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l. INTRODUCTION

In this thesis we are concerned with the existence and asymptotic
behavior of solutions of neutral differential equations of the form
n

{
(1.1) ‘7 2(t) + h()z(r(1)] + F(t,2(9(t))) = q(t),

where the following conditions are assumed:

(1-2) n e N;
(1.4) h & ('lf“. "X._]:

(1.5) 7 € Cltg,00) is strictly increasing, limy .., 7(t) = oo and
T(t) < t for t > ty;

(1.6) g € Clty,o0) and limy_,, g(t) = o0;

(1.7)  f € C([to,0) x R);

(1.8) ¢ € Cltg,0).

By a solution of (1.1), we mean a function z(#) which is continuous
and satisfies (1.1) on [t,,o0) for some t, > t;. Therefore, if z(t) is a
solution of (1.1), then z(¢) + h(#)xz(7(f)) is n-times continuously dif-
ferentiable on [t,,00). Note that, in general, x(t) itself is not n-times
continuously differentiable.

A solution of (1.1) is called oscillatory if it has arbitrarily large zeros;
otherwise it is called nonoscillatory. This means that a solution x(¢) is
oscillatory if and only if there is a sequence {t,}3, such that t; — oc as
i —ocand z(t;) =0 (i =1,2,...), and a solution z(t) is nonoscillatory
if and only if z(¢) # 0 for all large t.

In recent years there has been an increasing interest in oscillation
theory for neutral differential equations, and a number of results have
been obtained. For typical results we refer to the papers [1, 3-7, 9-23,
26-39, 42-50, 52-69] and the monographs [8] and [24]. In oscillation

theory the problem of the existence and asymptotic behavior of so-

lutions is quite important, and in the present paper this problem is




discussed in detail for the neutral differential equation (1.1). Although
the problem of finding oscillation criteria (that is, sufficient conditions
for all solutions to be oscillatory) is also important, it is not considered
in the present paper. In this paper we focus our attention to the prob-
lem of the existence and asymptotic behavior of solutions of (1.1). For
oscillation criteria, see the papers [1, 5-22, 26-28, 30-32, 34, 37-43, 52,
53, 59-62, 64-66, 69] and the references cited therein.

It is possible to discuss more general neutral differential equations of

the form

(1.9)

dn k
dtn "'”H§”"(”“’(ﬂ(f)) + f(t.2(g1(), - -+, 2(gm(2))) = a(t).

But, for simplicity, we restrict our attention to neutral differential equa-
tions of the form (1.1).

The neutral differential equations (1.1) and (1.9) may theoretically
be regarded as an extended form of the differential equation with a

deviating argument
(1.10) ™ (t) + f(t,2(g(t)) = q(t),

for which the asymptotic and oscillatory behavior of solutions has been
intensively studied in the last three decades.

Neutral differential equations find numerous applications in natural
science and technology. For instance, they are frequently used for the
study of distributed networks containing lossless transmission lines.

See, for example, [2], [25], [40], [41] and [51]. Let us give an example

of this type. We consider the network in Figure 1.
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Figure 1.

[n this circuit the section between 0 and [ is a lossless transmission line
with specific inductance Ly, specific capacitance Cy, one end of which
is switched on a power source E with resistance R, while the other end
is switched on an oscillating circuit formed by a condenser C' and a
nonlinear element, the volt-ampere characteristic of which is 1 = f(v).
The voltage v across this line and the electric current 7 flowing through
it are functions of z and ¢ and obey the following partial differential
equations:
0i  Ov Ov | O

(1.11) “ot o' Bt op

O<z<l, t>0

with the boundary conditions

0=F —v(0,t) — Ri(0,1),

—C'%u(f. t) = —i(l,t) + f(v(l,1)).

(1.12)

Let p,1 € C'(R) be arbitrary. Then we easily see that

v(z,t) = [p(z — st) + P(x + st)],

by | =

[p(z — st) — (z + st)],
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is a solution of (1.11), where s = 1//L,C; and z = Ls/C,. From

these expressions it follows that
20(—st) =v(l,t+ (I/s)) + zi(l,t + (I/s)),
2yY(st) =v(l,t — (I/s)) — zi(l,t — (I/s)).

By the first boundary condition (1.12), we see that

R
(1:13) E = p(—st) + ¥(st) + —[p(—st) — ¥(st)]
e t R-;[—Hi) ° ;——_;—-ﬁf(hf)
=3jﬁrmr+uﬁn+:f4ﬂm:+upn

z—R z—
3+ = v(l,t— (l/s)) — Tﬁf(r’,! - (l/s)).

Multiplying (1.13) by 2/(z + R) and substituting ¢t — ([/s) for t, we

have
; = 1 K
i(l,8) — Ki(l,t — 7) = a — —v(l,t) = —v(l,¢ —7),
where
K z— R 2F | 21
= 4 o = € T =,
YRk  azwkR T} -

Using the second boundary condition (1.12) and putting y(t) = v(l,1),

we obtain

1 )
Cﬁm0~hMF¢H

K
= o= 2y(t) ~ (e =) — Fly() + K f(ut 7).

This is a special form of (1.9).
Now let w(t) be a solution of the unperturbed equation

“m
g (@(t) +h(B)w(7())] = q(t).

It is natural to expect that, if f is small enough in some sense, equation
(1.1) has a solution x(f) which behaves like the function w(t) as t —

oo. In Section 2 we study the existence and asymptotic behavior of

7




solutions w(t). In Section 4 we shall be concerned with the existence

of solutions x(t) of (1.1) with the asymptotic properties
z(t) =w(t) +o(t*) (t—o0), £=0,1,2,...,n~1.

For this end. in Section 3 we introduce the operator ® : C[7,00) —»

C|[T, o0) such that
Plu)(t) + h(t)P[ul(r(t)) = u(t), ue C[T, ).

This operator ® is useful to discuss the existence of solutions of the

neutral differential equation (1.1). In fact, if the integral equation

e e
w(l) = /, Wf(h.Q{}[u](y(_.a)))rf.s

or

+f k-1 oS (o, n—k~—1
(t—s) (r—s) : ke
H(f} :/; (T_—i—ﬁ—[ mf(fg!;\l”](q(f))}(hf!‘w
for some k € {1,2,... ,n— 1}
has a solution u(t), then x(t) = Q4 [u]() is a solution of (1.1), where
Qi[u)(t) = w(t) + (=1)"*'®[u)(t), k=0,1,2,...,n—1.

Here and hereafter, C'[T, o0) is regarded as the Fréchet space of all con-
tinuous functions on [7', 00) with the topology of uniform convergence
on every compact subinterval of [T, 00).

In Section 5 we derive sufficient conditions and necessary and suffi-
cient conditions for the unforced neutral differential equation

f.{”

(1.14) T x(t) + h(t)z(r(t))] + f(t, z(g(t))) =0

to have certain nonoscillatory solutions. If z(t) is a positive solution of

(1.14), then y(t) = —x(t) is a negative solution of
d" ~
=) + hOy(r)] + Ft y(9(®) =0,
where f(f., u) = —f(t,—u). Thus we will state our results for the

existence of positive solutions only.

8




In Section 6 we establish sufficient conditions for (1.14) to have a
positive solution for the case h(t) < 0. In Sections 7-9 we consider the
equation

”Jrr
T (2 (t) + Azt = 7)] + f(t, 2(9(t))) = q(t),

at™
where A € R and 7 > 0. In Section 10, we consider the equation (1.14)
for the case where h(t) = h(7V(t)) + o(1) as t — o for some integer
N > 1. (The notation of 77¥(t) is explained just below.) The more
precise case h(t) = h(7(t)) is discussed in Section 11, and its particular
case 7(t) =t — 7 is further discussed in Section 12.

Throughout this paper we use the notation:
g paj

=1 s=slr ), i=12 ..

Hy(t) =1; Hi(t) = h(t)h(z(@))--- (e (t));, i=1,2,.:.,
where 771(¢) is the inverse function of 7(¢). Since 7(t) < t, we obtain
(1.15) t<Tt) <7 ) < o< T ) < <00, E 2 H.

We note here that 777(t) — oo as p — oc for each fixed t > {,.
Otherwise, because of (1.15), there are a constant ¢ > t; and a number
T > to such that lim,_,o 77?(T) = ¢. Letting p — oo in 777(T) =
7~ Y7~ P=I(T)), we have ¢ = 77 '(¢), which contradicts the assumption
that 7(t) < t for t > t,.

2. DIFFERENCE EQUATIONS

In this section we consider difference equations of the form

(2.1) v(t) — p(t)v(r(2)) = q(t),

where the following conditions are assumed to hold: T > 0; 7 €

C|T, 00) is strictly increasing, limy o 7(f) = 0o and 7(t) < t for t > T

p € C[7(T),0); g € C[T, ).




Take a function Q € C"[T, 00) such that Q"™ (t) = q(t) for t > T. If

there exists a function v € C[7(T'), 00) satisfying
v(t) — p(t)v(7(t)) = Q(¢),

then v(t) is a solution of

””'F

(2.2) —=[o(t) = pO(r()] = g(t).

Hence, it is worthwhile to investigate difference equations of the type
(2:1).

The following notation will be used:
(2.3) PB(t)=1; Pit)=pt)p(r(t) .- -p(r (), i=1,2,....

Lemma 2.1. Let ¢ € C[r(T),T] and o(T) — p(T)p(7(T)) = ¢(T).
Then the function v(t) defined by

4 m

> Pi(t)g(7(t)) + Py (D)(r™+ (1)),

(&) WSS de e e w0t

o(t), t € [7(T),T],
is continuous on [7(T'),00) and gives the unique solution of the initial

value problem

v(t) — p(t)v(r(t)) =q(t), t > T,

(2.5) " T
v(t) = p(t), te[r(T),T].

Remark 2.1. There is a function ¢ € C[7(T), T satisfying o(T") —
p(T)e(7(T)) = q(T). Indeed, for each v > 0,

. f— (T \ 7
p(t) = q(T) (;_7:(“))) , t€[(T),T],

is such a function. Thus, (2.1) always has a solution v(t).

Proof of Lemma 2.1. 1t is easy to see that v(t) is continuous on

[7(T),00) — {T~™(T) : m=0,1,2,...}.

