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Abstract
Myeloid-derived suppressor cells (MDSCs) are potent suppressors of T cell immunity in

tumors and inflammatory diseases. They are identified by surface expression of

CD11b+Gr1+ in mice, and CD11b+Gr1+ cells accumulate in the livers of obese mice. How-

ever, many myeloid cells share these CD11b+Gr1+ markers. Accordingly, the aim of this

study was to identify the authentic phenotype of MDSCs and investigate their functions in

non-alcoholic fatty liver disease (NAFLD). C57BL/6J mice were divided into 2 diet groups: a

normal control group and high-fat group to induce NAFLD. We demonstrated that monocytic

CD11b+Gr1dim cells could be further divided into 2 populations based on side scatter (SSC)

during flow cytometry. We found that SSClowCD11b+Gr1dim cells accumulated in the livers

of NAFLD mice over time, and that these cells were recruited by the chemokine CCL2 and

its receptor CCR2 and might expand in the liver via macrophage colony-stimulating factor

stimulation. Furthermore, SSClowCD11b+Gr1dim cells had a strong suppressive ability on T

cells; this effect was not observed for SSChighCD11b+Gr1dim cells, and was dependent on

nitric oxide production by inducible nitric oxide synthase. Our findings demonstrate that

SSClowCD11b+Gr1dim cells represent authentic MDSCs in NAFLD livers, and might serve

an important negative feedback function in liver inflammation.

Introduction
Non-alcoholic fatty liver disease (NAFLD) is currently one of the most commonly diagnosed
liver diseases worldwide, and includes a wide spectrum of liver pathologies, including simple
steatosis, steatohepatitis, liver fibrosis, and cirrhosis [1, 2]. Altered immunomodulation is
thought to contribute to the pathogenesis of NAFLD [3]; the T cell-mediated immune response
is considered to play a critical role in the associated liver injury [4]. It has been observed that
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the number of CD4+CD25+ Treg cells is reduced in obese livers, which leads to impaired sup-
pression of inflammatory responses [5]. M2 macrophages, also categorized as immunosuppres-
sive cells, play a role in limiting liver inflammation and injury in NAFLD [6].

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature
myeloid cells and comprise myeloid precursors of granulocytes, macrophages, and dendritic
cells. They accumulate in tumor-bearing hosts, trauma sites, and infections to suppress
immune responses via arginase-1, inducible nitric oxide synthase (iNOS), or reactive oxygen
species (ROS). In mice, MDSCs were originally defined as CD11b+Gr1+ cells, whereas in
humans, these cells are mainly defined as CD11b+CD33+CD15+HLA-DR- or CD11b+CD33+-

CD14+HLA-DR-/low cells [7, 8]. However, a specific marker for MDSCs has not yet been
described because other myeloid cells share their surface molecules, such as neutrophils, mono-
cytes, and myeloid dendritic cells. Therefore, the most reliable feature that can be used to dis-
tinguish MDSCs from other myeloid cells appears to be their suppressive function.

Some studies have indicated that MDSCs play a role in hepatocellular carcinoma (HCC),
hepatitis, or liver fibrosis both in patients and mouse models [9–13]. Recently, MDSCs have
been found to accumulate in the livers of obese mice to suppress inflammation and maintain
liver homeostasis; these MDSCs were identified as CD11b+Gr1+ [14, 15]. The Gr1 marker is a
composite epitope between Ly6C and Ly6G antigens, and MDSCs can be further subdivided
into Ly6C+ monocytic and Ly6G+ granulocytic MDSCs using these 2 antigens [12, 16]. How-
ever, other studies have reported that liver CD11b+Ly6C+ or CD11b+Gr1+ cells, categorized as
macrophages, monocytes, or immature myeloid cells, contribute to liver inflammation [17–
19], suggesting that the phenotype of liver MDSCs needs further investigation and
specification.

In this study, we successfully elucidated the profile of authentic monocytic MDSCs that
accumulated in the livers of NAFLD model mice and assess their function with respect to T cell
suppression and their role in the pathogenesis of liver inflammation in NAFLD.

