Fermat-like Diophantine Equations

Toshiaki Окамото
Department of Mathematics, Faculty of Education
Ehime University, Matsuyama, 790-8577, Japan
(Received June 1, 2000)

Abstract

We shall give criteria on certain diophantine equations concerning Fermat-like equaiton over algebraic number fields.

Keywords: diophantine equaitons, Fermat.

1 Introduction

The following notations will be used:
Let ℓ be a fixed odd prime number, \mathbf{Q} be the rational number field, \mathbf{Z} be the rational integer ring, $k=\mathbf{Q}(\zeta)$ be the cyclotomic number field defined by $\zeta=\exp (2 \pi i / \ell), E$ be an algebraic number field whose discriminant is not divisible by ℓ, S_{E} be the trace with respect to E / \mathbf{Q}. Moreover let $K=k E$, $\lambda=1-\zeta$ be the prime ideal in k dividing ℓ,

$$
\begin{aligned}
\mathrm{l}_{a}(M) & =\left.\frac{d^{a} \log M\left(e^{v}\right)}{d v^{a}}\right|_{v=0}, \quad(a=1, \ldots, \ell-2), \\
1_{\ell-1}(M) & =\left.\frac{d^{\ell-1} \log M\left(e^{v}\right)}{d v^{\ell-1}}\right|_{v=0}+\frac{M(1)-1}{\ell}
\end{aligned}
$$

be Kummer's logarithmic differential quotients of $M=M(\zeta)$
and

$$
\left(\frac{M}{N}\right) \text { be the } \ell \text {-th power residue symbol. }
$$

2 A Proposition

In this section we shall give a proposition with respect to next diophantine equations :

$$
\begin{equation*}
\alpha^{\ell}+\beta^{\ell}+\gamma^{\ell}=0, \quad \operatorname{gcd}(\alpha \beta \gamma, \ell)=1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{\ell}+\beta^{\ell}=\kappa \gamma^{\ell}, \quad \operatorname{gcd}(\alpha \beta \gamma \kappa, \ell)=\operatorname{gcd}(\alpha, \beta, \kappa)=1, \tag{2}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \kappa$ are integers of K. And assume that

$$
\begin{gathered}
\pi^{\ell^{f}-1} \equiv 1 \quad(\bmod \ell), \pi \text { is an integer of } K, \\
\pi^{\ell^{f}-1}=1+\alpha^{\prime} \ell \\
\alpha+\beta \equiv 0 \quad(\bmod \kappa) \text { for }(2) .
\end{gathered}
$$

Next, let

$$
\begin{gathered}
A=\frac{\alpha+\zeta^{2} \beta}{\alpha+\zeta \beta} \\
\alpha \equiv \alpha_{0}, \beta \equiv \beta_{0}, \alpha^{\prime} \equiv \alpha_{0}^{\prime} \quad(\bmod \lambda)
\end{gathered}
$$

where $\alpha_{0}, \beta_{0}, \alpha_{0}^{\prime}$ are integers of E.
In the previous paper [6] we described next lemma :
Lemma Suppose that α, β are integers of K and $\operatorname{gcd}(\alpha+\beta, \ell)=1$. Then we have

$$
\begin{gathered}
l_{a}\left(\frac{\alpha+\zeta^{i} \beta}{\alpha+\beta}\right) \equiv \sum_{\nu=0}^{a} i^{\nu} x_{a, \nu}(\alpha, \beta) \quad(\bmod \ell) \\
(a=1, \ldots, \ell-2 ; i=0, \ldots, \ell-1)
\end{gathered}
$$

where $x_{a, \nu}(\alpha, \beta)$ is an integer of E and independent of i.
Moreover if

$$
\alpha \equiv \alpha_{0}, \quad \beta \equiv \beta_{0} \quad(\bmod \lambda)
$$

then we have

$$
\begin{gathered}
x_{a, a}(\alpha, \beta) \equiv 1_{a}\left(\frac{\alpha_{0}+\zeta \beta_{0}}{\alpha_{0}+\beta_{0}}\right) \quad(\bmod \ell), \\
(a=1, \ldots, \ell-2)
\end{gathered}
$$

where α_{0}, β_{0} are integers of E.

From now on suppose that (1) or (2) holds. Then we have easily next proposition by using H. Hasse ([1], [2]) and the above lemma for the numbers A, π.

