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                                   Abstract

   In this paper we introduce alternate proofs of Chvatal's Art Gallery Theorem and O'Rourke's Mobile

Guards Theorem. The main theorems are refined versions of the above theorems.
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              1 lntroduction

   In 1975 ChvAtal [1] proved the following art

gallery theorem. In 1978 Fisk [2] showed a sirnpler

proof of the theorem.

Theorem 1. Any Polygon of n edges can be covered
by Lgl vertex guards.

   In 1983 O'Rourke [3] proved the following mobile

guards theorem.

Theorem 2 Any,Polygon ofn24 edges can be covered
by LZj diagonal guards.

   In the paper we will state and prove refined

versions of the above theorems. The main results are

Theorem 3 and Theorem 4. For simplicity, we discuss

only combinatorial guards.

   A triangzalation grmph G of a polygon P with n

vertices is a graph obtained by triangulating P with

internal diagonals between vertices. The nodes of G

correspond to the n vertices of P, and the arcs

correspond to the n edges and n-3 diagonals. G has

n-2 tria]ngular faces.

   Define a guard in a triangulation graph G of a

polygon P to be a subset of the nodes of G. Then a

vertex guard in G is a single node of G, and a diagonal

guard in G is a pair of nodes adjacent across any arc

of G Finally, a collection of guards C={gi,...,gle} is

said to dominate G if every triangular face of G has

at least one of its three nodes in some giGC.
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Figure 1: (l) n=3k.
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Chv6tal's art gallery theorem

3 Let P be a Polygon of n}i3 vertices and
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G a trianguimion graPh of P.

   (1) If n= 3le, for any given vertex v of G, G ean be

     dominated by le vertices such that one of them

     coincides with v.

   (2) If n=3le+1, for any given boundaay edge e of

     G, G can be dominated by k vertices such that one

     of them coincides with an end Point of e.

   <3) If n--3k+2, G can be dominated by le ventces.

   Proof. The theorem is true for n=3, so assume

that n>3, and that the theorem holds for all n' <n.

   To prove (1), let v be any given vertex of G and

assume n==3le. We will consider possible cases in

turn.

   Case la. Suppose there are no internal di-
agonals with one end at v. Let vviv2 be the trjangle

of G whose one vertex at v, and Gi the remainder of

G (see Figure la). Since Gi has n-1=3(fe-1)+2
vertices, it can be dominated by le-1 vertices by the

induction hypothesis. Together with single vertex

guard v of triangle vviv2, all of G is dominated by k

vertices such that one of them coincides with the

glven vertex v.

   Case lb. Suppose there is at least one internal

diagonal with one end at v. Let d=vvi be such an

internal diagonal, which partitions G into two graphs

Gi and G2 (see Figure lb). Let ni23 (resp. n223) be

the number of vertices of Gi (resp. G2), and put

ni=3lei+ri and n2=3le2+r2 (Osgrbr2<3). Since n=

ni+n2-2, we have 3le=3(ki+le2)+ri+r2-2. Thus
(ri,r2) must be one of (O,2), (1,1) and (2,O). Each will

be considered in turn.

   Case lb.1 ((ri,r2)==(O,2)). Since Gi has ni=3lei

vertices, by induction hypothesis it is dominated by

lei vertices such that one of them coincides with v.

Similarly, G2 has n2=3le2+2 vertices, so it is domi-

nated by le2 vertices. This yields a domination of G

by lei+k2=le vertices which contain the given vertex

v.

   Case lb.2 ((ri,r2)=(1,1)). Since ni==3ki+1 and

n2=3le2+1, by induction hypothesis there is a domi-

nation of Gi (resp. G2) by lei (resp. le2) vertices which

contain one of v and vi. If one of the dominations

contain vertex v, then all of G is dominated by ki+

le2=le vertices which contain the given vertex v. If

both dominations contain vertex vi simultaneously,

then replace one of vi's with'v. This yields a

domination of G by ki+le2=le vertices which contain

the given vertex v.

   Case lb.3 ((ri,r2)=<2,O))•

image of Case lb.1.

   To prove (2), let e=viv2 be

of G and assume n=3k+1. Let
G supported by e=viv2, with its

consider possible cases in turn.
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   Case 2a. Suppose one of viv3 and v2v3, say
viv3, is boundary edge of G. Let Gi be the remainder

of G sharing v2v3 (see Figure 2a). Since Gi has

n-1=3le vertices, by the induction hypothesis it can

be dominated by fe v'ertices which contain v2. Since

triangle T is covered by single vertex v2, all of G is

dominated by le vertices such that one of them

coincides with an endpoint v2 of e.