Materials and Methods

Mice
Five-week-old male C57BL/6J and C3H/HeN mice were purchased from CLEA Japan (Tokyo,
Japan). After 1 week of acclimatization, C57BL/6J mice were divided into 2 groups. The control
group was fed a normal diet (13% fat, 26% protein, and 60% carbohydrates; 360 kcal/100 g).
The NAFLD group was fed a high-fat diet (60% fat, 20% protein, and 20% carbohydrates; 520
kcal/100 g; D12492; Research Diets, New Brunswick, NJ, USA). The mice were fed these diets
for either 3 or 12 months. The NAFLD group fed the high-fat diet for 12 months showed more
severe steatosis than those fed the high-fat diet for 3 months. All animals received humane
care, and the study protocols were approved by the Institutional Animal Care and Use Com-
mittee of Ehime University (No. 05-TI-72-16). Following sacrifice, 10 mg of liver was har-
vested, submerged in RNA-later (Life Technologies, Carlsbad, CA, USA), and stored at –20°C.
Some liver tissue samples were stored at –80°C.

Cell isolation
Liver non-parenchymal cells and splenocytes were prepared using the procedure described by
Chen et al. [20]. T cells were isolated from C57BL/6J mouse splenocytes using the mouse Pan T
Cell Isolation Kit II (Miltenyi Biotec, Bergisch Gladbach, Germany). Dendritic cells were iso-
lated from C3H/HeN mouse splenocytes using mouse CD11c Microbeads (Miltenyi Biotec),
using an autoMACS Pro Separator (Miltenyi Biotec).
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Flow cytometry and cell sorting
Liver non-parenchymal cell suspensions were pre-incubated with anti-CD16/CD32 (clone
93) to block non-specific FcRγ binding, and then stained with mouse monoclonal antibodies
(mAbs) against the following: CD45 (30-F11), Gr1 (RB6-8C5), CD11b (M1/70), Ly6G
(1A8), Ly6C (AL-21), CD11c (HL3), CD80 (16-10A1), CD31 (MEC13.3), iNOS (6/iNOS/
NOS Type II), and interferon (IFN)-γ (XMG 1.2) (all from BD Biosciences, San Jose, CA,
USA), or F4/80 (BM8) (BioLegend, San Diego, CA, USA), CD115 (AFS98) (TONBO Biosci-
ences, San Diego, CA, USA), CD274 (MIH6) (AbD Serotec, Kidlington, UK), and CCR2
(R&D Systems, Minneapolis, MN, USA). For intracellular cytokine staining, cells were lysed
using a Fixation and Permeabilization Kit (Invitrogen, Carlsbad, CA, USA) based on the
manufacturer's instructions. Flow cytometry was performed on a Becton Dickinson Fluores-
cence Activated Cell Sorter (FACS) Calibur using CellQuest Software (Becton Dickinson,
Franklin Lakes, NJ, USA). Data were analyzed using FlowJo (Tree Star, Ashland, OR, USA).
Liver non-parenchymal cells were stained with mAbs specific to CD11b and Gr1, and cell
scatter (SSC)highCD11b+Gr1dim cells and SSClowCD11b+Gr1dim cells were sorted using the
BD FACSAria™ Cell Sorting System (Becton Dickinson). The purity of all sorted cells was
greater than 98%.