Proposition 1 (1) If $\beta \equiv 0(\bmod \pi)$ and $\operatorname{gcd}(\pi, \alpha)=1$, then

$$
S_{E}\left(\alpha_{0}^{\prime} \frac{\beta_{0}}{\alpha_{0}+\beta_{0}}\right) \equiv 0 \quad(\bmod \ell)
$$

(2) If $\alpha-\beta \equiv 0(\bmod \pi)$ and $\operatorname{gcd}(\pi, \alpha)=1$, then

$$
S_{E}\left(\alpha_{0}^{\prime}\right) \equiv 2 S_{E}\left(\alpha_{0}^{\prime} \frac{\beta_{0}}{\alpha_{0}+\beta_{0}}\right) \quad(\bmod \ell)
$$

(3) If $\alpha+\beta \equiv 0(\bmod \pi), \operatorname{gcd}(\pi, \alpha)=1$ and $\pi \in E$, then

$$
S_{E}\left(\alpha_{0}^{\prime}\right) \equiv 2 S_{E}\left(\alpha_{0}^{\prime} \frac{\beta_{0}}{\alpha_{0}+\beta_{0}}\right) \quad(\bmod \ell)
$$

Proof. If $\beta \equiv 0(\bmod \pi)$ and $\operatorname{gcd}(\pi, \alpha+\beta)=1$, then since $A \equiv 1(\bmod \pi)$ and A is ℓ-th power of an ideal in K we have

$$
\left(\frac{A}{\pi}\right)=1 \text { and }\left(\frac{\pi^{\ell^{f}-1}}{A}\right)=1
$$

Hence from the reciprocity law we have

$$
1=\left(\frac{A}{\pi}\right)=\left(\frac{\pi^{\ell^{f}-1}}{A}\right)\left(\frac{A}{\pi^{\ell^{f}-1}}\right)^{-1}
$$

Accordingly

$$
S_{E}\left(\alpha_{0}^{\prime} \mathbf{l}_{1}(A)\right) \equiv S_{E}\left(\alpha_{0}^{\prime} l_{1}\left(\frac{\alpha+\zeta^{2} \beta}{\alpha+\beta}\right)-\alpha_{0}^{\prime} l_{1}\left(\frac{\alpha+\zeta \beta}{\alpha+\beta}\right)\right) \equiv 0 \quad(\bmod \ell)
$$

and since

$$
\begin{aligned}
\mathrm{l}_{1}\left(\frac{\alpha+\zeta^{2} \beta}{\alpha+\beta}\right) & \equiv x_{1,0}(\alpha, \beta)+2 x_{1,1}(\alpha, \beta) \quad(\bmod \ell) \\
\mathrm{I}_{1}\left(\frac{\alpha+\zeta \beta}{\alpha+\beta}\right) & \equiv x_{1,0}(\alpha, \beta)+x_{1,1}(\alpha, \beta) \quad(\bmod \ell)
\end{aligned}
$$

we have

$$
S_{E}\left(\alpha_{0}^{\prime} \frac{\beta_{0}}{\alpha_{0}+\beta_{0}}\right) \equiv 0 \quad(\bmod \ell) .
$$

When $\pi \mid(\alpha-\beta)$ and $\operatorname{gcd}(\pi, \alpha)=1$, since

$$
A \equiv \frac{1+\zeta^{2}}{1+\zeta}=\varepsilon \quad(\bmod \pi)
$$

is a unit we have

$$
\left(\frac{A}{\pi}\right)=\left(\frac{\varepsilon}{\pi}\right)=\left(\frac{\varepsilon}{\pi^{\ell f}-1}\right)^{-1}\left(\frac{\pi^{\ell f}-1}{\varepsilon}\right)=\zeta^{L}, L=\frac{1}{2} S_{E}\left(\alpha_{0}^{\prime}\right) .
$$