   Case 2b. Suppose both viv3 and v2v3 are in-
ternal diagonals, and they partition G into three graph

Gi, G2 and T as in Figure 2b. Let ni})3 (resp. n22)3)

be the number of vertices of Gi (resp. G2), and put

ni=3lei+ri and n2=3k2+r2 (Of{;ri,r2<3). Since n=

ni+n2-1, we have 3k=3(lei+le2)+ri+r2-2. Thus
(ri,r2) must be one of (O,2), (1,1) and (2,O).

   Case 2b.1 ((ri,r2)=(O,2)). Since Gi has ni=3lei

vertices, by induction hypothesis it is dominated by

lei vertices such that one of them coincides with

vi• Since G2 has n2=3k2+2 vertices, it is dominated

by le2 vertices by induction hypothesis. Triangle T is

covered by single vertex vi, thus all of G is dominated

by lei+le2=le vertices such that one of them coincides

with an endpoint vi of e.

   Case 2b.2 ((ri,r2)==(1,1)). Since ni=3ki+1 and

n2=3le2+1, by induction hypothesis there is a domi-

nation of Gi by ki vertices which contain one of

vi and v3. Similarly, there is a domination of G2 by

k2 vertices which contain one of v2 and v3. Ii" one of

the dominations contains either vi or v2, then all of

G is dominated by lei+le2 =le vertices which contain
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an endpoint of given edge e. If both dominations

contain vertex v3 simultaneously, then replace one of

v3's with vi. This yields a domination of G by lei+

k2=le vertices which contain an endpoint of given

edge e.

. Case 2b.3 ((ri,r2)=(2,O)). This is the mirror

image of Case 2b.1.
 '

                     Vl

v Gi

                     V2

             Figure 3: (3) n==3k+2.

   To prove (3), assume n==3k+2. By Two Ears
Theorem, G has at least two ears. Let vviv2 be an ear

of G such that viv2 is an internal diagonal, and Gi the

remainder of G sharing viv2 (Figure 3). Since Gi has

n-1=3le+1 vertices, by induction hypothesis it is

dominated by le vertices such that one of them
coincides with vi or v2. Since triangle vviv2 is covered

by vi or v2, all of G is dominat.ed by k vertices.

   This completes the proof of the theorem.

  3 O'Rourke's mobile guards theorem

Theorem 4 Let P be a Polygon of nl)4 vertices and

G a triangulation .armph of P.

   (1) If n=4k, for any given boundaay edge e of G,

     G can be dominated by le diagonals szach that one

     of them coincides with e.

   (2) Ifn==4le+1, for any given vertex v of G, G can

     be dominated by le diagonals such that one of their

     endPoints coincides with v.

   (3) If n=4le+2, for any given boundary edge e of

     G, G can be dominated by le diagonals such that

     one of their endpoints coincides with an end Point

        '     of e..

   (4) Ifn=4le+3, G can be dominated by le diagonals.

       '
   Proof. The theorem is true for n=4, so assume

that n>4, and that the theorem holds for all n' <n.

   To prove (1), let e=:viv2 be given boundary edge

of G and assume n==4le ;ii8. Let T be the triangle of

G supported by e=viv2, with its apex at v3. We will

Theoreins

 consider possible cases in turn.

        v2 vlev2
     e
                                     T  vl T GI GI                                        G2

        V3 V3
            ab
                          '
                Figure 4: (1) n=4le.

     Case la. Suppose one of viv3 and v2v3, say
  viv3, is boundary edge of G. Let Gi be the remainder

 of G sharing v2v3 (see Figure 4a). Since Gi has

  n-1=4(le-1)+3 vertices, by the induction hypothesis

 it can be dominated by k-1 diagonals. Together with

  single diagonal guard e of triangle T, all of G is

  dominated by fe diagonals including given edge e.

     Case lb. Suppose both viv3 and v2v3 are in-
 ternal diagonals, and they partition G into three graph

  Gi, G2 and T as in Figure 4b. Let ni23 (resp. n22)3)

 be the number of vertices of Gi (resp. G2)• '
     Case lb.1 (ni=3). Assume one of ni and n2, say

 ni, is equal to 3, and Gi is a triangle viv3v4. Since

  n2=4(le-1)+226, by induction hypothesis G2 is
  dominated by le-1 diagonals. Together with single

  diagonal guard e of quadrilateral viv2v3v4, all of G is

  dominated by le diagonals including given edge e.