10




We observe that

lim v(t) = ¢(T) = ¢(T) + p(T)p(r(T)) = lim v(t),

t—T-0

and that if m > 1, then

lim ()
t—7=m(T)—0

m—1

= 3" P(r™(@)a(r (D)) + Pu(m™(T))0(T)

m~—1

= ) P(r™(T)g(r"™(T) + Pu(r~™(T))[a(T) + p(T)p(7(T))]

m—1

= Y P(r™™(T))g(r""™(T)) + Pu(r~™(T))q(T)

i=0

o PHH—] (T_”'(T))‘:Q(T(.T))
= lim  w(t).

t—=7 ™ (T)40

Consequently, v(t) is continuous on [7(7), 00).
Now we show that v(t) satisfies (2.5). Clearly, v(f) = (t) for t €
[7(T),T). For t € [T,7'(T)], we obtain

v(t) = q(t) + p(t)e(7(t)) = q(t) + p(t)v(7(t)),

because of 7(¢t) € [7(T),T]. Now let t € [r+~™(T),r~™*)N(T)], m =
1,2,.... Then 7(t) € [r~"=)(T),r—™(T)]. Since




we find that

o(t) = q(t) + Y Pi(t)a(7'(t)) + Pmsr () p(7™ (1))

Hence, v(t) — p(t)v(7(t)) = q(t) for t > T.
The solution of (2.5) is unique. In fact, if u € C[7(T),00) is a

solution of (2.5), then we have

u(t) = q(t) + p(t)u(r(t))
= q(t) + p(t)[q(r(t)) + p(7(t))u(r>(t))]

= Py(t)q(t) + P (t)q(7(t)) + Po(t)u(%(t))

T

=Y Pi(t)a(r'(t)) + Pmsr (H)u(r™+ (1))
=0

m

=) Ri(t)a(r'(t)) + Pnyr(t)p(r™ (2))

1=0

forit€ [ (1Y~ E(T)], mi=10,1,2; . .

Lemma 2.2. Suppose that v € C[t(T),00) satisfies (2.1) fort > T.
Suppose that |p(t)| < A < 1 on [T, 00) for some A > 0. If limy_,, q(t) =
0, then limy_, v(t) = 0.

Proof. Let £ > 0 be arbitrary. There is a number 7} > T such that
lq(t)] < € for t > T). We set p(t) = v(t) for t € [7(T}),T,]. Then
o(Ty) — p(T))e(7(T})) = q(T}). From Lemma 2.1 it follows that v(t)

12




satisfies

o(t) =Y Pit)q(r' (1)) + Py (8o (7™ (1)),
=0
te[r~™T), ™1, m=0,1,....

t € [7(T1),T)]}. There exists an integer N > 1

Put K = max{|p(t)]| :

such that A" K < ¢ for m > N. We find that
> . N 4 XL = X 3 2-X
(t)] < ek AR Ne+e= +& = €,
LOIED ‘-; X P&
= NN F1.5001

t € [T_M(T[).T -[NH-IJ{TIH_

Consequently, we have

1) < £,
@) < T=5

which means lim;_, . v(t)
Now we shall be concerned with the asymptotic behavior of solutions

of the difference equation

w(t) —p(t)w(T(t)) = 1.

(2.6)
We note here that if ¢(t) # 0 for all large ¢, then (2.1) becomes
u(t) q(7(t)) u(r(t)) -
— p(t) — =1 for all large ¢,
q(t) q(t) q(7(t))
s (2.6).

which is the same form as (
In Lemmas 2.3-2.10 below, we assume that w € C|[7(T), oc) satisfies

(2.6) for t > T.

Lemma 2.3. Suppose that |p(t)| < A <1 on [T, o0) for some A > 0.

Then

1 — 2\
< liminfw(t) < limsupw(t) < - A
t—o00 =00 ]_ — /\

1=/

In particular, if A < 1/2, then
liminfw(t) > 0.

t—r00

13




Lemma 2.4. Suppose that |p(t)] < A < 1 and p(t)p(7(t)) > 0 on

[T, 00) for some A > 0. Then

: |
0<1—=A<liminfw(t) <limsupw(t) < ——.
t—=o00 {—300 l — /\

Lemma 2.5. Suppose that 0 < pu < p(t) < A < 1 on [T,00) for

some 1 > 0 and A > 0. Then

1 . . 1
< liminfw(t) < limsupw(t) < :
! »” t—00 t—=o0 I = /\

0<

Lemma 2.6. Suppose that 0 < p < —p(t) < XA < 1 on [T,0) for
some p > 0 and A > 0. Then
— A 1 —p

= < liminfw(t) < limsupw(t) <
s t—o00 t—00 1 — /\

0<

b

Lemma 2.7. Suppose that 1 < p < p(t) < X on [T, ) for some

i>1and A > 1. If w(t) is bounded on [T, 00), then

< 0.

. 1
< liminfw(t) < limsupw(t) < —
u—1 t—+00 ' ; A

t—ro0 s

Lemma 2.8. Suppose that 1 < p < —p(t) < X on [T, 00) for some

>1and A > 1. If w(t) is bounded on [T, 00), then
— 1 : ) A—1
i < liminfw(t) < limsupw(t) <

A2 — t—oc t—00 }"-2 =

0<

Lemma 2.9. Suppose that limy_, |p(t)| = oo. If w(t) is bounded

on [T, 00), then

lim w(t)p(r~(t)) = —1.

l— o0

Lemma 2.10. Suppose that limy_,oo p(t) = [ for some | € R. If

either 1 < |l| < oo and w(t) is bounded on [T, 00) or |l| < 1, then

1
lim w(t) = —.




Proof of Lemma 2.3. Put ¢(t) = w(t) on [7(7),T]. Then Lemma

2.1 implies that

(2.7)
ZI - POl (1)), ¢ € [r(@), 7 UTY,
1=0

for m = 0,1,2,.... Let K > 0 be a constant such that |p(t)] < K

for t € [7(T),T]. For any £ > 0, there is an integer N > 1 such
that X' K < ¢ for m > N. From (2.7) it follows that, for ¢t €
[r~™(T), 7", m=N,N+1,...,

'J-'“) =1+ Z P ) + Pm )S—ﬂ(THHII(f))

s o

T R T

ik 1 —A 1—A
and

T . l
w(t) < Y AT + ¢

(t) < ; r S

Therefore, we have
1-—2A |
< w(t) < +e, tzr"(T)

This completes the proof.

Proofs of Lemmas 2.4-2.6. Observe that

w(t) =1+ p(t)w(r(t))
=1+ p(t)[1 + p(7(t))w(7*(t))]

=1+ p(t) + B(t)w(T?(t)), t>717YT).




Hence, we have

(2.8)  w(t) =1+ p(t) + Po(t)[1 + p(7°(t)) + Pao(7*(2))w(7"(1))]

=1+ p(t) + P(t)[1 + p(72(t))] + Pi(t)w(r(t))

m~—1

= 1+p(t) + 3 Po(t)[1 +p(r¥ (1))] + Pom (B)(7°™(2))

Jj=1
m—1
= Pyi(t)[1 + p(r*(t))] + Pom(t)w(r™ (t))
1=0

fort > 77 @m=N(T)and m =1,2,....
(Proof of Lemma 2.4) From Lemma 2.3, it follows that |w(t)| < K
on [7(T),00) for some K > 0 and that limsup, ,. w(t) < 1/(1 — \).

Let £ > 0. There is an integer N > 2 such that \*Y K < . Since

for t > 7~ N-1)(T), so that
Py(t)[1 +p(v¥ ()] = Pi(t)[1 = A >0, j=1,2,...,N—1,
for t > 7= 2N=1)(T). By (2.8) we obtain
w(t) 214 p(t) + Pov(Ow(r* (1)) 21 = A —g, t>7 V(D)

which means liminf,_, w(t) > 1 — A.
(Proof of Lemma 2.5) By Lemma 2.3, we see that |w(t)] < K on
[7(T'), 00) for some K > 0 and that limsup, ,  w(t) < 1/(1 — \). For

any £ > 0, there is an integer N > 2 such that

o E ;12‘\" €

YUK = = and < —.

2 l—p 2

Using (2.8), we see that

N-1 _ 2N A 2N -
2i € —il1 € L == 5
w(t) > Ix"’]-i-.‘.——: — (1 4+ pu) — = = =
@2 Y i = =T e - 2= ]




for t > 7~(N=1(T). Hence, liminf,_,. w(t) > 1/(1 — p).
(Proof of Lemma 2.6) Lemma 2.3 implies that |w(t)| < K on [T, )

for some K > 0. Let £ > 0. There is an integer N > 2 such that

. 2N
Ny o B (1= A) ¢
;\ )’\ < } d]l{] ]_7‘”‘{ < }
We note that p* < Pyi(t) < A% for j =1,2,.... From (2.8) it follows
that
N-1 i
== = = F —
w(f)<z,\ =y o s g4
3=0
and
N—1 S
s E ] — u g 1= A
w(t) > B =X e =1 <X s S —¢
=) w-N-g=-Ng—rF-s2—5
7=0
for t > 7= ¥N=-1(T). This completes the proof.
Proof of Lemma 2.7. Since
p(w(r(t)) = -1+w(t), t>T,
we have
1 w(t) -
w(r(t) = —— + A |
p(t)  p(t)
and hence
(2.9)
1 w(T71(t))
w(t) = — +
) p(7='(t)) p(r(¢t)
1 1 1 w(T72(t
i e 1 e =1 = — 9 i (T_‘,( ))
pr=(t))  p(r='(t)) L p(r=2(t))  p(773(2))
B 1 1 w(T7%(t

} . n (1))
p(r1(0)  p(r()p(r2(8)  p(r(6)p(r2(8))
= [P O] = [B(r 2] + [Palr ()] w(r (D))

m

==Y (B )] + [Balr ™)) w(r™™(2))
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for't = Tsnd m = 1.2 000 Let ' > 0 be a constant such that
lw(t)] < K for t > T. For any £ > 0, there exists an integer N > 1

such that

9 c A N c
Ku " < 5 and roo < 5"
In view of (2.9), we see that
a : e ol 1
w(t) < — AN = = —- —/“F—i<— v ! O
) < Z; 2 A—1 2= A-—-1
and
'I\I | l =
w(t) > — e e > ——
() 2 ;‘” 2= pu-—1 2

for t > T. The proof is complete.

Proof of Lemma 2.8. From (2.9) it follows that

m

w(t)= =3 [[Poya (T D)™ + [Py (r= 2 (1))] ']

j=1

+ [nzm(?_—‘zm“))]— I\_b.(?_ '.Em(”)

= =) [Pyt % ()] [p(r % (t)) + 1]
=1

+ [Bom (T2 @) w(r2(®), t>T m=12,....

Choose a constant K > 0 such that |w(t)| < K for t > T. Let € > 0.

Then
o E /\_3‘,\- — 1 & :
Ky~ = 3 and % < 5 for some N € N. i;L
Since !

O<p—1<-[p(r %) +1]<Ar-1, t>T, jij=1,2,...,

we conclude that
J'\r

w(t) < Z;F"”(A —-1)+ =

<
2~ =1

_|_

B ™

| ™

18




and

N
w(t) =D A H(p—1) -
Jj=1

for t > T. This completes the proof.