MDSC functional assay
To investigate the suppressive function of MDSCs, T cells were stained with 10 μM 5-(and-
6)-carboxy-fluorescein diacetate, succinimidyl ester (CFSE) according to the manufacturer`s
instructions (Molecular Probes, Carlsbad, CA, USA). CFSE-labeled T cells were cultured
with Dynabeads Mouse T-Activator CD3/CD28 (Life Technologies) in the absence or pres-
ence of sorted SSChighCD11b+Gr1dim cells or SSClowCD11b+Gr1dim cells from the livers of
NAFLD mice. After 60 h, T cell proliferation was analyzed by flow cytometry. Division indi-
ces were calculated using FlowJo software. To determine the roles of iNOS, ROS, and arginase
1 in T cell proliferation, 0.5 μM L-N

6-(1-iminoethyl) lysine dihydrochloride (L-NIL; Sigma-
Aldrich, Gillingham, UK), 1000 U/mL catalase (Sigma-Aldrich), or 1 mM N-hydroxy-nor-
arginine (nor-NOHA; Cayman Chemical, Ann Arbor, MI, USA), was added at the start of
the cultures, respectively. In some experiments, T cells were stimulated with phorbol 12-myr-
istate 13-acetate (50 ng/mL; Sigma) and ionomycin (1 μg/mL; Sigma). Allogenic mixed lym-
phocyte reactions were used to confirm the suppressive ability of MDSCs. T cells from
C57BL/6J mice were mixed with dendritic cells from C3H/HeN mice and co-cultured in the
absence or presence of sorted SSChighCD11b+Gr1dim cells or SSClowCD11b+Gr1dim cells from
the livers of NAFLD mice at different ratios. [3H]-thymidine (1.0 μCi/mL; Amersham Biosci-
ences, Buckinghamshire, UK) was diluted in sterile RPMI-1640 and added to the cultures for
the last 16 h. The stimulation index was calculated using a formula described previously [20].
All culturing was performed in 96-well U-bottomed plates (Corning Inc., New York, NY,
USA).

Nitrite and CCL2 determination
The NO concentration in co-culture supernatants was measured using the Griess Reagent
System (Promega, Madison, WI, USA) according to manufacturer’s protocol. For CCL2
determination, protein was extracted from the liver lysate using RIPA buffer supplemented
with protease inhibitor cocktail. CCL2 expression was investigated with a RayBio Mouse
CCL2 ELISA Kit (RayBiotech, Norcross, GA, USA) according to the manufacturer's
protocol.
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In vitroMDSCmigration assay
Isolated SSClowCD11b+Gr1dim cells from the livers of NAFLD mice were resuspended at
2 × 106 cells/mL in serum-free RPMI 1640 media. An aliquot of 150 μL of medium containing
0 ng/mL, 10 ng/mL, or 50 ng/mL murine recombinant chemokine ligand 2 (CCL2) (R&D) was
added to the feeder tray. Then, an aliquot (100 μL) of the suspension was added to the mem-
brane chamber of the CytoSelect™ 96-Well Cell Migration Assay (5 μm, Fluorometric Format;
Cell Biolabs, San Diego, CA, USA). The kit was incubated at 37°C for 2 h in a 5% CO2 cell cul-
ture incubator. Cells that had migrated were stained using CyQUANT GR dye, and fluores-
cence intensity was measured with a Flex Station 96 ED (Molecular Devices, Sunnyvale, CA,
USA). Data are shown in relative fluorescence units.

Immunohistochemistry
Frozen liver tissues were fixed in neutral-buffered formalin, paraffin-embedded, and cut into
3-μm-thick sections. Sections were dewaxed and rehydrated, and antigens were retrieved by
autoclaving for 1 min at 125°C in EDTA buffer (pH 9.0). After washing in phosphate-buff-
ered saline, nonspecific antigens were blocked by incubation of the slides with 1% normal
goat serum for 20 min. The sections were then incubated with 1:200 diluted anti-CCL2 anti-
body (Abcam, Tokyo, Japan) or 1:100 diluted anti-macrophage colony-stimulating factor
(M-CSF) antibody (Abcam) at 4°C overnight. Tissue sections were treated with MAX-PO:R
(Nichirei, Seattle, WA, USA) for 30 min and then incubated with simple stain DAB solution
(Nichirei). Finally, sections were counterstained with hematoxylin, dehydrated, and
mounted.

