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Abstract

We shall give criteria on certain diophantine equations concerning Fermat-like equaiton over
algebraic number fields.
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1 Introduction

The following notations will be used:

Let £ be a fixed odd prime number, Q be the rational number field, Z be the rational integer ring,
k = Q(¢) be the cyclotomic number field defined by ¢ = exp(27i/{£), F be an algebraic number field
whose discriminant is not divisible by £, Sg be the trace with respect to E/Q. Moreover let K = kE,
A = 1 — ¢ be the prime ideal in & dividing £,

Lo = EMEN oy,
v=0
_ dftlog M(e?) M) -1
ba(M) = g | _ T

be Kummer’s logarithmic differential quotients of M = M ()
and

<NN1) be the /-th power residue symbol.

2 A Proposition
In this section we shall give a proposition with respect to next diophantine equations :

of + B+ =0, ged(afy,l) =1, (1)

and
of + G = kA, ged(afyr, £) = ged(a, B, k) = 1, (2)

where «, 3, v, k are integers of K. And assume that
=1 (mod £), = is an integer of K,

=14 o4,
a+B8=0 (mod k) for (2).
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Next, let
_at+¢p
T a+ (B’

a=oag, B=0H,d =0, (mod )N),

where oo, Bo, af are integers of E.
In the previous paper [6] we described next lemma :

Lemma Suppose that o, 3 are integers of K and ged(a + 3,£) = 1. Then we have

a+ (B

L( a+f

)"Zz Tap(a,B) (mod £),

(a=1,.,£-2i=0,...—1)

where o, (, §) is an integer of E and independent of i.
Moreover if
a=a, =00 (mod)),

then we have

a0+
Ta,a(0, ) = Lo( ao T fo ) (mod £),
(a=1,..,£-2)

where oo, (o are integers of E.

From now on suppose that (1) or (2) holds. Then we have easily next proposition by using H.Hasse
([1], [2]) and the above lemma for the numbers A, 7.

Proposition 1 (1) If =0 (mod 7) and ged(n, @) = 1, then

(2) Ifa— =0 (mod ) and ged(m, ) = 1, then

Sp (oh) = 255 ( - %&) (mod ).
B)Ifa+B=0 (modn), ged(m,a) =1 and 7w € E, then
S (o)) = 25 <ag ao‘jf Bo) (mod £).

Proof. f 3=0 (mod 7) and ged(m,a+ B8) =1, then since A=1 (mod 7) and A is 4-th power of

an ideal in K we have ,
A gt -1
) = d = 1.
<7T> 1 an < 1 ) 1

Hence from the reciprocity law we have
A sz -1 A ~1
=(5)=(7)(7=)

2
sEm@ﬂA»Esb(%h<iiéf>—aulfzrf))so (mod £),

Accordingly
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and since
L <"‘a+f;5 ) = 210(0,0) + 2211(a, ) (mod £),
h(iif) = s1o(onf) Fo1a(0nf) (mod £),
we have

Sk (aéao/ﬁfﬁo> =0 (mod #).

When 7 | (a — ) and ged(m, o) = 1, since

1+ ¢2
14+¢

() =@ =) () smamgoeien

On the other hand from
A AN [ AN\
() () - (2 ()
we have the desired result.

If 7| (a+B), 7 €E, ged(m,a) =1, since A=1+¢(=¢ (mod #) is a unit and

A

i

=¢ (mod )

is a unit we have

1
e P
6=2""¢e=1 2>\,

we have

3)-0-F)O=0)-(=)
- (”;_]1> (”f) (=) - (#;) () =<5 L=Seeh) (modo)

On the other hand since

A A -1 of—1 A -1 .
(B)-) -(7) ) - men(eaiy) oo

we have the desired result.

3 The Equation 2% 4+ 3% = 2/
In this section we treat the next diophantine equation over the ring Z:

2 +y’ =2 oYz #0, ged(z,y) = 1,

3)

where £ is a fixed prime number. Mordell [4] showed solutions of the above for £ = 2, and when £ > 3

Nagell [5] proved that the above has no solutions such that y = +1.
We shall consider (3) for £ > 3.
In this subject let p be a fixed primitive cubic root of unity and Ao =1 - p.
If z is not divisible by 3 and 2 20 (mod £), then we have from (3)

r+y=dc, z+yp=of, ged(ea, 30) =1

where ¢, o are integers in Q and Q(p), respectively.
Accordingly we have

¢+ (')t + (pPa)t =0, ged(ea,30) =1,

4)
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where % denotes the conjugate number of *.
In (4) let m = Ao, and using (2) of proposition 1 we have

Theorem 1 If (3) has solutions such that xy # 0 (mod £2?), z # 0 (mod £) and 3 } z, then
3% 1=1 (mod /?).