Ba| M
—
-

—
|
—
—
|

| M
|

N
| o

Proof of Lemma 2.9. From (2.6) it follows that

b5 w(t) —1
2.10 w(T = ———
(2.10) (r(t) ==

Since w(t) is bounded, we see that lim,,[w(t) — 1|/p(t) = 0, so

for all large t > T.

that limy_,. w(t) = 0, by (2.10). Letting ¢ — oo in (2.6), we obtain

limy_, o p(t)w(7(t)) = —1. This completes the proof.

Proof of Lemma 2.10. First we assume that [ = 0. Let £ € (0,1/2)
be arbitrary. There is a number Ty > T such that |p(t)| < £ < 1/2 for
t > Ty. From Lemma 2.3 it follows that

1 -2

[ ks

(2.11) — < liminfw(t) < limsupw(t) <

—C t—oc t—o0

[}

m

Letting € — 0 in (2.11), we have limy,ow(t) =1 = 1/(1 =1). In
exactly the same way, it can be shown that lim,_, . p(t) = 1/(1 —1) for
thecases 0 < I <1, -1 <l<0,1<l<o0and —oc0 <l < —1, by

using Lemmas 2.5-2.8.

3. FUNDAMENTAL OPERATORS
[n this section we are concerned with the mapping ® : C[T,, ) —
C|T., o0) such that
Olul(t) — p(t)@[u]((t) = u(t), u e C[T,,x).

We assume throughout this section that ¢, > 0; 7 € Cltg, 00) is strictly
increasing, limy_, 7(¢) = oo and 7(t) < t for t > ty; p € C|[ty, o).

We use the notation (2.3).

Proposition 3.1. Let T, and T be numbers with to < T, < 7(T).

Suppose that the following condition (3.1) holds:
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(3.1) p(t) is bounded on [T,0c0) and there are N € N and A > 0
such that |Py(t)| < XA <1 for t > 7~ N=1I(T),

Then there exists a mapping ® : C[T,,00) — C|[T,,00) which has the
following properties:
(i) the mapping ¢ is continuous in the C|T,,o0)-topology;
(ii) for each u € C[T,,00), ® satisfies ®[u](t) — p(t)P[u](7(t)) = u(t)
fort >T;

(iii) if u € C[T.,00) and limy_o u(t) = 0, then limy_, o ®[u](t) = 0.

Remark 3.1. If [p(t)| < A <1 on [T, 00) for some A > 0, then (3.1)

holds.

Proof of Proposition 3.1. For each u € C[T,, 0c0), we assign the func-

tion ®[u| by

(3.2)
,om ; , ; “(T) e .
g;f,(!)::(r () + Prs () — 7 (7™ (0) = 7(D),
Olu)(t) = | tel T R m=1
u(T) e :
L ?_—T(-j;-j(!—'r(f)). t € [T,,T].

From Lemma 2.1 it follows that ®[u](¢) is continuous on [T}, oc) for
each u € C|[T,, 00) and satisfies the property (ii).

Now we show that ® has the properties (i) and (iii).

(i) It suffices to prove that if {u;}32, is a sequence in C[T,,oc)
converging to u € C|[T,,00) uniformly on every compact subinterval
of [T, 00), then ®[u;] converges to ®[u] uniformly on every compact
subinterval of [T,,00). It is clear that ®[u;] converges to ®[u] uni-
formly on [T,,T]. We claim that ®[u;] — ®[u] uniformly on I, =
[r=™(T), 7=+ )(T)], m = 0,1,2,.... Then we easily see that ®[u;]

converges to ®[u] uniformly on every compact subinterval of [T}, 00).
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We have

sup |P[u;](t) — lu](t)]

telm

m

ZI\ aup (T —u(r'(t))|

i=0
YilT) = (1) pnvipen o
T e )

IA

+ K™ sup
te ;m

m

< Zf\ anp luj(t) — u(t)| + K™ ui(T) — w(T)|,

=0
for m = 0,1,2,..., where K = max{|p(t)| : t € [T.,r~ ™) (T])]}.
Hence, we conclude that
sup |®[u;](t) — @[u](t)| 20 (j = <), m=0,1,2,...,
!‘E m
so that ®[u;| converges to ®[u] uniformly on I, for m =0,1,2,....
(iii) Let u € C[T., 00) such that lim,_,, u(t) = 0. From (ii) it follows

that
Q[u|(t) = u(t) + p(t)®[u](7(t))

= u(t) + p(t)[u(r(t)) + P(T(f-))q’[”](?"z(f})]
= Py(t)u(t) + Py (t)u(7(t)) + Pao(t)®[u](T5(t))

.-’\r'—l.‘
il Z (f + P;\, (I)[H](T\‘(f))' t > T—[_-’\-'_l](.!..)-
1=0

Since p(t) is bounded, we have lim,_, Z; i "Pi(t)u(ri(t)) = 0. Apply-
ing Lemma 2.2 with v(t), p(t), 7(¢) and ¢(t) replaced by ®[u](t), Py (t), |

7V(t) and

we conclude that limy_,., ®[u|(t) = 0.

Proposition 3.2. Let T, and T be numbers with ty < T, < 7(T).
Suppose that the following condition (3.3) holds: 'L
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(3.3) lp(t)| > 0 fort > T, |p(t)|~" is bounded on [T, <), and there
are N € N and pp > 0 such that |Py(t)] > p > 1 fort >
=1,

Let M > 0, and define
B(M) ={u € C[T,,0) : |u(t)| < M, t > T}.

Then there exists a mapping ¥ : B(M) — C|[T,,00) which has the

following properties:

(i) the mapping ¥ is continuous in the C[T,, 0o)-topology;
(ii) for each u € B(M), ¥ satisfies W[u)(t) — p(t)¥[u](7(t)) = u(t) for
f=>
(iii) W[u](t) is bounded on [T,,00) for each u € B(M);
(iv) if u € B(M) satisfies limy_,o u(t) = 0, then

|

B (|,U(T‘1(f))I

) (t — 00).

(v) ifue B(M), u(t) >0 fort > T, and

lim sup i)
oo W(T())

then U[u|(t)/u(t) is bounded on [T, 0).

Remark 3.2. If [p(t)| > p > 1 on [T, 00) for some ;1 > 0, then (3.3)

holds.
Remark 3.3. The mapping ¥ described in Proposition 3.2 satisfies
Wlu)(t) = (1) (t— o0)

for each u € B(M) with limy_, u(t) = 0. This follows from (3.3) and

the property (iv) in Proposition 3.2.
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Proof of Proposition 3.2. For each u € B(M ), we define the function

W[u] as follows:

2 Z[Ii(r )] u(ri(t), t > 7(T)
Wlul(t) = i—1
Wlu](7(T)), t € [T.,7(T)].

Using (3.3), there is a constant K > 1 such that [p(t)|~' < K for

t > T. For each i € N, we take integers ¢(i) > 0 and r(z) such that

i =q(i)N +r(i) and 0 < r(i) < N — 1. Then we have

P;(t) = Pn(t)Pn(T™ (t)) - - - Py(r1 90DV (2))

% p(,rf;{:).'\"(f))gj(rq{é}:\'-!- 1 (f)) » _P(Trﬂi}.'\’ +r(t) I(!))

for t > 7 0=U(T) and i = 1,2,.... Then, from (3.3) it follows that

(34) |[P(r'()]7Y| < wIOK™ < IO KN=1 ¢ > (T),

Since
oo
Z;L—"’“)I\"\_i = L < o0,
i=1

we see that W is well-defined and that, for each u € B(M), ¥[u] is

continuous on [T, 00) and satisfies

(3.5)

| [u)(t)] < Zﬂ_{"mh”\:"’ sup |u(s)|=L sup |u(s)|<LM
i=1

s>T1(t) s>T1(t)

for t > 7(T). This implies that ¥ satisfies the property (iii).
Now we show that W satisfies the properties (i), (ii), (iv) and (v).
(i) Let {u;}32, be a sequence in C[T,, o) converging to u € C[T,, c0)

uniformly on every compact subinterval of [T),00). Let [a, ] be an
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arbitrary compact subinterval of [7(7"), o0). For any £ > 0, there is an

integer p > 1 such that

MENSH N 588 —]

1=p+1
Since
lim [5111) {|u_,(r ‘@) — u(r"H(t))] : t € [r:f]}]
j—¥co
= ]im [Hl]]} {|'u;(.~s) —u(s)| : s € [T (a), T '(.'f)]}] =0
fort=1,2,...,p, there exists an integer j, such that

J 2 Jo-

B3 M

P
sup {Z K'luy(r75(t)) — u(r(t))] : ¢ € [o, dJ} <
=1

By virtue of (3.4), we see that

| W[u;](t) — Clul(t)]

IA

}:I[P )]y (7 ) — u(ri(2))

+ZI )] lui (77 ()]

t=p+1

+ Y P )] lu(r i (2)))

1=p+1

p 00
< ) Kui(r () — u(r (¢ Z (N1 M

=1
L= 42 =¢, tEelalf. i>%
2 4
which implies that W[u;|(¢) converges to W[u|(t) uniformly on [a, 3]. In

view of the fact that W[u|(t) = ¥|u|(7(T)) for t € [T,,7(T)], we find
that W(u,;](t) — W[u](t) uniformly on [T,,7(T)]. Consequently, ¥ is

continuous on B(M).




(ii) Since

p(t)[P(r~ "V (8)] !
= p(t)[p(r~ 0 (@)p(r

= [Pa(r 0@, 2

—
o
—
Ty
o
—_
—
—
—
—
—
o
—
—

|V
Il
[ R
R

we have
lI"[H] T
= —p(t) |[Pi(®)] u(t) + Y _[P(r~ 0 (@) u(r= N (2))
i=2

= —u Z[P- | FIRT ” ))] l”(T'(! ”(f))

—u(t) + Yul(t), t>T.

(iv) Let u € B(M) and limy_,, u(t) = 0. From (3.5) it follows that

W(u](t) — 0 as t — oo. Using (ii), we see that
p(t)¥[ul(7(t)) = Y[u](t) —u(t) > 0 ast— oo,

so that W satisfies (iv).

(v) Let u € B(M) such that u(t) > 0 for ¢t > T. and

lim sup ULo)
e u(r(2)) =

Take 6 > 0 such that (1 +d)*Y/u < 1. There is a number 7} > T

which satisfies

Sl d PR

u(t
Then
u(r-*‘un‘_ () u(r () u(ri()
u(t) u(t)  w(r='(t)) w(r=C-1(¢))

< (1 4-8) = (14 §)noN+l) < () 4 5)NFN@. ¢ >0
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fori=1,2,....In view of (3.4), we conclude that

Vlu)(t)| & [(1+8)@+07%0 L
‘ u(®) < { 2 I < o0, L2

i=1

The proof is complete.
Proposition 3.2 implies the following result.

