
- [3] J. O'Rourke, Galleries need fewer mobile guards: a variation on Chvátal's theorem, *Geometriae Dedicata* 14 (1983) 273-283.