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Abstract

   We shall .give criteria on certain diophantine eguations concerning Fermat-like equaiton
algebraic number fields.
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1 Introduction
The following notations will be used:
Let e be a fixed odd prime number, Q be the rational number field, Z be the rational integer ring,
k = Q(<) be the cyclotomic number field defined by < = exp(2Ti/e), E be an algebraic number field
whose discriminant is not divisible by e, SE be the trace with respect to E/Q. Moreover let K = kE,

A= 1-C be the prime ideal in kdividing e,

                               da log M(e" )
                     ia(M) = dv. .=o, (a=i,••-,e'2),

                   leLi(M) = de-ihO.g,-M, (e") .=,+M(le)-1,

be Kummer's logarith
and

2

In th

mic differential quotients

(iltf)
be the

ofM=M(<)

e-th power residue symbol.

A Proposition
is section we shall give a proposition with respect to next diophantine equations :

                       a2 + if +72 = O, gcd(a6ty,e) = 1, (1)

and

where a,

             ,bee + 6e .. tc7e, gcd({be57K, e ) = gcd(ctz,5, K) = 1,

5, 7, K are integers of K And assume that

                T2fmi iii 1 (mod e), T is an integer of K,

                           7T2f-i = 1+ a'e,

                      a+6=-O (mod K) for (2).

(2)
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   Next, iet
                                      .+ <2 fi
                                  A=                                       a+ <rs 7

                         agdvo, 6E! 5o, a' Ei a6 (mod A),

where ao, 5o, ct6 are integers of E.

  In the previous paper [6] we described next lemma :

Lemma Suppose that a, B are integers ofK and gcd(a +6,e) = 1. T7een we have

                       i.(a.++Ck6)st9.,i"la.,.(a,fi) (mode),

                           (a= 1, .",e-2;i= o, ."e-1)

where x.,.(a, 6) is an integer of E and independent of i.

   Moreover if
                            dv =' ao, Bi6o (mod A),

then we have '                                     ao + <6o
                         x.,a(ck,6) EEi la( ao + 6o )                                                (rnod e),

                                 (a= 1, ".e-2)
    '
where ao, 6o are integers ofE.

  From now on suppose that (1) or (2) holds. Then we have easily next proposition by using H.Hasse
([1], [2]) and the above lemma for the numbers A,7r.

        '

Proposition 1 (1) Ifrs =-O (mod T) andgcd(T,a) = 1, then

                           SE (a6 ,,,6+O s,) =- o (mod e)

   (2) lfa-6E!O (mod T) and gcd(T,a) =1, then

                        sE (c26) =- 2SE (a6 ., 6+O s, )
                                                 (mod e) .

                                              '
   (3) lf or+P=- O (mod T), gcd(T,a) =1 andTGE, then

                        SE (a6) ii 2SE (a6 .,6+O 6,) (mod e).

Proof. If rs EE! O (mod T) and gcd(T,a+ ,3) =: 1, then since A Ei 1 (mod T) and A is e-th power of
an ideal in K we have
                            (ti) - i and ("21i-i) ., ,

Hence from the reciprocity law we have

                          "= (III) = (Teiirri) (,,,lll-,)'i

Accordingly

           SE (a6ii(A)) ii SE (cM61i (a.++<2B) - dv61i (X++Cf)) io (mod e),
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and since

11 ( a+<25

Il (
a+5
a+ <6

)
)

i xi,o (a, fl) + 2xi,i (a, 6)

dv +3
i xi,o(a,B)+xi,i(ct,5)

(mod e) ,

(mod e) ,

we have

When TI (a - 6)

SE (a6 6o

and gcd(T, ck)

       ao + 5o

= 1, since

        1+ C2
    A=: ==s      - 1+C

)EO (mod e) .

(mod T)

is a unit we have

(4 )- (;)- (Te;-i)Ni (r

On the other hand from

                      (#)=(T

we have the desired result.
  If Tl (a +5), TE E, gcd(T, ct) = 1,

ef-1

6

e4-,)-i = (T

) = ,L,,- -5

we have
      (#)-(;)-(

   ,. ({;-,i) (Tel-i)

On the other hand since

      (ili) (Telill-,)-i

2-1

T

Ef-1

A
) (.e(il-i

SE (a'o)•

) (;)

)-i

since A iii 1+< s (mod e)

6= 2-ie := 1- SA,

  (#)

-i  = (T

(T

)
6

ef-1

)-i

is a unit and

we have the desired result.

(Tef6

-i
)

--

(Tef-1

A

2f-1

6

) (.elill-i

(  6
Tef-1

 -1) =<L,L=-

 -1) ,. <R, RE SE (a6

1

2

6o

SE (a

ao + 6o
)

6) (mod e).

(mod e),

D

3 The Equation x3 + y3 == ze

In this section we treat the next diophantine equation over the ring Z:

                             '                         x3 +y3 = z2, ryz iL O, gcd(m,y) = 1,

where e is a fixed prime number. Mordell [4] showed solutions of the above for e = 2,
Nagell [5] proved that the above has no solutions such that y = Å}1.
  We shall consider (3) fore> 3.
  In this subject let p be a fixed primitive cubic root of unity and Ao = 1 - p.
   If z is not divisible by 3 and z#O (mod e), then we have from (3)

                        x+y:= ce, x+yp=ae, ged(ca, 3e) =1

where c,a are integers in Q and Q(p), respectively.