Lemma 3.1. LetT > 7 '(ty). Suppose that (3.3) holds. Then there
exists a bounded function w € C[r(T),00) satisfying (2.6) fort > T.

From Propositions 3.1, 3.2 and Remark 3.3, we have the following

result.

Lemma 3.2. Let T > 77 '(ty). Suppose that q € C[T,00) and
limyo q(t) = 0. If (3.1) or (3.3) holds, then there exists a function
v € C[r(T), ) satisfying (2.1) for t > T and lim;_, v(t) = 0.

Proposition 3.3. Let T, and T be numbers such that t, < T, <
7(T) and let r € C[T,,00) with r(t) > 0 for t > T,. Suppose that the
following condition (3.6) holds:

(3.6)  p(t)[r(7(t))/r(t)] is bounded on [T,oc) and there are N € N
and X > 0 such that |P,.\-(f)['f'(?"\’{f])/r[f)]| = A< Ifort =
= (),

Then there exists a mapping ® : C[T,,0) — C|[T.,00) which satisfies

the following properties:

(i) the mapping ® is continuous in the C[T,,o0)-topology;

(ii) for each u € C[T,,0), ® satisfies ®[u](t) — p(t)®[u](7(t)) = u(t)

fort >1"

(iii) of u € C[T.,00) satisfies u(t) = o(r(t)) (t = o0), then ®lu|(t) =

o(r(t)) (t = o0).

Proposition 3.4. Let T, and T be numbers such that to, < T, <
7(T') and let r € C[T,,o0) with r(t) > 0 for t > T,. Suppose that the

Jollowing condition (3.7) holds:




B.7)  |p®)] > 0 for t > T, |p(t)[r(r(t))/r@)]|" is bounded on
[T,00), and there are N € N and p>0 such that
[P (@)|[r(rN () /r(t)] = > 1 for t > 7~ N=1(T),

Define

U= {ue€C[Ti,00): |u(t)| < r(t), t > T}

Then there exists a mapping ¥ : U — C|T,,o0) which satisfies the
following properties:
(1) the mapping ¥ is continuous in the C|T,, o0)-topology:;
(ii) for each u € U, V¥ satisfies W[u](t) — p(t)P[u](7(t)) = u(t) for
e
(iii) of u € U satisfies u(t) = o(r(t)) (t = o), then
r(7=1(t)) )
W u(t :r)(———_ (t = o0);
) =\ G )]
(iv) fue U, u(t) >0 fort > T, and
(t)r(7(t)
lim sup artok) r(r(?) =1
t+oc  w(T(t))r(t)
then W(u|(t)/u(t) is bounded on [T,,c0).

Remark 3.4. If |p(t)|[r(7(t))/r(t)] < A < 1 for t > T, then (3.6)
holds. If |p(t)|[r(7(t))/r(t)] > p > 1 for t > T, then (3.7) holds.

Proofs of Propositions 3.3 and 3.4. We give the proof of Proposition
3.4 only. In exactly the same way, we can show Proposition 3.3.

By applying Proposition 3.2 with p(t) and M replaced by
p(t)[r(7(t))/r(t)] and 1, respectively, there exists a mapping
U, : B(1) — C|T., o) such that (a) the mapping ¥, is continuous in

the C[T,, oo)-topology; (b) for each v € B(1), ¥, satisfies

U, [v](t) — p(:)"(:((:)”\p.[-u](ru.)) —w(t), t>T:

(c) if v € B(1) satisfies limy_,o v(t) = 0, then

w0 = o : ) -0y

(=1 () [r () /r(T=(1))]
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and (d) if v € B(1), v(t) > 0 for t > T, and

: v(t)
lim sup —
tsoo  VU(T(t))

then W, [v](t)/v(t) is bounded on [T,,00). For each u € U, we define

W[u] by Wlu](t) = r(t)W[u(-)/r()](t), t > T,. Then we easily see that

W maps U into C'|7,,00) and satisfies (i)-(iv) in Proposition 3.4.
I I

4. EXISTENCE THEOREMS

In this section we show that if f is small enough in some sense, then
(1.1) has a solution z(¢) which behaves like the solution w(t) of the
unperturbed equation

I‘{”
dtn

(4.1) [w(t) + h(t)w(r(t)] = q(t).

We always assume that (1.2)-(1.8) and the following condition hold:

(4.2)  there exists a function F' € C([tg,00) x [0,00)) such that
F(t,u) is nondecreasing in u € [0,00) for each fixed t > t;

and satisfies

|f(t,u)| < F(t,|u]), (t u)€ [to,o0) x R.
The main results of this section are as follows.

Theorem 4.1. Letk € {0,1,2,... ,n—1}, and let w(t) be a solution
of the unperturbed equation (4.1). Suppose that either
(4.3)  h(®)[r(t)/t]* is bounded on [tg,00) and there are N € N and
A > 0 such that |Hy(t)|[7N(t)/t]F < X < 1 fort > 7= N=D(¢,)
or
(4.4)  |h(t)| > 0 for t > to, |h(t)[7(t)/t]*|7" is bounded on [ty, 00),

and there are N € N and p > 0 such that |Hy (t)|[7" (t) /t]* >
w>1 for t > 7=W=1(3,).
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If

gos
(4.5) / gr=R=1pp 0 lw(g(t))| + ¢ [r;(:f]]k)rﬁ < oo for somee >0,
then (1.1) possesses a solution x(t) satisfying

(4.6) z(t) = w(t) + o(t*) (t = o0).

Theorem 4.2. Letk € {0,1,2,... ,n—1}, and let w(t) be a solution

of the unperturbed equation (4.1). Suppose that (4.4) holds. If

— e n—k—1 ! h[ ;(!) ]A
(4.7) / t I; (f. lw(g(t)| + —— (= (g(t) )[)

for some £ > 0,

then there exists a solution x(t) of (1.1) satisfying

: i [T (B)]* _
(4.8) z(t) =w(t) + o (m) (t = ).

Remark 4.1. In view of the boundedness of |h(t)[7(t)/t]¥|~" in con-
dition (4.4), we find that the solution z(t) obtained in Theorem 4.2 sat-
isfies (4.6). Further, if |h(¢)[7(¢)/t]*| " is bounded, then (4.5) implies

(4.7). Thus, Theorem 4.2 implies Theorem 4.1 for the case (4.4).

In particular, for the case & = 0, Theorems 4.1 and 4.2 give the

following results.

Corollary 4.1. Let w(t) be a solution of the unperturbed equation

(4.1). Suppose that either

(4.9) h(t) is bounded on [ty,00) and there are N € N and A\ > 0
such that |Hx(t)| < XA <1 fort > 7= N=1(¢,)

or

(4.10) \h(t)] > 0 for t > to, |h(t)|™" is bounded on [ty, o), and
there are N € N and p > 0 such that |Hx(t)] > p > 1 for
b2 o)




If
/lX " F(t, lw(g(t))| + €)dt < 00 for some = > 0,
then there ezists a solution x(t) of (1.1) such that
z(t) = w(t) +o(1) (t— 00).

Corollary 4.2. Let w(t) be a solution of the unperturbed equation
(4.1). Suppose that (4.10) holds. If

/NL "R (f lw(g(t))| + m) dt < oo for some = > 0,
then (1.1) has a solution x(t) satisfying
1
) (€
Proofs of Theorems 4.1 and 4.2. From Remark 4.1, it is sufficient to

z(t) = w(t) + o (

give the proof of Theorem 4.1 for the case (4.3) and the proof of The-
orem 4.2. Assume that either (4.3) and (4.5) or (4.4) and (4.7) hold.
Let Ty > tg be a number such that w(t) satisfies (4.1) and is continuous

on [Ty, 00). We can take a number 7" > 1 satisfying

T, = min{7(T), inf{g(t): t > T}} > Ty

and
/ "R (lw(g(t))| + € v (g(t)))dt < 1, "‘
T |
|
where [
tk for the case that (4.3) holds,
Y(t) =
(771 ()]*/|h(7=(t))| for the case that (4.4) holds.
Put F(t) = F(t, |w(g(t))| +£1(g(t))) and
(o ¢] n 1
/ F(s)ds, k=10,
¢ (n— l
n(t) =

ot (t —s)k-1 [ (r— g)n—Fk-1
/ 5) / (r—s) F(r)drds, k #0,
-I o5

(k—1)! (n—k—1)!




for £ > T'. Consider the set Y of all functions y € C|T., o) satisfying
y(t) =y(T) fortel[T,,T) and |y(t)| <n(t) fort>T.

Obviously, Y is a closed convex subset of C[T,,oc). It can be shown

that
Y € {u € C[T,,00) : |u(t)| < t* for t > T}.

In fact, if £ = 0, then n(¢) < 1fort > T, and if k # 0, then

(g g)k—1 00
n(t) < / (—H)——(Ls' X / r" k=1 E(r)dr
JT

Jr (E—=1)!
ot gYk—1 _mk
5/ (Zk ‘)1)' ds = (t kl‘r) =gh. FT>T

[n view of the fact that lim,_,. 7(t)/t* = 0, we have lim,_, |y(t)|/tF =
0 for each y € Y. We use Proposition 3.3 or 3.4 with p(t) = —h(t) and
r(t) = t*. Then there exists a continuous mapping A : Y — CIT., 00)

such that, for each y € Y,

(4.11) Alyl(t) + h()A[Y)(7(2) = y(t), t>T,
and
(4.12) Aly](t) = o(¥(t)) (t — o0).

Define the mapping F : Y — C[T., ) as follows:

r /%(”—*”:T(w--(r(«))+(—1)“-1-\[r](f(*)))rh
)i "o /e wle) + ()" Al (g(s))ds,
= =1

L (f. P .s')k_' 00 (?_ = H)n—k =

(Fy)(t) = 4 [, (k- 1)! / (ni—k —1)}

<F(r,w(g(r) + (~1)"* 1 Aly] (g(r))drds,
k£0, t>T,
L (E (D) t € [T,




where
f(tw(g(t) +ev(g(t), u>w(g(t)) +ev(g(t)),

Fltou) = ¢ f(t,u), lu—w(g(t)| < ev(g(t)),
f(t,w(g(t)) —ev(g(t))), u<wg(t)—ev(g(t)).

Note that |f(t,u)| < F(t) for all w € R. Then it is easy to see that
F is well defined on Y and maps Y into itself. Since A is continuous
on Y, the Lebesgue dominated convergence theorem shows that F is
continuous on Y.