Hepa1-6 cell culture
The Hepa1-6 cell line, which is derived from a BW7756 tumor from a C57BL/6J mouse, was
purchased from DS Pharma Biomedical Japan (Osaka, Japan). To observe the effect of steatosis
in hepatocytes, Hepa1-6 cells were exposed to 0.1 mM oleic acid or palmitic acid (Wako Chem-
ical, Osaka, Japan) for 3 h, as described previously [21]. Lipid accumulation was confirmed by
Sudan III staining [21]. The concentrations of CCL2 present in culture supernatants were esti-
mated by ELISAs.

Real-time reverse transcription polymerase chain reaction
RNA was extracted from livers and the Hepa 1–6 cell line using the RNeasy Plus Mini Kit (Qia-
gen, Hilden, Germany). Reverse transcription reactions were performed using the High-Capac-
ity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA), and real-time
polymerase chain reaction analysis was performed using SYBR Green I (Roche Diagnostics,
Basel, Switzerland) on a LightCycler 480II (Roche Diagnostics). The pairs of sequence-specific
primers that were used are listed in S1 Table.

Induction of bone marrow-derived monocytic MDSCs by M-CSF
Bone marrow cells were obtained by flushing the tibias of C57BL/6J mice, followed by red
blood cell lysis. Cells were suspended in complete RPMI 1640 media supplemented with 10%
heat-inactivated fetal bovine serum, and cultured with or without recombinant M-CSF (R&D).
After 3 days, CD11b+Gr1dimLy6Chigh and CD11b+Gr1dimLy6Clow cells were sorted to allow
testing of their functions in the allogenic mixed lymphocyte reaction assay.
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Statistical analyses
Data were analyzed using JMP 8.0 software (SAS Institute, Cary, NC, USA). Values are pre-
sented as means ± SEM. A Student`s t-test was employed to compare data between 2 groups.
For multiple comparisons, a one-way ANOVA was used. P< 0.05 was considered significant.

Results

Expansion of liver SSClowCD11b+Gr1dim cells by a high-fat diet
In NAFLD mice, the frequency of liver CD11b+Gr1+cells was significantly increased compared
with that in control mice, as previously reported [14, 15]. We found that the frequency of liver
CD11b+Gr1+cells increased in high-fat diet fed mice over time (Fig 1A). As previously reported
[20], these cells could be grouped into 2 subtypes: CD11b+Gr1dim and CD11b+Gr1high. Addi-
tional examination by SSC, a measure of cell granularity, revealed that the Gr1high subtype con-
sisted of only 1 population; however, the Gr1dim subtype could be further divided into SSChigh

and SSClow populations (Fig 1B). The frequency of SSChighCD11b+Gr1dim cells was increased
at 3 months of age in NAFLD mice compared to that in control mice; however, the frequency
of these cells was decreased in mice fed with a high-fat diet at 12 months. In NAFLD mice, the
frequency of the SSClowCD11b+Gr1dim cells was significantly higher than that in control mice,
and the number of cells increased in the high-fat diet mice over time (Fig 1C).

Characteristics of CD11b+Gr1+ cell subsets
Liver CD11b+Gr1+ cells were further characterized by examining the expression of cell surface
markers and morphology. These cells expressed CD45. SSClowCD11b+Gr1dim cells expressed
Ly6Chigh, whereas SSChighCD11b+Gr1dim and CD11b+Gr1high cells expressed Ly6Clow. Ly6G
was detected only on CD11b+Gr1high cells. CCR2, CD115, CD274, and CD80 were detected
only on SSClowCD11b+Gr1dim cells, and CD31 was detected only on SSChighCD11b+Gr1dim

cells. F4/80 was detected on both SSChigh and SSClow CD11b+Gr1dim cells; however, the expres-
sion level in the SSChigh population was higher than that in the SSClow population. None of
subsets expressed CD11c (Fig 2A). Wright-Giemsa staining demonstrated that CD11b+Gr1high

cells had lobular-shaped nuclei, typical of granulocytes, whereas SSChighCD11b+Gr1dim and
SSClowCD11b+Gr1dim cells had ovoid nuclei, typical of monocytes/macrophages. Additionally,
the SSChigh population was larger in size than the SSClow population (SSChigh population:
6.81 ± 0.31 μm; SSClow population: 5.17 ± 0.25 μm), as shown in Fig 2B (n = 5; p< 0.05).