On the other hand from

$$
\left(\frac{A}{\pi}\right)=\left(\frac{A}{\pi^{\ell^{f}-1}}\right)^{-1}=\left(\frac{\pi^{e^{f}-1}}{A}\right)\left(\frac{A}{\pi^{\ell f-1}}\right)^{-1}
$$

we have the desired result.
If $\pi \mid(\alpha+\beta), \pi \in E, \operatorname{gcd}(\pi, \alpha)=1$, since $A \equiv 1+\zeta=\varepsilon(\bmod \ell)$ is a unit and

$$
\delta=2^{-1} \varepsilon=1-\frac{1}{2} \lambda,
$$

we have

$$
\begin{aligned}
& \text { have }\left(\frac{A}{\pi}\right)=\left(\frac{\varepsilon}{\pi}\right)=\left(\frac{2^{-1}}{\pi}\right)\left(\frac{\varepsilon}{\pi}\right)=\left(\frac{\delta}{\pi}\right)=\left(\frac{\delta}{\pi^{\ell^{f}-1}}\right)^{-1} \\
& =\left(\frac{\pi^{\ell^{f}-1}}{2^{-1}}\right)\left(\frac{\pi^{\ell^{f}-1}}{\varepsilon}\right)\left(\frac{\delta}{\pi^{\ell f}-1}\right)^{-1}=\left(\frac{\pi^{\ell^{f}-1}}{\delta}\right)\left(\frac{\delta}{\pi^{\ell^{f}-1}}\right)^{-1}=\zeta^{L}, L \equiv \frac{1}{2} S_{E}\left(\alpha_{0}^{\prime}\right) \quad(\bmod \ell) .
\end{aligned}
$$

On the other hand since

$$
\left(\frac{A}{\pi}\right)=\left(\frac{A}{\pi^{\ell f}-1}\right)^{-1}=\left(\frac{\pi^{\ell^{f}-1}}{A}\right)\left(\frac{A}{\pi^{\ell f}-1}\right)^{-1}=\zeta^{R}, R \equiv S_{E}\left(\alpha_{0}^{\prime} \frac{\beta_{0}}{\alpha_{0}+\beta_{0}}\right) \quad(\bmod \ell),
$$

we have the desired result.

3 The Equation $x^{3}+y^{3}=z^{\ell}$

In this section we treat the next diophantine equation over the ring \mathbf{Z} :

$$
\begin{equation*}
x^{3}+y^{3}=z^{l}, x y z \neq 0, \operatorname{gcd}(x, y)=1 \tag{3}
\end{equation*}
$$

where ℓ is a fixed prime number. Mordell [4] showed solutions of the above for $\ell=2$, and when $\ell>3$ Nagell [5] proved that the above has no solutions such that $y= \pm 1$.

We shall consider (3) for $\ell>3$.
In this subject let ρ be a fixed primitive cubic root of unity and $\lambda_{0}=1-\rho$.
If z is not divisible by 3 and $z \not \equiv 0(\bmod \ell)$, then we have from (3)

$$
x+y=c^{\ell}, x+y \rho=\alpha^{\ell}, \operatorname{gcd}(c \alpha, 3 \ell)=1
$$

where c, α are integers in \mathbf{Q} and $\mathbf{Q}(\rho)$, respectively.
Accordingly we have

$$
\begin{equation*}
c^{\ell}+\left(\rho^{\ell} \alpha\right)^{\ell}+\left(\overline{\rho^{\ell} \alpha}\right)^{\ell}=0, \operatorname{gcd}(c \alpha, 3 \ell)=1, \tag{4}
\end{equation*}
$$

where $\bar{*}$ denotes the conjugate number of $*$.
In (4) let $\pi=\lambda_{0}$, and using (2) of proposition 1 we have
Theorem 1 If (3) has solutions such that $x y \not \equiv 0\left(\bmod \ell^{2}\right), z \not \equiv 0(\bmod \ell)$ and $3 \nmid z$, then $3^{\ell-1} \equiv 1 \quad\left(\bmod \ell^{2}\right)$.

4 The Equation $x^{4}-y^{4}=z^{\ell}$

In this section we consider the next diophantine equation ove the ring \mathbf{Z} :

$$
\begin{equation*}
x^{4}-y^{4}=z^{\ell}, x y z \neq 0, \operatorname{gcd}(x, y)=1 \tag{5}
\end{equation*}
$$

where ℓ is a fixed prime number. Fermat and Euler proved that the above has no solutions for $\ell=4$. Mordell [4] proved that the above has no solutions for $\ell=2$.