4 The Equation z* —y* = 2¢

In this section we consider the next diophantine equation ove the ring Z:
ot =yt =24, myz #0, ged(z,y) = 1, (5)
where /£ is a fixed prime number. Fermat and Euler proved that the above has no solutions for £ = 4.
Mordell [4] proved that the above has no solutions for £ = 2.
In this subject let ¢ = /—1 and Mg =1 —1.
If zis odd and z 2 0 (mod £), then we have from (5)

z—y=c, z+y=4d, z+yi=af, ged(cda,20) =1,
where ¢, d and o are integers in Q and Q(7), respectively. Accordingly we have
¢+ (dit)t = M (ifa)t, ged(eda, 20) = 1. (6)
In (6) let m = Ao, and using (3) of proposition 1 we have

Theorem 2 If (5) has solutions such that xy # 0 (mod £2), z 20 (mod £) and z is odd, then
22"1=1 (mod £2).

In 1993 H. Darmon|3] proved that

Theorem 3 Suppose that the Shimura— Taniyama conjecture is true, and let £ > 10. Then equation
(5) has no solution if £ =1 (mod 4), and has no solution with z even.

Recently, the above conjecture has been proved.

5 The Equation y? = zf + &

In this section £ = Q(v'k) be a quadratic field, where & is a rational integer. Moreover h, pg denote
the class number of E and Euler’s phi function over E, respectively. And we investigate the rational
integer solutions of following hyperelliptic equation:

2 =" +k, ged(z,y) =1, (7)

where k is a negative rational integer, £ > 1 be an odd, ged(k,£) =1, k #1 (mod 8), ged(h,£) =1
and ged(pr(2k),f) = 1. Let k = f%¢, f > 0, where c is the square free rational integer. Then

E =Q(Ve).
(7) is called the Mordell equation[4] if £ = 3.
Next theorem is due to Lebesgue(cf.[4], p.301).

Theorem 4 Diophantine equation
=P -1, z>1

has no solution, where p is an odd prime number.
If (7) has rational integer solutions z and y, then
(v +fVe)ly - fve) =1t
and ged(y + f/c,y — f+/c) = 1. Hence we have
y+fVe=A andy—fye=A,

where A is an ideal of E and A is the conjugate ideal of .A. Accordingly, when the class number of E
is prime to £ we have
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y+fve=of andy - fy/c=a’,
where o is an integer of F and & is the conjugate number of «.. Hence we have

of -af =2fe

Next lemma is analogous to Morishima and Miyoshi[7].
Lemma. o — & is divisible by 2f/c.

Proof. (a/a)" =1 (mod 2f\/c) and from the condition we have ged(pr(2f/c),£) = 1. Hence
we have the lemma. 0
We have next propositions:

Proposition 2 If (7) has rational integer solutions  and y, then we can denote

(a+ fvO) = (a— fvo)' = £2f Ve, (8)
where a is a some rational integer.

Proof. From the lemma we have
0-a
21 e
where ¢ is a unit of E. Moreover & = ¢, i.e. ¢ = £1. Anyway, we can denote a = a % f/c. O
From the above proposition we have

&,

Proposition 3 If the next polynomial with an indeterminante X

L-1)/2

FX)=¢ Y <28i 1)k3X‘—23—1 +1 (9)

=0

has no factor X2 — a®, then (7) has no rational integer solutions, where a is a rational integer.
In reverse

Proposition 4 If (9) has a rational integer solution X = a, then
v? = (a® — k) +k, ged(y,a® —k)=1, Iy Z.
Proof. Since (8) holds, (a + f/c)* = y = f+/c for some rational integer y and from F(a) = 0 we have
ged(y,a®? — k) = 1. O
Hence we have

Theorem 5 All solutions of (7) are obtained by y? = (a® — k)t + k, where a is a rational integer
solution of F(X) = 0.
If £ =3, then F(X) =3X%?+k=+1. Hence
k-1 kE+1 ,
Example 1 Let{=3. If ———( when k=1 (mod 3)) or ——3—( when k= —1 (mod 3)) is

not square, then (7) has no solution.
On the other hand, when _k_;_l or —]HS— 1

1S square,

or

3 2
1 _
y2:<_ﬁff_1) +k:_%A<M) ,

respectively.

If £ =5, then F(X%)=5X2 4 10kX + k* & 1. Hence
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Example 2 Let { = 5. (7) has solutions if and only if 25k* — 5(k? £ 1) = 20k £ 5 = 25b* and
—k +b(or —k —b) is square for some rational integer b.

By using a computer algebra system MuPAD Light we have next proposition.

Proposition 5 For f =1, —11 < ¢ < —1 and prime numbers 3 < £ < 542 as in (7), the polynomial
(9) is irreducible over Q, accordingly (7) has no rational integer solution.
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