Now we claim that F(Y) is relatively compact. We note that F(Y)
is uniformly bounded on every compact subinterval of [T}, oc), because
of F(Y) C Y. By the Ascoli-Arzela theorem, it suffices to verify that
F(Y') is equicontinuous on every compact subinterval of [T,,00). If

k=0 and n = 1. then
[((Fp))l < Et), t=T.

If either k =0and n > 2 or k = 1, then

1(?;;)’(_;)|g/ s"2F(s)ds <1, t>T.
J T

If k£ > 2, then

O L el el L L P
Fyol< [ G [ P
1 = k=9 00
< [ (“,‘(7;. ').))? r!.s-x/ r" KR (r)dr

Jr —2)! Jr
T i, -

Let I be an arbitrary compact subinterval of [T, 0c0). Then we see that
{(Fy)'(t) : y € Y} is uniformly bounded on I. The mean value theorem
(Fy)(t1) = (Fy)(t2)| =

0 for ty, t, € 1., T, we conclude that F(Y) is equicontinuous on every

implies that F(Y) is equicontinuous on /. Since

compact subinterval of [T}, 00).




Applying the Schauder-Tychonoff fixed point theorem to the opera-

tor F, we find that there exists a y € Y such that y = Fy. Set
z(t) = w(t) + (=1)" A7) (2).

From (4.12) it follows that z(t) satisfies z(t) = w(t) +o(1(t)) (t = ),
and hence there exists a number T > T such that [z(g(f)) —w(g(t))| <
e(g(t)) for t > T. Then f(t,z(g(t))) = f(t,z(g(t))) for t > T. By

virtue of (4.11), we observe that

(4.13) z(t) + h(t)z((t))
= w(t) + h(t)w(r(t) + (1" [A[ZI(F) + h(E)AF)(7(t))]
= w(t) + h(t)w(r(t)) + (—1)" 5 (t)
= w(t) + h(t)w (7 () + (-1)" 1 (Fy) (1)

fort > T. By differentiation of (4.13), we see that z(t) is a solution of

(1.1). The proof is complete.

Now we assume that (4.1) has a positive solution w(t). Consider the
equation

mn

(414) () + h(t)a(r(0)] + ot 2(9(1)) = (t).

where (1.2)-(1.6), (1.8) and the following condition are assumed to

hold:

(4.15) ¢ € C([tg,00) x (0,00)) and there exists a continuous function
F € C([ty,00) x (0,00)) such that F(t,u) is nondecreasing in

u € (0,00) for each fixed t > #, and satisfies
lp(t,u)| < F(t,u), (t,u) € [to,o0) x (0,00).

Theorem 4.3. Letk € {0,1,2,... ,n—1}, and let w(t) be a solution

of the unperturbed equation (4.1) satisfying

lim inf W—(Q =L

tsoo tk
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Suppose that (4.3) or (4.4) holds. If
o
/ b 1]‘1{1_“;(;;(!)) + .;‘[g(f)]k)rﬁ < oo for somee > (),
then (4.14) has a positive solution x(t) satisfying (4.6).

Theorem 4.4. Letk € {0,1,2,... ,n—1}, and let w(t) be a solution
of the unperturbed equation (4.1) satisfying

. cw(t) (T (2))]
1_1_.|f

N )

lim
L
Suppose that (4.4) holds. If

Eaee e O OO 5 r"(g(!))]*‘) dawd e
/ t I (f.w(y(!)) + Wm dt < oo for some e > 0,

then there exists a positive solution x(t) of (4.14) satisfying (4.8).

Proofs of Theorems 4.3 and 4.4. We may assume without loss of
generality that £ > 0 is sufficiently small. Apply the proofs of Theorems
4.1 and 4.2 with f and T} replaced by ¢ and a large number 7} such
that w(t) is continuous and satisfies (4.1) on [T}, 00), and w(t) > =v)(t)

for t > T).

5. EXISTENCE OF POSITIVE SOLUTIONS

In this section we derive various sufficient conditions and necessary
conditions for the neutral differential equation

n

dtn

(5.1) [2(t) + h(t)z(7(£))] + f(t, z(g(t))) = 0

to have certain positive solutions. It is assumed throughout this section

that (1.2)-(1.6) and the following condition (5.2) hold:

(5.2) f € C([to,00) x (0,00)) and there exists a continuous function
F' € C([ty,00) x (0,00)) such that F(t,u) is nondecreasing in
u € (0,00) for each fixed t > ¢, and satisfies

|f(t,u)| < F(t,u), (t,u) € [to,00) x (0,0).
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We note here that the unperturbed equation of (5.1) is

h{n

(5.3) 5o

[w(t) + h(t)w(T(t))] = 0.

Theorem 5.1. Letk € {0,1,2,... ,n—1}. Suppose that one of the

following conditions (5.4)(5.6) holds:

(5.4) Ih(@®)|[(t)/t]F <A <1/2, t>ty, forsome > 0:

(5.5) |h(t)|[r(t)/t]* <A< 1 and h(t)h(r(t)) >0, t>7""(t),

for some A > 0;

(5.6) 1<pu<|h®)|[r@)/t]F <A, t>t,
for some A >0 and pu > 0.

If

(5.7) / st ) clg(®))*)dt < 0o for some ¢ > 0,

then (5.1) has a positive solution x(t) satisfying

x(t X x(t
L < lim su])-i‘l < 00.
'”‘ t—o0 ﬂ‘

(5.8) 0 < liminf

t—o0

Proof. If (5.4) or (5.6) holds, then (4.3) or (4.4) holds, respectively.
If (5.5) holds, then (4.3) with t, replaced by 7 '(to) holds. Lemmas

2.1, 2.3, 2.4, 2.7, 2.8 and 3.1 imply that there exists a function 6 €

C[r(T), 00) satisfying

k
(5.9) 0(t) + h(t) [@] o(r(t) =1, t>T
and
(5.10) 0 < ]irm inf |0(¢)| < limsup|0(t)| < oo,
L—00 t—00

where 7' is a sufficiently large number. We note that #(t) is eventually

positive or eventually negative. For any a > 0, we put w(t) = a t*|6(t)|.
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[n view of (5.9) and (5.10), we see that w(t) is a solution of the unper-
turbed equation (5.3) and satisfies
(1)

w(t 3 w
Q < lnnsu])—’;— < 00

0 < liminf
t— tk

X 1—o00

I[f @ > 0 is sufficiently small, then there are a constant £ > 0 and a

number T} > T such that
w(g(®) +elg(®)]* < g, ¢t >T.

By virtue of Theorem 4.3, (5.1) has a positive solution z(t) satisfying
(5.8).

Theorem 5.2. Let k € {0,1,2,..., n—1}. Suppose that

e
T(¢
(5.11) !'liln h(t) [ (.f ):l =1 for somel € R with |l| # 1.

If (5.7) holds, then (5.1) has a positive solution x(t) satisfying

) . (1) ‘ , = B
(5.12) lim ——=  ewists and is a positive finite value.
t—00 k

Proof. We easily see that (4.3) or (4.4) holds for some large number
to. Therefore, by the same arguments as in the proof of Theorem 5.1,

the conclusion follows from Theorem 4.3 and Lemma 2.10.
Theorem 5.3. Let k € {0,1,2,... ,n—1}. Suppose that
lim |h.(f)|['r(f)/)‘.]"‘ =0,
=00

If

. o [r~"(g())]*

(5.13) / go=hely (i,r'——'-—-— dt < oo for some ¢ > 0,
: |h(7=1(g(1)))|

then (5.1) has a positive solution xz(t) satisfying

(5.14) lim x(t) [h(r = ()]

o exists and is a positive finite value.
AP




Proof. 1t is easy to check that (4.4) holds for some large number
to. From Lemmas 2.9 and 3.1 it follows that there exists a function

0 € C[r(T), 0c) satisfying (5.9) and
lim [0(1)][A(~" @)I[t/7 (O] = 1,

where T is sufficiently large. Notice that 6(t) is eventually positive or
eventually negative. There are constants a > 0, £ > 0 and a number
T, > T such that
~1(4\1k ~1(4\1k
! (A T A
r.r|H(f)|f;‘ +¢ [ _(]' )] < [ _([ ) !
|A(T=1(8)] — [h(r1(2))]

Put w(t) = alf(t)|t*. Then we find that w(t) is a solution of (5.3) and

ST

satisfies

i 1
(5.15) ) h(. ) _ 0.

Applying Theorem 4.4, we conclude that (5.1) has a solution z(t) sat-
isfying (4.8). By (5.15), z(t) satisfies

; [h(7~1(1))]
rl—lfl.:;, .::(!)W_— =a > 0.

This completes the proof.
Since 7(t) < t for t > t,, the conditions
(5.16) |h(t)| <A< 1/2, t>ty, forsome >0
and
(5.17)
h(t)| <A <1, h(t)h(r(t)) >0, t>7t,), forsome \>0

imply (5.4) and (5.5), respectively. Thus, by Theorem 5.1, we have the

following corollary.

Corollary 5.1. Let k € {0,1,2,... ,n—1}, and suppose that (5.16)
or (5.17) holds. If (5.7) holds, then (5.1) has a positive solution z(t)
satisfying (5.8).




In particular, for the case k = 0, Theorems 5.1-5.3 give the following

results.

Corollary 5.2. Suppose that

(5.18) L<pu<|h(t) <A t>1ty, for some A>0 and p> 0.
If

OO
(5.19) / " F(t,c)dt < oo for some ¢ > 0,

then (5.1) has a positive solution x(t) satisfying

0 < liminfz(t) < limsupa(t) < oo.

t—+00 t—oo

Corollary 5.3. Suppose that limy_, h(t) = [ for some | € R with
l| # 1. If (5.19) holds, then (5.1) has a positive solution z(t) satisfying

lim z(t) exists and is a positive finite value.
{—0c0 Y

Corollary 5.4. Suppose that lim,_, |h(t)| = occ. If

ple o}
/ t"VF(t, c/|h(t7 (g(t))|)dt < o0 for some ¢ > 0,
then (5.1) has a positive solution x(t) such that

lim z(t)|h(77'(t))| exists and is a positive finite value.
t—roo

Now we consider the case

(5.20) lim 7(¢)/t = 1.

t—00

Corollary 5.5. Let k € {0,1,2,...,n — 1}. Suppose that (5.18)
and (5.20) hold. If (5.7) holds, then (5.1) has a positive solution x(t)
satisfying (5.8).