Immunosuppressive function of SSClowCD11b+Gr1dim cells
We found that liver SSClowCD11b+Gr1dim cells suppressed T cell proliferation; however,
SSChighCD11b+Gr1dim cells did not affect T cell proliferation (Fig 3A). In addition, the frequency
of IFN-γ-producing T cells decreased after co-culturing with SSClowCD11b+Gr1dim cells (Fig 3B).
Based on allogenic mixed lymphocyte reaction assays, liver SSClowCD11b+Gr1dim cells suppressed
allogeneic T cell proliferation in a dose-dependent manner. The suppressive activity was remark-
ably effective, even at a ratio of 1:200. Similar to the results shown in Fig 3A, SSChighCD11b+-

Gr1dim cells exhibited no suppressive ability in the allogenic mixed lymphocyte reactions (Fig 3C).

SSClowCD11b+Gr1dim MDSCs inhibit T cell proliferation via a NO-
dependent mechanism
iNOS, arginase 1, or ROS inhibitor was added to the co-culture. Neither nor-NOHA (an argi-
nase 1 inhibitor) nor catalase (a ROS inhibitor) affected T cell proliferation. However, the
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Fig 1. CD11b+Gr1+ cells in the livers of normal mice and high-fat-diet mice were comprised of 3 subsets. (A) Frequency of CD11b+Gr1+ cells in mouse
liver non-parenchymal cells (NPCs) at 3 months (3 m) or 12 months (12 m) of age (n = 5). *P < 0.05 (B) Analysis of CD11b+Gr1+ cells by the side-scatter
(SSC) of light during flow cytometry. (C) Frequency of CD11b+Gr1high, SSClowCD11b+Gr1dim, and SSChigh CD11b+Gr1dim cells in mouse liver NPCs at 3 m or
12 m of age (n = 5). *P < 0.05 compared to frequency of each cells at 3 months. ND, normal diet; HFD, high fat diet.

doi:10.1371/journal.pone.0149948.g001
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Fig 2. Characterization of liver CD11b+Gr1+ cell subsets. (A) Representative histograms of the phenotypic profiles of liver CD11b+Gr1high,
SSChighCD11b+Gr1dim, and SSClowCD11b+Gr1dim cells. Closed histograms represent background control staining; open histograms represent staining by
indicated monoclonal antibody (mAb). The percentage of positive cells is indicated. (B) Morphology of purified liver CD11b+Gr1high, SSChighCD11b+Gr1dim,
and SSClowCD11b+Gr1dim cells by Wright-Giemsa staining (100× magnification). Scale bars, 20 μm. SSC, light side scatter. The sizes of
SSChighCD11b+Gr1dim and SSClowCD11b+Gr1dim cells are shown in the right panel. *P < 0.05

doi:10.1371/journal.pone.0149948.g002
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Fig 3. SSClowCD11b+Gr1dim cells in the livers suppress T cell responses. (A) Proliferation of CFSE-labeled T cells cultured in the presence of
Dynabeads mouse T-Activator CD3/CD28 with or without liver SSChigh or SSClow CD11b+Gr1dim cells. (B) Representative image of intracellular interferon-γ
staining for T cells cultured with or without liver SSChigh or SSClow CD11b+Gr1dim cells. (C) T cells and allogenic dendritic cells were co-cultured. Liver
SSChigh and SSClowCD11b+Gr1dim cells were added to the cultures. The data obtained from 3 separate experiments are shown. *P < 0.05 compared to the
levels of T cell proliferation in allogenic mixed lymphocyte reactions (aMLRs) without CD11b+Gr1dim cells.