     Now assume ni,n2;)4, and put ni=4ki+ri and
  n2=4k2+r2 (Of{gri,r2<4). Since n=ni+n2-1, we have

  4le=4(fei+le2)+ri+r2-1. Thus (ri,r2) must be one of

  (O,1), (1,O), (2,3) and (3,2). Only two of these cases are

  distinct.

     Case lb.2 ((ri,r2)=(O,1)). Since Gi has ni==4lei

  vertices, by induction hypothesis it is dominated by

  lei diagonals such that one of them coincides with

  viv3. Since G2 has n2==4k2+1 vertices, by induction

  hypothesis it is dominated by fe2 diagonals such that

  one of their endpoints coincides with v3. Replace the

  diagonal guard viv3 with e=viv2, then all of G is

  dominated by ki+le2=le diagonals including given

  edge e.

     Case lb.3 ((ri,r2)=(2,3)). Since Gi has ni=4lei

  +2 vertices, by induction hypothesis it is dominated

  by ki diagonals. Similarly, G2 is dominated by k2

  diagonals. Together with single diagonal guard e of
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T, all of G is dominated by lei+le2+1=fe diagonals

including given edge e.

. To prove (2), let v be given vertex of G and

assume n=4le+125. We will consider possible cases

m turn.

   First, suppose there are no internal diagonals with

one end at v. Let vviv2 be the triangle of G whose

one vertex atv and G' the remainder of G. Let T
             '
be the triangle of G' supported by viv2, with its apex

at v3• '
   Case 2a. Suppose one of vlv3 and v2v3, say
viv3, is boundary edge of G'. Let Gi be the remainder

of G' sharing v2v3 (see Figure 5a).

   Case 2a.1. Suppose n=5. Then G is a pentagon

and dominated by single diagonal guard vv2.

   Case 2a.2. Suppose n>5. Since Gi has
n-2==4(le-1)+32)4 vertices, by the induction
hypothesis it can be dominated by le-1 diagonals.

Together with single diagonal guard vv2 of quad-

rilateral vviv3v2, all of G is dominated by le diagona!s

such that one of their endpoints coincides with given

vertex v. • .
   Case 2b. Suppose both viv3 and v2v3 are in-
ternal diagonals, and they partition G' into three
graph Gi, G2 and T as in Figufe 5b. Let n23 (resp.

n223) be the number of vertices of Gi (resp. G2).

Since n=4le+1;)6 we have n29.               ,
   Case 2b.1 (ni=:3). Assume one of ni and n2, say

ni, is equal to 3, and Gi is a triangle viv3v4. Since

n2=4(le-1)+226, by induction hypothesis G2 is

dominated by fe-1 diagonals. Together with single

diagonal guard vvi of pentagon vviv4v3v2, all of G is

dominated by le diagonals such that one of their

endpoints coincides with given vertex v.

   Now assume ni,n22)4, and put ni=4ki+ri and
n2==4le2+r2 (OE{;ri,r2<4). Since n==ni+n2, we have

4le=4(lei+le2)+ri+r2-1. Thus (ri,r2) must be one of
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    Figure 5: (2) n=4le +1.
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(O,1), (1,O), (2,3) and (3,2). Only two of these cases are

distinct.

   Case 2b.2 ((ri,r2)=(O,.1)). Since Gi has ni==4lei

vertices, by the induction hypothesjs it can be

dominated by ki diagonals such that one of them
coincides with viv3. Since G2 has n2==4k2+1 vertices,

by the induction hypothesis it can be dominated by

le2 diagonals such that one of their endpoints coincides

with v3. Replace viv3 with vvi, then all of G is

dominated by lei+le2=:le diagonals such that one of

their endpoints coincides with given vertex v.

   Case 2b.3 ((ri,r2)=(2,3)). Since Gi has ni=4lei

+2 vertices, by the induction hypothesis it can be

dominated by fei diagonals. Similarly, G2 can be

dominated by le2 diagonals. Together with single di-

agonal guard vvi of quadrilateral vviv3v2, all of G is

dominated by lei+le2+1==le diagonals such that one of

their endpoints coincides with given vertex v.

   Case 2c. Now suppose there is at least one
internal diagonal with one end at v. Let d=vvi be

such an internal diagonal, which partitions G into two

graphs Gi and G2 (see Figure 5c). Let ni23 (resp.

n21)3) be the number of vertices of Gi (resp. G2).

   Case 2c.1 (ni==3). Assume one of ni and n2, say

ni, is equal to 3, and Gi is a triangle vviv2. Since

n2=4le l)4, by induction hypothesis G2 is dominated by

le diagonals such that one of them coincides with d=v

vi. Since the triangle Gi is covered by d, all of G is

dominated by k diagonals such that one of their

endpoints coincides with given vertex v.