In this subject let $i=\sqrt{-1}$ and $\lambda_{0}=1-i$.
If z is odd and $z \not \equiv 0(\bmod \ell)$, then we have from (5)

$$
x-y=c^{\ell}, x+y=d^{\ell}, x+y i=\alpha^{\ell}, \operatorname{gcd}(c d \alpha, 2 \ell)=1
$$

where c, d and α are integers in \mathbf{Q} and $\mathbf{Q}(i)$, respectively. Accordingly we have

$$
\begin{equation*}
c^{\ell}+\left(d i^{\ell}\right)^{\ell}=\lambda_{0}\left(i^{\ell} \alpha\right)^{\ell}, \operatorname{gcd}(c d \alpha, 2 \ell)=1 \tag{6}
\end{equation*}
$$

In (6) let $\pi=\lambda_{0}$, and using (3) of proposition 1 we have
Theorem 2 If (5) has solutions such that $x y \not \equiv 0\left(\bmod \ell^{2}\right), z \not \equiv 0(\bmod \ell)$ and z is odd, then $2^{\ell-1} \equiv 1 \quad\left(\bmod \ell^{2}\right)$.

In 1993 H. Darmon[3] proved that
Theorem 3 Suppose that the Shimura-Taniyama conjecture is true, and let $\ell>10$. Then equation (5) has no solution if $\ell \equiv 1(\bmod 4)$, and has no solution with z even.

Recently, the above conjecture has been proved.

5 The Equation $y^{2}=x^{\ell}+k$

In this section $E=\mathbf{Q}(\sqrt{k})$ be a quadratic field, where k is a rational integer. Moreover h, φ_{E} denote the class number of E and Euler's phi function over E, respectively. And we investigate the rational integer solutions of following hyperelliptic equation:

$$
\begin{equation*}
y^{2}=x^{\ell}+k, \operatorname{gcd}(x, y)=1 \tag{7}
\end{equation*}
$$

where k is a negative rational integer, $\ell>1$ be an odd, $\operatorname{gcd}(k, \ell)=1, k \neq 1(\bmod 8), \operatorname{gcd}(h, \ell)=1$ and $\operatorname{gcd}\left(\varphi_{E}(2 k), \ell\right)=1$. Let $k=f^{2} c, f>0$, where c is the square free rational integer. Then $E=\mathbf{Q}(\sqrt{c})$.
(7) is called the Mordell equation[4] if $\ell=3$.

Next theorem is due to Lebesgue(cf.[4], p.301).
Theorem 4 Diophantine equation

$$
y^{2}=x^{p}-1, x>1
$$

has no solution, where p is an odd prime number.
If (7) has rational integer solutions x and y, then

$$
(y+f \sqrt{c})(y-f \sqrt{c})=x^{\ell}
$$

and $\operatorname{gcd}(y+f \sqrt{c}, y-f \sqrt{c})=1$. Hence we have

$$
y+f \sqrt{c}=\mathcal{A}^{\ell} \text { and } y-f \sqrt{c}=\overline{\mathcal{A}}^{\ell}
$$

where \mathcal{A} is an ideal of E and $\overline{\mathcal{A}}$ is the conjugate ideal of \mathcal{A}. Accordingly, when the class number of E is prime to ℓ we have

$$
y+f \sqrt{c}=\alpha^{\ell} \text { and } y-f \sqrt{c}=\bar{\alpha}^{\ell}
$$

where α is an integer of E and $\bar{\alpha}$ is the conjugate number of α. Hence we have

$$
\alpha^{l}-\bar{\alpha}^{l}=2 f \sqrt{c}
$$

Next lemma is analogous to Morishima and Miyoshi[7].
Lemma. $\alpha-\bar{\alpha}$ is divisible by $2 f \sqrt{c}$.
Proof. $(\alpha / \bar{\alpha})^{\ell} \equiv 1(\bmod 2 f \sqrt{c})$ and from the condition we have $\operatorname{gcd}\left(\varphi_{E}(2 f \sqrt{c}), \ell\right)=1$. Hence we have the lemma.