doi:10.1371/journal.pone.0149948.g003
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addition of L-NIL, an iNOS inhibitor, restored T cell proliferation (Fig 4A). The level of nitrite
in the supernatants of T cells or liver SSClowCD11b+Gr1dim MDSCs alone was below the
threshold of detection. However, after T cells and liver SSClowCD11b+Gr1dim MDSCs were co-
cultured, nitrite was produced in the supernatants at detectable levels (Fig 4B). Liver
SSClowCD11b+Gr1dim MDSCs cultured alone did not express iNOS, whereas after they were
co-cultured with T cells, iNOS expression was detected. The T cells had no independent ability
to express iNOS (Fig 4C). These results indicated that the role of liver SSClowCD11b+Gr1dim

cells is distinct from that of their cognate SSChighCD11b+Gr1dim cells, representing an authen-
tic phenotype of monocytic MDSCs in the liver.

SSClowCD11b+Gr1dim MDSCs might be recruited to the NAFLD liver via
the CCL2-CCR2 pathway
Chemokines recruit immune cells to inflamed sites. As shown in Fig 2, SSClowCD11b+Gr1dim

MDSCs expressed the receptor for the chemokine CCL2, CCR2. We found that the CCL2
mRNA expression level was increased in the livers of NAFLD mice (Fig 5A), as was CCL2 pro-
tein expression (Fig 5B and 5C). Although hepatocytes treated with normal diet for 12 months
showed some changes in fat contents, this finding may have been related to age-induced tri-
glyceride accumulation [22]. As some studies have generated hepatocyte steatosis models by
culturing cells with fatty acids (oleic and palmitic acid) in vitro [23, 24], we confirmed these
results using Hepa1-6 cells supplemented with 0.1 mM oleic acid or palmitic acid. CCL2
mRNA expression increased with lipid accumulation in vitro (Fig 5D). In addition, CCL2 pro-
tein secretion from Hepa 1–6 cells (558.2 ± 22.8 pg/ml) increased compared with that from
cells treated with oleic acid (605.2 ± 13.1 pg/ml) or palmitic acid (590.4 ± 8.7 pg/ml) (n = 5;
p< 0.05). These data suggest that steatosis induces increased CCL2 expression in hepatocytes.
Finally, we evaluated the migratory capacity of SSClowCD11b+Gr1dim MDSCs, and found that
these cells migrated in response to CCL2 in a dose-dependent manner (Fig 5F).

Induction of SSClowCD11b+Gr1dim MDSCs in the NAFLD liver might be
associated with M-CSF upregulation
SSClowCD11b+Gr1dim MDSCs expressed the M-CSF receptor CD115. M-CSF has previously
been shown to play an important role in the development and induction of MDSCs [7]. We
found that the mRNA expression ofM-CSF was higher in the livers of NAFLD mice than con-
trol mice (Fig 6A). The protein expression of M-CSF was also increased in hepatocytes, as well
as in non-parenchymal cells of NAFLD mouse livers (Fig 6B). The increased expression of
M-CSF was confirmed using Hepa1-6 cells cultured with fatty acid (oleic or palmitic acid) (Fig
6C), indicating that steatotic hepatocytes produce M-CSF. To confirm the role of M-CSF in the
induction of MDSCs, we cultured bone marrow cells with or without recombinant M-CSF for
3 days. CD11b+Gr1dim cells in the bone marrow were divided into 2 subtypes, which showed
low (Ly6Clow) or high (Ly6Chigh) Ly6 expression. CD11b+Gr1dimLy6Chigh cells in the bone
marrow are phenotypically similar to SSClowCD11b+Gr1dim MDSCs in the liver (S1 Fig). These
cells showed an increased prevalence in cultures grown in the presence of M-CSF in a dose-
dependent manner (Fig 6D). In addition, CD11b+Gr1dimLy6Chigh these cells, but not other
CD11b+Gr1dim cells in the bone marrow, exhibited immunosuppressive ability (Fig 6E).