Corollary 5.6. Let k € {0,1,2,... ,n — 1}. Suppose that (5.20)
holds and that limy_,o h(t) = for some | € R with || # 1. If (5.7)

holds, then (5.1) has a positive solution x(t) satisfying (5.12).
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Corollary 5.7. Let k € {0,1,2,... ,n — 1}. Suppose that (5.20)
holds and that limy_, |h(t)| = oo. If (5.13) holds, then (5.1) has a

positive solution x(t) satisfying (5.14).

Proofs of Corollaries 5.5-5.7. We give the proof of Corollary 5.5
only. In a similar fashion, we can prove that Corollaries 5.6 and 5.7
follow. For the case k& = 0, Corollary 5.5 follows immediately from
Corollary 5.2. Assume that k # 0. If (5.18) and (5.20) hold, then (5.6)
holds for some large number #y. Hence, Theorem 5.1 shows that (5.1)

has a positive solution z(t) satisfying (5.8).

Now consider neutral differential equations of the form

dar

5.21
i dt"

[z(t) + h(t)z(7(t))] + o f(t, z(g(t))) = 0,

where 0 = +1 or —1. We establish necessary conditions for (5.21) to
have a positive solution x(t) satisfying (5.8) or (5.14). For equation
(5.21) we assume the following:

(5.22)  f € C([to, 00) % (0,00)), f(t,u) > 0 for (t,u) € [ty,00) x (0, 00)

and f(f,u) is nondecreasing in u € (0, 0o) for each fixed t > ¢,.

Theorem 5.4. Let k € {0,1,2,...,n — 1}. Suppose that (5.22)
holds and that h(t)[r(t)/t]* is bounded on [ty,00). If there exists a

positive solution x(t) of (5.21) which satisfies (5.8), then
(5.23) / iRt :_'[y(f)]k)rf.". < oo for somec > (.
Proof. Put y(t) = z(t) + h(t)z(7(t)). We get

) k
ylt) _ U [3({)] <0

th [r()]F

which implies that y(t)/t* is bounded. From (5.21), we have
(5.24) oy"™(t) = —f(t,z(g(t))) <0 for all large t.
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We see that y'"(t) (i =0,1,2,... ,n — 1) are eventually monotonic, so
that lim;_,o y(t) (i = 0,1,2,... ,n— 1) exist in RU {—00,00}. Since
y(t)/t* is bounded. we find that lim; 0 y'*)(¢) = I for some [ € R and
im0y (t) =0 fori =k+1,...,n—1. Repeated integration of

(5.24) vields

y9(E) = 14+ (-1t [ I ool (a)))
. & (n—,{—-])! R ¥ /.

for all large t. Consequently we obtain
.
/ gn=k-1gis. x(g(s)))ds < oo for some T > ;.
e

By virtue of (5.8) and the monotonicity of f, we conclude that (5.23)

holds.

Theorem 5.5. Let k € {0,1,2,... ,n — 1}. Suppose that (5.22)

holds and that limy_, |h(t)|[7(t)/t]* = cco. If (5.21) has a positive so-
lution z(t) satisfying (5.14), then

] s n—k—1 : [T_I{H(f))]k ) @ '
(5.25) / t J (f.:m dt < oo for some c > 0,

Proof. Observe that

[@F  *  Af)

z(r(t))  z(r(t)h(t) 1 [ t J“‘
t)| ’

so that limy_, 2(t)/t* = 0. Put y(t) = z(t) + h(t)z(7(t)). Then

lim ﬂf—) = lim j—(f—) + lim M L.

s ,“k t—oo th t—+00

L

for some constant L 0. By the same argument as in the proof of
j g8 I

Theorem 5.4, the conclusion follows.

By Theorems 5.1-5.5, we obtain necessary and sufficient conditions
for (5.21) to have a positive solution x(t) satisfying (5.8) or (5.12) or

(5.14).




.....

Theorem 5.6. Let k € {0,1,2 .n— 1}, Suppose that (5.22)
holds and that one of conditions (5.4)(5.6) holds. Then (5.21) has a

positive solution x(t) satisfying (5.8) if and only if (5.23) holds.

Theorem 5.7. Letk € {0,1,2,... ,n—1}. Suppose that (5.11) and
(5.22) hold. Then (5.21) has a positive solution x(t) satisfying (5.12)

if and only if (5.23) holds.

Theorem 5.8. Let k € {0,1,2,... ,n — 1}. Suppose that (5.22)
holds and that limy_, |h(t)|[7(t)/t]* = co. Then (5.21) has a positive
solution x(t) satisfying (5.14) if and only if (5.25) holds.

6. EXISTENCE OF POSITIVE SOLUTIONS FOR THE CASE h(t) <0

In this section we consider the neutral differential equation (1.14) for
the case h(t) < 0. It is convenient to rewrite (1.14) in the form

rfﬂ

6.1
{63 dtn

[w(t) = p(t)(r(t)] + (1, 2(9(1))) = 0.

For equation (6.1), conditions (1.2), (1.3), (1.5), (1.6), (5.2) and the
following condition are assumed to hold: p € Cty, o0) and p(t) > 0 for

2

The notation (2.3) will be used.

Theorem 6.1. Letk € {0,1,2,... ,n—1} and let ug(t) be a positive

continuous function satisfying

(6.2)
0 < liminf Ueld) = p(?t)u.k(r(!)) < lim sup Unlt) P(If)“k(T(f)) < 00.
i—o0 3" t—roc g
If
(6.3) / =l uk(g(t)))dt < oo,

then (6.1) has a positive solution x(t) such that

. x(t (%
(6.4) 0 < liminf ) < lim sup ()

t=oo Uk (t) tsoo  Uk(t)

< 00




and

lim 2it) — p(t)z(7(t)) = const > (.
t—r00 tk

Theorem 6.2. Suppose that p(t) > 0 fort > to. Let k be an integer
with 0 < k < n —1, and assume that there ezists a positive continuous
Sfunction ug(t) such that
(6.5)

(t) — p(t)uk(7(2)) < lim sup, ) = P()u(7(1))
= limeup=—=—g

v o
—00 < liminf _
l—oa ;’_"‘

< 0.

Let w(t) be a positive continuous function satisfying

(6.6) w(t) —p(t)w(r(t)) =0, t>t,.
If
(6.7) /.x t" K Rt w(g(t)))dt < oo,

then (6.1) has a positive solution z(t) satisfying

x(t x(t
(6.8) 0< Ii{r;_lglf%}% < Ii[ﬁ[i}.‘j‘;l[l {:!((t)) < 00
and
T(t) — z(T(t
(6.9) fliml (?) pf;)s(?'( ) = const < ().

Remark 6.1. It should be emphasized that restrictive condition on

p(t), such as p(t) < A, is not assumed in Theorems 6.1 and 6.2.

Remark 6.2. It should be noted here that there always exists a
positive continuous function wu(¢) which satisfies (6.2), and the integral
condition (6.3) and the asymptotic condition (6.4) do not depend on

the choice of the function ux(t). (See Lemma 6.2 below.)

Remark 6.3. The integral condition (6.7) and the asymptotic con-
dition (6.8) are independent of the choice of the function w(t). (See
Lemma 6.4.)

First let us prove Theorem 6.1. We need the following lemmas.
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Lemma 6.1. Assume that u,v € C|[7(ty),00) satisfy
u(t) — pH)u(r(t) > v(t) — p(t)u(r(t)), t> to,
u(t) > v(t), t € [r(to), o]
Then u(t) > v(t) fort > 7(to).
Proof. Put w(t) = u(t) — v(t). Then
w(t) — p(B)w(r(t)) > 0, t> 1,

w(t) >0, te€[r(ty), o).
It is sufficient to show that w(t) > 0 for ¢ > 7(t,). Obviously, w(t) >0

for ¢ € [7(ty),t0]. Assume that w(t) > 0 for ¢t € [r=(™m=1(¢,), 7™ (to)]

4

m=20,1,2,....Ift € [T7™(ty), 7~ ™) (¢;)], then
w(t) > p(t)w(r(t)) >0,

because of 77"~V (¢,) < 7(t) < 77™(ty;). By induction, we conclude

that w(t) > 0 for t > 7(t;).

Lemma 6.2. There exists a function v, € C[1(ty),00) such that

ve(t) > 0 fort >ty and
(6.10) v(t) — p()u(r(t)) =&, t >t

In addition, for each positive continuous Junction uy satisfying (6.2),

there are constants ¢, > 0, ¢* > 0 and a number T > t, such that
(6.11) Cak(t) < up(t) < ctor(t), t> (7).

Proof. Lemma 2.1 together with Remark 2.1 implies that the func-

tion

[ i s o TP — 7(to) .
> PO OF + Pag () = o) e
i=0 to — 7(to)

'r"k(f) = 4 t e [T_m“.(}). T_(I’£+I](f9)]. m = (] 1 %1e

t —7(to)
Tl t € |[T(to), tol,

e [7(to), to]




satisfies vi(t) — p(t)vr(7(t)) = t* for ¢ > tp. It is easy to see that
()2 8% >0 forit. >t
We can choose a sufficiently large T > tp, a sufficiently small ¢, > 0

and a sufficiently large ¢* > () such that
cut® <ur(t) — p(t)ur(r(t)) < *t*, t>T
and
ck(t) < w(t) < ctoe(t), t e [r(T),T].
By (6.10). we have
u(t) — p(t)ur(7(t)) > et® = coue(t) — p(t)covor(r(t))], t>T.

Using Lemma 6.1, we obtain wu(t) > ¢ Up(t) for t > 7(T). In the same

way, we have ug(t) < c¢*vi(t) for ¢t > 7(T). The proof is complete.

Proof of Theorem 6.1. Let v, € C[7(ty),00) satisfy (6.10) and
vk(t) > 0 for t > 5. In view of Lemma 6.2, we can take a number
T >ty and constants ¢, > 0, ¢* > 0 satisfying (6.11),

T, = min{7(T),inf{g(t) : t > T}} > t,,
and
(6.12) /{% £ """'F(f._r',nk(y(f)))di < (-11
Consider the set Y of all functions y € C[T., o0) satisfying

y(t) =y(T) forte[I,,T] and ec,t*/2< y(t) < c.t* fort>T.
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Clearly, Y is a nonempty, closed and convex subset of CIT.,00). For

y € Y, we assign the function ®[y] on [T, 00) by

(6.13)
( i:ﬂ(f)u(r"(f)H P ()p(7™* (1)),
oty ={ t € [r~™(T), " )(T)], m=0,1,...,
L p(2), t € [T,,T],
where
o(t) = y:((:{)-uk(f). te [1,,T].

By the same arguments as in the proof of Proposition 3.1, we see that
®:Y — C[T,,00) is continuous in the C[T,, o0)-topology, and satis-
fies

(6.14) lyl(t) — p(O)PYI(7(1)) = y(t), t>T, yeY.