Accordingiy we have
                        ce + (pea)! + (pedv)e = o, gcd(ccte,3e) = 1,

          (3)

.and when e > 3

(4)
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where g denotes the conjugate number of *.
   In (4) let 7r = Ao, and using (2) of proposition

Theorem i if (3) has solutions such that xy
32-i i 1 (mod e2).

1

f

we have

o (mod e2), z t O (mod e) and 3M z, then

4 The Equation x4-y4= ze
In this section we consider the next diophantine equation ove the ring Z:

                          x4-y4=ze, xyzlo, gcd(x,y)=1, (5)
                                                ..•/ ••where e is a fixed prime number. Fermat and Euler proved that the above has no solutions for e = 4.
Mordell [4] proved that the above has no solutions fore== 2.
   In this subject let i = A and Ao = 1- i.
   If z is odd and zfO (mod e), then we have from (5)

                   x-y= ce, x+y= d2, x+ yi = cee, gcd(cd(be,2e) = 1,

where c,d and a are integers in Q and Q(i), respectively, Accordingly we have

                         ce+(die)2 ,. Ao(iea)e, gcd(cda,2e)=1. (6)
   In (6) let T = Ao, and using (3) of proposition 1 we have

Theorem 2 if (5) has sotutions such thatxyf0 (mod e2),zfO (mod e) andzis odd, then
2e-1 E 1 (mod e2).

   In 1993 H. Darmon[3] proved that

Theorem 3 Suppose that the Shirnura- Taniyarna conjecture is true, and lete> 10. Then equation
(5) has no solution ofe i!i 1 (mod 4), and has no solution with z even.

   Recently, the above eonjecture has been proved.

5 The Equation y2 == sce+k

In this section E -- Q(vik) be a quadratic field, where k is a rational integer. Moreover h, qE denote

the class number of E and Euler's phi function over E, respectively. And we investigate the rational
integer solutions of following hyperelliptic equation:

                               y2=xe+k, gcd(x,y)=1, (7)
wherek is a negative rational integer, e> 1be an odd, gcd(k,e) = 1, k il 1 (mod 8), gcd(h,e) = 1
and gcd(goE(2k),e) = 1. Let k =z f2c, f > O, where c is the square free rational integer. Then
E-Q(VZi).
   (7) is called the Mordell equation[4] if e == 3.

   Next theorem is due to Lebesgue(cf. [4], p.301).

Theorem 4 Diophantine eguation
                                  y2 =xP -1, x>1

has no solution, where p is an odd prime number.

   If (7) has rational integer solutions x and y, then

                               (y +fviE) (y - fVE}) = xe

and gcd(y +fvlE,y -fVTc) r 1. Hence we have

                            y+fvE= Ae and y-fVE = Ae,

where .4 is an ideaj of E and A is the conjugate ideal of A. Accordingly, when the class number of E
is prime to e we have

4



                                  Diophantine Equations

                            y+fVE = ae and y -fv'E = ae,

where a is an integer of E and ct is the conjugate number of (tz. Hence we have

                                   .e - ae = 2fvZ.

   Next Iemrna is analogous to Morishima and Miyoshil71 .

Lemma. a - a is divisible by 2fv'Tc.

Proof. (a/a)e !i 1 (mod2fVZi) and from the condition we have gcd(qE(2fvlE),e) = 1. Hence

   We have next propositions:

Proposition 2 lf (7) has rational anteger solutions x and y, then we can denote

                           (a+fVE)2-(a-fVE)e=Å}2fVE, (8)
where a is a some rational integer.

Proof. From the lemma we have '
                                     ctz -a
                                           =E7                         . 2f viE
wheres is a unit of E. Moreover e-= s, i.e. s=Å}1. Anyway, we can denote a=aÅ}fVi. D
   From the above proposition we have

Proposition 3 lf the next polynomial ivith an indeterminante X

                        F(x)=((2Eillif2 (2, e+ i) ksxe-2s-il Å}i (g)

has no factor X2 - a2, then (7) has no rational integer solutions, where a is a rational integer.

   In reverse

Proposition 4 If (9) has a rationat integer sotution X = a, then

                      y2 = (a2 - k)e +k, gcd(y,a2 - k) == 1, ]y E Z•
     '
Proof. Since (8) holds, (a + fV?5)Z = yÅ} fVi} for some rational integer y and from F(a) =: O we have

   Hence we have

[[]heorem 5 All solutions of (7) are obtained by y2 =: (a2 - k)e + k, where G is a rational integer
solution of F(X) = O.

   If e == 3, then I7(X) = 3X2 +kÅ}1. Hence

                                                                   '                         k-1                                                       k+1Example 1 Lete= 3. If - 3 ( when k Eii 1 (mod 3)) or - 3 ( when k! -1 (mod 3)) is
not square, then (7) has no solution.

                          k-1 k+1.   On the other hand, when- 3 or- 3 2s sguare,

                       y2 = (- 4ki 1)3 +k = -kg 1 (8k 3+ 1)2

or
                       y2 = (- 4k 3+ i)3+k .. mkgi (sk 3- i)2,

respectivelgy.

   If e := 5, then F(XI) = 5X2 + 10kX + k2 Å} 1. Hence
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Example 2 Let e =: 5. (7) has solutions if and only if 25k2 - 5(k2 Å} 1) = 20k2 Å}5 = 25b2 and
-k + b(or - k - b) is square for some rational integer b.

   By using a computer algebra system MuPAD Light we have next proposition.

Proposition 5 Forf= 1, -11 < c< -1 and prime nurnbers 3 <e < 542 as in (7), the polynomial
(9) is irreducible over Q, accordingly (7) has no 7utional integer sotution.
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