Discussion
The liver is a primary site for MDSC induction and accumulation. Recently, several studies
have linked these cells to the pathogenesis of HCC, hepatitis, or liver fibrosis [9,10,12]. In this
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Fig 4. The suppressive function of liver SSClowCD11b+Gr1dim cells is dependent on a NOmechanism. (A) Proliferation of carboxy-fluorescein
diacetate, succinimidyl ester (CFSE)-labeled T cells cultured in the presence of Dynabeads mouse T-Activator CD3/CD28 along with purified liver
SSClowCD11b+Gr1dim cells. Different enzyme inhibitors (L-NIL, nor-NOHA, or catalase) were added at the start of each respective culture. (B) Nitrite levels
were investigated in the culture supernatants after 60 h of co-culture (n = 3). (C) The intracellular iNOS expression was determined by flow cytometry. The
percentage of positive cells is indicated. The data obtained from 3 separate experiments are shown. *P < 0.05 compared to T cells alone.

doi:10.1371/journal.pone.0149948.g004
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Fig 5. The CCL2/CCR2 pathwaymediates the migration of SSClowCD11b+Gr1dim cells to the NAFLD liver. (A) CCL2 expression in the livers of ND and
HFD-fed mice was investigated by real-time RT-PCR (n = 5). (B, C) Protein expression of CCL2 in the livers was investigated by ELISA (B) (n = 5) and
immunohistochemistry (C). Scale bars, 100 μm. (D) CCL2 gene expression in Hepa1-6 cells treated with oleic acid or palmitic acid analyzed by real-time
RT-PCR (n = 5). (E) Migration assays revealed that SSClowCD11b+Gr1dim cells migrated in response to CCL2 in vitro (n = 5). *P < 0.05

doi:10.1371/journal.pone.0149948.g005
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Fig 6. M-CSF is associated with SSClowCD11b+Gr1dim cell expansion in the liver. (A) Liver M-CSF
mRNA was investigated by real-time RT-PCR (n = 5). (B) Liver M-CSF protein was investigated by
immunohistochemistry (n = 5). Scale bars, 100 μm. (C)M-CSFmRNA in Hepa1-6 cells treated with fatty acid
was analyzed by real-time RT-PCR (n = 5). (D) Bone marrow cells were cultured with M-CSF. The frequency
of CD11b+Gr1dimLy6Chigh cells among the CD11b+Gr1dim cells is shown. (E) The Ly6Chigh and Ly6Clow

populations (S1 Fig) were sorted and added to allogenic MLRs. *P < 0.05

doi:10.1371/journal.pone.0149948.g006
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study, we found that liver CD11b+Gr1dim cells, which are monocytic MDSCs in general, could
be divided into 2 phenotypes, SSChigh and SSClow populations. SSClowCD11b+Gr1dim cells
accumulated in the livers of NAFLD mice (Fig 1). These enlarged SSClow populations had a
strong suppressive effect against T cells (Fig 3) and expressed Ly6Chigh, CCR2, CD115, CD80,
and CD274 (Fig 2A), which are characteristic of MDSCs in tumors [16, 25]. Morphologic
assessment showed that these were monocyte-derived cells (Fig 2B). In contrast, the SSChigh

populations expressed Ly6Clow, F4/80, and CD31 (Fig 2A). Although CD31 was found to be a
marker of MDSCs in some previous studies [20, 26], the SSChigh populations activated T cell
proliferation (Fig 3). CD11b+Gr1high cells expressed Ly6Ghigh and Ly6Clow antigens and had a
granulocytic morphology (Fig 2). Because this population was present at a very low level in the
livers of NAFLD mice, we did not investigate their function in T cell proliferation. However,
some studies have shown that these granulocytic CD11b+Gr1high cells from mouse livers also
exert a suppressive effect on T cells, but that this suppressive activity is weaker than that of
CD11b+Gr1dim cells [20, 27].