We have next propositions:
Proposition 2 If (7) has rational integer solutions x and y, then we can denote

$$
\begin{equation*}
(a+f \sqrt{c})^{\ell}-(a-f \sqrt{c})^{\ell}= \pm 2 f \sqrt{c} \tag{8}
\end{equation*}
$$

where a is a some rational integer.
Proof. From the lemma we have

$$
\frac{\alpha-\bar{\alpha}}{2 f \sqrt{c}}=\varepsilon
$$

where ε is a unit of E. Moreover $\bar{\varepsilon}=\varepsilon$, i.e. $\varepsilon= \pm 1$. Anyway, we can denote $\alpha=a \pm f \sqrt{c}$.
From the above proposition we have
Proposition 3 If the next polynomial with an indeterminante X

$$
\begin{equation*}
F(X)=\left\{\sum_{s=0}^{(\ell-1) / 2}\binom{\ell}{2 s+1} k^{s} X^{\ell-2 s-1}\right\} \pm 1 \tag{9}
\end{equation*}
$$

has no factor $X^{2}-a^{2}$, then (7) has no rational integer solutions, where a is a rational integer.
In reverse
Proposition 4 If (9) has a rational integer solution $X=a$, then

$$
y^{2}=\left(a^{2}-k\right)^{\ell}+k, \operatorname{gcd}\left(y, a^{2}-k\right)=1, \exists y \in \mathbf{Z}
$$

Proof. Since (8) holds, $(a+f \sqrt{c})^{\ell}=y \pm f \sqrt{c}$ for some rational integer y and from $F(a)=0$ we have $\operatorname{gcd}\left(y, a^{2}-k\right)=1$.

Hence we have
Theorem 5 All solutions of (7) are obtained by $y^{2}=\left(a^{2}-k\right)^{\ell}+k$, where a is a rational integer solution of $F(X)=0$.

If $\ell=3$, then $F(X)=3 X^{2}+k \pm 1$. Hence
Example 1 Let $\ell=3$. If $-\frac{k-1}{3}($ when $k \equiv 1(\bmod 3))$ or $-\frac{k+1}{3}($ when $k \equiv-1(\bmod 3))$ is not square, then (7) has no solution.

On the other hand, when $-\frac{k-1}{3}$ or $-\frac{k+1}{3}$ is square,

$$
y^{2}=\left(-\frac{4 k-1}{3}\right)^{3}+k=-\frac{k-1}{3} \cdot\left(\frac{8 k+1}{3}\right)^{2}
$$

or

$$
y^{2}=\left(-\frac{4 k+1}{3}\right)^{3}+k=-\frac{k+1}{3} \cdot\left(\frac{8 k-1}{3}\right)^{2}
$$

respectively.
If $\ell=5$, then $F\left(X^{\frac{1}{2}}\right)=5 X^{2}+10 k X+k^{2} \pm 1$. Hence

Example 2 Let $\ell=5$. (7) has solutions if and only if $25 k^{2}-5\left(k^{2} \pm 1\right)=20 k^{2} \pm 5=25 b^{2}$ and $-k+b($ or $-k-b)$ is square for some rational integer b.

By using a computer algebra system MuPAD Light we have next proposition.
Proposition 5 For $f=1,-11<c<-1$ and prime numbers $3<\ell<542$ as in (7), the polynomial (9) is irreducible over \mathbf{Q}, accordingly (7) has no rational integer solution.

References

[1] H. Hasse, Das allgemeine Reziprozitötsgesetz der ℓ-ten Potenzreste für beliebige, zu ℓ prime Zahlen in gewissen Oberkörpern des Körpers der ℓ-ten Einheitswurzeln, J. reine angew. Math. 154(1925), 199 - 214.
[2] H. Hasse, Zahlbericht, Teil II, Physica-Verlag.Würzburg-Wien, 1970.
[3] H. Darmon, The equation $x^{4}-y^{4}=z^{p}$, C.R. Math. Rep. Acad. Sci. Canada, Vol.15,No.6(1993), 286-290.
[4] L. J. Mordell, Diophantine Equations, Academic Press, London and New York, 1969.
[5] T. Nagell, Des équations indéterminées $x^{2}+x+1=y^{n}$ et $x^{2}+x+1=3 y^{n}$. Norsk. Mat. Forenings Skr. Series I, 2(1921), 12-14.
[6] T. Okamoto, Fermat's Last Theorem over Algebraic Number Fields, Mem. Fac. Educ. Ehime Univ., Nat. Sci., Vol. 14, No.1(1993), 35-40.
[7] T. Morishima and T. Miyoshi, ON THE DIOPHANTINE EQUATION $x^{p}+y^{p}=c z^{p}$, Proc. Amer. Math. Soc. Vol.16, No.4(1965), $833-836$.