We define the operator F : Y — C[T,, 00) by

, 3 ' o OO0 (.‘f . f)n—l ’ : ) .
1% +(—1) l_/,_ mf(.s.d)[g;](.r;(.a)))d.a.

k=0, t>T,

o (=11
(Fy®y =4 4

b Vh=1 10 xriedk
/’r (;*‘i-‘ - )l)! / ((’” = ﬁj - 1! f(r, ®[y)(g(r)))drds,
k%0, t>7T,

| (Fy)(T), e, T
We claim that F is well defined. By virtue of (6.10) and (6.14), we
find that

cotr(t) — p(t)eaun(7(t)) = eut > y(t) = Bly](t) — p(t)Bly](r(1))

fort >T and y € Y, and

y(T)
T*

cuk(t) > ve(t) = @[y|(t), te[L.,T], yeY.
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In view of of Lemma 6.1. we have Dy|(t) < ecovp(t) for t > T, and
y € Y. Likewise, we obtain ®[y](t) > c.vi(t)/2 > 0 for t > T, and

y € Y. Consequently, F is well defined.

We conclude that F maps Y into itself. In fact, from (6.12) it follows

rr |
U ;,_1,| f (s, @lyl(g(s ))m‘

Cy

< / U (s, caonlg(s))ds < &
d |

that

fork=0,t>T,yeY, and

(t — s) *_l " g)"- k—1
'/ == [, mf Plyl(g(r)))drds

1)!
< / ———!_ 8y ]rfw- /x.*“ LE(r, cour(g(s )))rh'(ﬁfﬁ"
~ Jr (k=1E T Uy 4

for k # 0,t > T and y € Y. As in the proofs of Theorems 4.1 and

4.2, we see that F is continuous on Y and F(Y) is relatively compact.
Using the Schauder-Tychonoff fixed point theorem, we have 7 = Fy for
some y € Y. Then it is easy to verify that z(t) = ®[7](t) is a positive
solution of (6.1) satisfying

CUEt)/ 25 3(t) < colt), €2 F

and

o T ; 3
rll.li, i = E(., =)

This completes the proof.

For the proof of Theorem 6.2, we need some lemmas.

Lemma 6.3. Suppose that p(t) > 0 for t > t,. There erists a
positive continuous function wi(t) satisfying (6.5) if and only if there

exists a positive continuous function vi(t) satisfying

(6.15) vk(t) = p(t)vr(7(t)) = —t*  for all large t.




Proof. The “if” part is clear. We show the “only if” part. There are

a number T and a constant ¢ > 0 such that

up(t) — p(t)up(r(t)) < —ctF. i > T

Put

K+T¢ )\ T-t _
p(t) = ( ) f\) T T te [7(T),T),

where K > (. It is easy to see that
o(T) — p(T)p(7(T)) = —T*
and
min{(t) : t € [7(T), T]} = min{p(r(T)), o(T)}

_ {K+T"’ I‘}
= min — K ;.
p(T)

Hence, we can choose K > 0 so large that

cTluk(t) < @(t), te[r(T),T).
Let v € C[7(T'),00) be a solution of the initial value problem
vk(t) — p(t)or(r(t)) = —tk,  ¢t> T,
v(t) = o(t), te[r(T),T).

(See Lemma 2.1.) We see from Lemma 6.2 that v(t) > ¢ lug(t) > 0

for t > 7(T'). This completes the proof.

Lemma 6.4. Suppose that p(t) > 0 for t > ty. Then there exists a
function w € Clr(ty), 00) satisfying (6.6) and w(t) > 0 for t > T (o).
In addition, if wi,w,y € C[7(ty),00) are positive solutions of (6.6), then

there exist constants ¢, and ¢* such that
(6.16) cowa(t) < wi(t) < ctwslt), t> 7(ty).

47




Proof. Put

oy ) =L o
@(t) = m(-’ (to)) +1, t € [7(tn), 0]

Then we easily find that (t) satisfies p(t) > 0 for ¢ € [7(to), to] and

@(to) —p(to)e(7(to)) = 0. From Lemma 2.1 it follows that the function

I)rinl(_'f)‘f:(rmi.]“))' t € [T m“[]). T_U”-H](!U)]'
w(t) = =000

@(t), t € [1(to), to],
satisfies (6.6). Since p(t) > 0 and p(t) > 0, we have w(t) > 0 for
t > 1(to).
Let wy,wy € C[r(ty),00) be positive solutions of (6.6). Take con-

stants ¢, > 0 and ¢* > 0 such that

Caws(t) < wy(t) < ctws(t), te [T(fl})a fu]-

Then, from Lemma 6.1, we obtain (6.16).

Lemma 6.5. Let w(t) and ux(t) be positive continuous functions
on [T(ty),00) which satisfy (6.6) and (6.5), respectively, where k is an
integer with 0 < k <n —1. Then

. up(t
limsup ——= < o00.
1300 - AW(L)

Proof. By (6.5), there is a T' > ¢, such that
up(t) — p(t)u(r(t)) <0, t>T.
Take a sufficiently large number ¢ > 0 such that ur(t) < ew(t) for
t € [7(T),T]. In view of Lemma 6.1, we obtain wui(t) < cw(t) for
t > 7(T). This completes the proof.
Proof of Theorem 6.2. By Lemma 6.3, there exists a positive contin-
uous function vy (t) satisfying (6.15). Using Lemma 6.5 applied to the

case of ug(t) = vi(t), we find that

(6.17) arlor(t) +w(t)] < w(t), t>t,
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for some ¢; > 0 and ; > t,, so that
00
/ " ‘R'_!F(!..r',[.*'k(_q(!.)} +w(g(t))])dt < oc.

By Lemma 6.5 again there exist t, > ¢, and cy > ¢; such that

. 1
(GISJ (f'-_; = ('])."A‘(!.J ‘_<_ El“lff'{f). { 2 !2.
Choose T' > t; so large that

T, = min{7(T),inf{g(t) : t > T}} > 1,

and

/ gk 'F(t, e ue(g(t) +w(g(h)))dt < 2 5 -
JT

Consider the set Y of all functions y € C[T., o) satisfying

y(t) =y(T) fort e [T., T] and et* < y(t) < eot* for t =T

For y € Y, we define the function ®[y] by (6.13) with

y(T 2 ;
p(t) = — [y.](m) vk (t) + Ef'grr:{!)] ;e T

Using the same arguments as in the proof of Proposition 3.1, we find
that ® : Y — C[T,,o0) is continuous in the C[T., o0)-topology and

satisfies (6.14). Let ¢ = (¢; + ¢2)/2, and define the operator F by

' - . * OO (H il :“.)” ==1 ‘ &I . ' :
c—(—1) i./c E—_l—)!f(-‘n—”!f](ﬂ(-")))rfm :
k=0, M I
"'fA - (—1}” L’—Ix E.
(Fy)(t) = ,
t (?‘—H)A_] 00 ('.!‘—.‘i)""k_l ‘ ) Lnl

k#£0, t>T, !

| (fy](T) l € [T». F]

[t can be shown that F is well defined. In fact, from (6.18) we observe

|
that 1

covi(t) + %(']U-‘(f.) < —p(t) < cu(t) + quw(t), telT., T],
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so that
1 s
0 < epue(t) + i(',m(f') < —By|(t) < eyup(t) +cw(t), t>T.,

by Lemma 6.1. By the same arguments as in the proof of Theorem
6.1, the Schauder-Tychonoff fixed point theorem shows that 7 = Fy
for some y € Y. In view of (6.17), we easily see that z(t) = —®[y](t)
is a positive solution of (6.1) and satisfies

1 1

E('l'u.'(f) < coug(t) + 5(.1{.‘.‘(!) < z(t) < eyup(t) + cyw(t) < w(t)

for t > T, and

lim - ‘ = —¢C.
t—o0 f_'k

The proof is complete.

o THE CASE h(t)= 1

We consider the neutral differential equation

d’ T

(7.1) m[.‘::(?‘) +z(t — 7)) + f(t,z(g(t))) = q(t),

where 7 > 0, and (1.2), (1.3), (1.6) and (1.8) are assumed to hold.

Theorem 7.1. Suppose that (1.7) and (4.2) hold. Let k € {0,1,

2,...,n—1}, and let w(t) be a solution of the unperturbed equation

h{”
din

[w(t) +w(t — )] = q(t).
If
/lOC " LR [w(g(t)] + lg()]F)dt < 0o for some & > 0,
then (7.1) has a solution x(t) satisfying
(7.3) z(t) = w(t) + o(t*) (t — o0).
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Theorem 7.2. Suppose that (5.2) holds. Let k € {0,1,2,... ,n —
L}, and let w(t) be a positive solution of the unperturbed equation (7.2)

such that
Lw(t
lim inf L) > 0.
t—o0 th
If
5
/- R0 (@) elg(t)]F)dt < oo for some e > 0,
then (7.1) has a positive solution x(t) satisfying (7.3).

Now consider the equation

HTH
dtm

(7.4) [z(t) + 2(t - 7)] + f (¢, 2(g(t))) =0,

where 7 > 0 and (1.2), (1.3) and (1.6) are assumed to hold. Let
wy € Cltg,00) and w,(t+7) = —w, (t) for t > t;. Then, for any c € R,

w4 (t) + ¢ is a solution of

rf”
75 — w1 w(t—7) =0.
(7.5) am @(t) + w( )]
For ¢ > 0, the functions pi(t) = ct* (k =0,1,2,... ,n — 1) are posi-

tive solutions of (7.5). Hence, by Theorems 7.1 and 7.2, we have the

following results.
Corollary 7.1. Assume that (1.7) and (4.2) hold and that
(7.6) / t""'F(t,a)dt < oo for some a > 0.

Then, for each w, € C[ty,00) and ¢ € R such that wy(t+7) = —w,(t)

wi ()| + || < a, equation (7.4) has a solution x(t)

fort >ty and max
t

satisfying

z(t) =wi(t) +ec+0(1) (t— x).
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Corollary 7.2. Let k € {0,1,2,...,n — 1}. Suppose that (5.2)
holds and that

ple. o]
/ " ';""JI'ﬂ(.',r.f[_r](f)]k)rh <o for some a > 0.

Then (7.4) has a positive solution x(t) satisfying

. z(t) : : fn Fub 2
lim —=F exists and is a positive finite value.
t—ox

Remark 7.1. The solution obtained in Corollary 7.1 is oscillatory
or nonoscillatory according to whether the function w, (t) + ¢ is oscil-
latory or nonoscillatory. Since condition (7.6) is independent of the
choice of the function w, (t) + ¢, equation (7.4) possesses both oscilla-

tory solutions and nonoscillatory solutions if (7.6) holds.