Obesity is a chronic low-grade inflammatory condition. Lymphocytes are often detected in
the lobular infiltrates of obese livers [28], and it is believed that these cells contribute to the pro-
gression of NAFLD, which is associated with an increased production of cytokines and exacer-
bated liver parenchymal injury and fibrosis [4]. The depletion of liver MDSCs has been shown
to enhance fibrosis markers [12], suggesting a protective role for MDSCs in liver fibrosis.
Other studies have demonstrated that MDSCs exhibit protective and immunosuppressive
properties during host infection [11, 29]. Concordantly, the results of this study revealed that
liver SSClowCD11b+Gr1dim MDSCs have a strong suppressive effect on T cells (Fig 3). The
accumulation of SSClowCD11b+Gr1dim MDSCs in livers of NAFLD might allow them to func-
tion as critical “homeostatic” regulators to counteract proinflammatory cells. Depletion of
SSClow MDSCs may provide important information regarding their contribution to NAFLD.
However, antibodies or pharmacological inhibitors to specifically target these cells have not
been established, as of yet. Future studies regarding this point need to be conducted.

At the mechanistic level, the suppressive activity of MDSCs has been associated with L-argi-
nine metabolism. L-Arginine is a substrate for iNOS, which is highly expressed in MDSCs [7].
NO production via this pathway is a powerful modulator of inflammation and has been
reported to preferentially inhibit T cell immune responses [30, 31]. NO suppresses T cell func-
tion by blocking the activation of several important signaling molecules in T cells [32]. NO has
also been shown to suppress MHC class II expression and promote T cell apoptosis [33, 34].
Our study demonstrated that liver SSClowCD11b+Gr1dim MDSC inhibition of T cell prolifera-
tion is dependent on NO production by iNOS (Fig 4), consistent with these studies. However,
further research is necessary to clarify the mechanisms of iNOS induction in MDSCs that
occurs after co-culture with T cells.

The results of several studies provide a link between chemokines and MDSC accumulation
in the liver in HCC [35, 36]. The CCL2/CCR2 chemokine axis plays a pivotal role in the migra-
tion of MDSCs in cancer, and impairment of CCL2/CCR2 signaling inhibits tumor growth
[37–39]. In this study, we found that the expression of CCL2 was up-regulated in the livers of
NAFLD mice, and that CCL2 could stimulate the migration of SSClowCD11b+Gr1dim MDSCs
in vitro (Fig 5). Thus, the CCL2-CCR2 pathway might contribute to SSClowCD11b+Gr1dim

MDSC accumulation in the steatotic liver.
M-CSF regulates the proliferation, differentiation, chemotaxis, and survival of mononuclear

phagocytic cells through its action on CD115 [40]. Recent studies have shown that M-CSF
expression is correlated with the expansion of MDSCs [7], and that blocking CD115 inhibits
the immunosuppressive tumor milieu and facilitates immune responses, resulting in improved
antitumor T-cell function [41]. In this study, we found that M-CSF expression was higher in
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the livers of NAFLD mice than control mice. In addition, M-CSF induced the expansion of
monocytic MDSCs in vitro (Fig 6). These results suggest that the increased level of M-CSF in
the steatotic liver might contribute to the increase in the frequency of SSClowCD11b+Gr1dim

MDSCs.
Previous data have shown that MDSCs accumulate in mouse models of HCC and may play

critical roles in the immune escape of tumor cells [7]. Obesity and NAFLD are recognized as
major risk factors of HCC [42]. Although further studies are necessary, it appears likely that
the increased frequency of MDSCs in NAFLD contributes to HCC pathogenesis. Recently, an
increased frequency of MDSCs in NAFLD patients was reported [43]. Additional clinical
research regarding the role of MDSCs in HCC and NAFLD should be pursued.

In conclusion, we identified SSClowCD11b+Gr1dim as the authentic phenotype of liver
monocytic MDSCs and showed that these exhibit a strong suppressive effect on T cells. In addi-
tion, these cells inhibited T cells via NO production by iNOS. Our results suggest that the accu-
mulation of MDSCs in the liver might regulate the immune environment of NAFLD.
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