   Now assume ni,it2}r4, and put ni=4lei+ri and

n2 =4le2+r2 (Of{;ri,r2<4). Since n==ni+n2-2, we have

4k=4(lei+le2)+ri+r2-3. Thus (ri,r2) must be one of

(O,3), (1,2), (2,1) and (3,O). Only two of these cases are

distinct.

   Case 2c.2 ((r!,r2)=(O,3)). Since Gi has ni=4ki

vertices, by induction hypothesis it is dominated by
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ki diagonals such that one of them coincides with d=v

vi. Similarly, G2 is dominated by fe2 diagonals. Thus

all of G is dominated by lei+le2=:k diagonals such that

one of their endpoints coincides with given vertex v.

   Case 2c.3 ((ri,r2)=(1,2)). Since Gi has ni=4lei

+1 vertices, by induction hypothesis it is dominated

by lei diagonals such that one of their endpoints

coincides with v. Similarly, G2 is dominated by le2

diagonals. Thus all of G is dominated by lei+k2=le

diagonals such that one of their endpoints coincides

with given vertex v.

   To prove (3), let e=:viv2 be given boundary edge

of G and assume n=4le+226. Let T be the triangle

of G supported by e=viv2, with its apex at v3. We

will consider possible cases in turn.

       v2 vlev2
    e•vi T GI'

       V3 V3
          ab
              Figure 6: (3) n=4le+2.

    Case 3a. Suppose one of viv3 and v2v3, say

viv3, is bbundary edge of G. Let Gi be the remainder

of G sharing v2v3 (see Figure 6a). Since Gi has

n-1 =4k+12}i5 vertices, by the induction hypothesis

it can be dominated by fe diagonals such that one of

their endpoints coincides with v2. Since the triangle T

is dominated by the vertex v2, all of G is dominated

by fe diagonals such that one of their endpoints

coincides with an endpoint of given edge e.

   Case 3b. Suppose both viv3 and v2v3 are in-
ternal diagonals, and they partition G into three graph

Gi, G2 and T as in Figure 6b. Let ni23 (resp. n223)

be the number of vertices of Gi (resp• G2).

   Case 3b.1 (ni=3). Assume one of ni and n2, say

ni, is equal to 3, and Gi is a triangle viv3v4. Since

n2=4k 24, by induction hypothesis G2 is dominated by

fe diagonals such that one of them coincides with

v2v3. Since the quadrilateral viv2v3v4 is covered by

v2v3, all of G is dominated by le diagonals such that

one of their endpoints coincides with an endpoint of

given edge e.

Theorems

     Now assume ni,n224, and put ni=4fei+ri and
 n2=4le2+r2 (Osgri,r2<4). Since n=ni+n2-1, we have

 4k=4(ki+le2)+ri+r2-3. Thus (ri,r2) must be one of

 (O,3), (1,2), (2,1) and (3,O). Only two of these cases are

 distinct.

     Case 3b.2 ((ri,r2)=(O,3)). Since Gi has ni=4lei

 vertices, by induction hypothesis it is dominated by

 lei diagonals such that one of them coincides with

 viv3• Since G2 has n2= 4k2+3 vertices, by induction

 hypothesis it is dominated by le2 diagonals. Since the

 triangle T is covered by viv3, all of G is dominated

by fei+le2=fe diagonals such that one of their en-

dpoints coincides with an endpoint oi given edge e.

   Case lb.3 ((ri,r2)=(1,2)). Since Gi has ni=4lei

+1 vertices, by induction hypothesis it is dominated

by lei diagonals such that one of their endpoints

coincides with vi. Similarly, G2 is dominated by le2

diagonals. Since the triangle T is covered by vi, all

of G is dominated by lei+fe2=le diagonals such that

one of their endpoints coincides with an endpoint of

given edge e. '

                     Vl

v Gl

                     V2

             Figure 7: (4) n=4le+3.

   To prove (4), assume n=4fe+3})7. By Two Ears

Theorem, G has at least two ears. Let vviv2 be an ear

of G such that viv2 is internal diagonal, and Gi the

remainder of G sharing viv2 (Figure 7). Since Gi has

n-1=4le+2 vertices, by induction hypothesis it is

dominated by k diagonals such that one of their

endpoints coincides with one of vi and v2. Since

triangle vviv2 is covered by vi or v2, all of G is

dominated by k diagonals.

   This completes the proof of the theorem.
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