We consider the equation

d"
dtn

where 0 = +1 or =1, 7 > 0 and (1.2), (1.3), (1.6) and (5.22) are

(7.7)

[z(t) + z(t — 7)) + o f (t, z(g(t))) = 0,

assumed to hold. From Theorem 5.4 and Corollary 7.2, we obtain the

following result.

Corollary 7.3. Let k € {0,1,2,...,n — 1}. Assume that (5.22)
holds. Then (7.7) has a positive solution x(t) satisfying

. T . ) " b=
lim = exists and is a positive finite value
t—ro0

if and only if
“00
/ .'"_#_'f(f.,u.[_r;(t.)]k)(ff. < o0 for some a > ().
Now we prepare the next proposition for the proof of Theorem 7.1.

Proposition 7.1. Let T and T, be constants with T — 1 > T, > t,.
Suppose that n € C[T — 1,00) such that n(t) > 0 fort > T — 7 and

limy o n(t) = 0 and define

o0

Z(—l)”"u(e‘ + i7)

§=1]

U= {u € C[T, o) :

< n(t), fZT—T}.
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and

(=1 u(t+ir), t>T -7,
Plu)(t) = ¢ =t

Olul(T — 7), t € [T\, T — 7],
for each u € U. Then ® maps U into C|[T,, ) and has the following
properties:
(i) the mapping ® is continuous in the C[T., o0)-topology;
(ii) for each u € U, ® satisfies ®[u](t) + ®lu|(t — 7) = u(t) fort > T

and limy_, o, ®[ul(t) = 0.

Proof. It can be shown that ® is well defined and that ®[u](t) is

continuous on [7,,00) for each u € U. In fact, if u € U, then

(7.8)
o0 0
sup Z (=) u(t+ir)| = sup (=1)"* ' u(t + pr +i7)
IE[T—T.-.’)C} i=p+1 IE[’('—T.‘X;] iy

< sup n(t+pr)
te[T—7,00)

= sup nt), p=0,1,2,...,
te[T+(p—1)7,00)

which means that the series E:"c_i(—l)* Hu(t +i1) converges uniformly
on [T — 1,00).
Now we prove that the mapping ® satisfies (i) and (ii).

(i) For any £ > 0, there is an integer p > 1 such that

o ™

(7.9) sup n(t) <

te[T+(p—1)7,00)
Take an arbitrary compact subinterval I of [T — 7,00). Let {u;}32,
be a sequence in U converging to w € U uniformly on every compact

subinterval of [T}, 00). There exists an integer jo > 1 such that

Ltiel 934

Ca|

P
Z |u;(t +i7) — u(t +i7)| <
1=1
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[t follows from (7.8) and (7.9) that
|®[u;](t) — @[u](t)]

p
< Z |u;(t +97) — u(t + i7)|
i=1

+ Z (1) u(t + )| + Z (—1)u(t + i7)
i=p+1 i=p+1
<ves wte I, } = J'-{l-
which implies that ®[u;] converges ®[u] uniformly on I. In view of
the fact that ®[u|(t) = ®[u](T — 7) for t € [T,,T — 7] and u € U, we
conclude that ® is continuous on U.
(ii) Let u € U. Observe that
(7.10) Dlu)(t) + Dlul(t
= Y (V)" u(t +ir) + Y (—1)Hu(t + (i — 1)7)
3=1 =i
= Y (D) u(t+ir) = Y (1) u(t +ir)
i=1 i=0

="4itt) fori =T,
and that

]11:1 |®[u|(t)| < lim n(t) = 0.
L—00 I—00
Thus, ¢ satisfies (ii).
Proof of Theorem 7.1. We can take a number T such that
T, =min{T — 7, inf {g(t) : t > T}} > t,

w(t) is continuous and satisfies (7.2) on [T}, 00), and

(7.11) / s"FLR(s)ds < ¢,
&

54




where F(t) = F(t, |w(g(t))| + [g(t)]*). Let

for t > T'. Notice that

VOO {.‘-1' = !)u -k—1

(7.12) /I (;(.*,')d.\-:‘/r mr(s)dﬁ. ST

We consider the set Y of all functions y € C[T,, oc) such that
y(t) =y(T) forte [T.,T], |y@)|< / G(s)ds fort>T
Ji
and
-7
ly(t+7) —y(t)| < / G(s)ds for t > T.
Ji

Obviously, Y is a closed convex subset of C[T, c0).

Now we claim that if y € Y, then

m X0
(7.13) Z(—I)THU(K +7)| < / G(s)ds, t>T -,
S ST
form=1,2,.... We see that if m is odd. then
> (—1)Hy(t + ir)
=1
(m—1)/2
= Z [y(t+ (25 — 1)7) — y(t + 257)] + y(t + m7)

(m—1)/2 4257 .00
< / G(s)ds —I—/ G(s)ds
j=1 * t+(29—-1)r t+mr
VOO
< G(s)ds, t>T—r.
t+7

For the case where m is even, using the equality

m m/2

Z( 1)f+| t+it) Z[uf—}- ) —at+ 2in)), 2T -7,

1=1

we can conclude (7.13).




According to (7.13),if m > p>1and t € [T — 7,00), then

m

m—p+1
(D) Hy(t+in)| = Y (~)"FPy(t+ (i+p- 1)«—)’
i=p =1
m—p+1
= Z (1) 'yt + (p— 1)1 +i7)
=1

[

o
/ G(s)ds -0 asp— .

t+pr
Hence, the series Y (—=1)""!y(t + ir) converges for each fixed ¢ €
[T — 7,00). Letting m — oo in (7.13), we obtain

Z(— 1)y (t + i)
=1

(7.14)

< /"c:(,s)(fs. e
Jitr

for each y € Y. By using Proposition 7.1 and by taking account of
(7.11), (7.12) and (7.14), there exists a continuous mapping ® : ¥ —

C|T.,oc) such that

®ly](t) + @ly](t —7) = y(t), t>T,

(7.15) lim ®[y](t) =0 and |P®[y](t)| <e, t>T.,

t—oo

for each y € Y. For y € Y, we set

Q[y](¢), k=10,
R [ =
and
Qu[y](t) = w(t) + (—1)" '@ [y](2).
Since

k

Fﬁl’dy](.’) =®y|(t) > 0 ast — oo, .
(Ll

we find that

(7.16) Quly)(t) = w(t) +o(t*) (t—o0), yeY.
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From the second half of (7.15) we have |®.[y](t)| < =t* for t > T..

We define the mapping F : Y — C[T,, 00) as follows:

VOO (-‘!’ = f)” -k—1 B
(Fy)(t) / (n—k—1)! £(s, lyl(g(s)))ds, t>T,
Yit) = t !

(Fy)(T), t € [T.,T).

Since |Q[y](t)| < |w(t)| + &t* for t > T, and y € Y, the mapping F
is well defined. We find that F(Y) c Y. In fact, if ¢t > T and y € Y,

then

) {5 - f)n—k—!

|(.'F_fj)(f)| < /, mF(s)ds = /, ;G(h‘)u’.ﬁ,

and

(Fy)(t+7) — (Fy) ()] = / " F(s, Dl (9(s)))ds

it-T o
< / F(s)ds = / G(s)ds
o ot

for the case k =n — 1, and

[(Fy)(t+7) — (Fy)(t)|

iy n k=2
- ’/ /; (n —A —2)! — v (1 QY] (g(r)))drds

")‘H k-2 T |
< ————=H(r)drds = / G(s)ds |
/ / (n —k—2)! Ji

for the case k # n — 1. By the same arguments as in the proofs of

Theorems 4.1 and 4.2, we see that F is continuous on Y and F(Y) is
relatively compact. Consequently, we are able to apply the Schauder-
Tychonoff fixed point theorem to the operator F and conclude that
there exists a y € Y such that y = Fy. Set z(t) = Q[y](t). From
(7.16) it follows that z(t) satisfies z(t) = w(t) + o(t*) (t — o0). We see
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that
d*
(7.17) Jﬁ[:(.‘) + z(t — 7)]
d* ! = -
= —plw(®) +w(t —7) + (=1)" " HE[FI() + i[)(E — 7)}]
d* : "z x
= —Flw(®) +w(t —7)] + (1) [@[F)(¢) + )t — 7))
d* :
= Tzl +w(t =) + (-1)"*5(?)
d*
IS e /.x ———~{s L ””_k_lf(s' t(g(s)))ds, t>T
Jo (n—k-=1)"""" P =
so that
A .
o) + 2t~ 1) = q(t) — f(t.2(g(0)), t>T.

This implies that z(¢) is a solution of (7.1). The proof is complete.

Proof of Theorem 7.2. We may assume that ¢ > 0 so small that
w(t) > et* for t > Ty for some Ty > t,. Hence, the conclusion follows

from the proof of Theorem 7.1 with t; = T}, since

0 < w(t) —et* < Wy](t) < w(t)+et*, t>T..

8. THE CASE h(t) = —1

In this section we consider neutral differential equation of the form

T

r‘ﬂ'!
(8.1) () = a(t = 7)) + f(t,(9(1))) = a(t),

where 7 > 0, and (1.2), (1.3), (1.6) and (1.8) are assumed to hold.

Theorem 8.1. Suppose that (1.7) and (4.2) hold. Let k € {0,1,

2,...,n}, and let w(t) be a solution of the unperturbed equation

(8.2) [w(t) - w(t — 7)) = q(t).




Then (8.1) has a solution x(t) satisfying
(8.3) z(t) = w(t) + o(t*) (t = o0)
of
/'* t"KF(t, lw(g(t))| + elg(t)]F)dt < oo for some e > 0.

Theorem 8.2. Suppose that (5.2) holds. Let k € {0,1,2,... ,n},
and let w(t) be a positive solution of the unperturbed equation (8.2)

such that

w(t
liminf%) > (.

t—ro0

If

00
/ t" kP (t,w(g(t)) + elg()]*)dt < 0o for some e > 0,
then (8.1) has a positive solution x(t) satisfying (8.3).

Before giving the proofs of Theorems 8.1 and 8.2, let us consider the
unforced equation

fﬂ”
dtn

(8.4) [z(t) — 2(t — )] + f(t, 2(g(t))) = 0,

where 7 > 0 and (1.2), (1.3) and (1.6) are assumed to hold. Obvi-
ously, continuous 7-periodic functions are solutions of the unperturbed

equation

“{H
15 w(t) — w(t — = ().
(8.5) ”I_',t_n.[ ( ) w( T)]
The functions pi(t) = ct* (k = 0,1,2,...,n) are positive solutions of

(8.5), where ¢ > 0. From Theorems 8.1 and 8.2 we obtain the following

corollaries.
Corollary 8.1. Assume that (1.7) and (4.2) hold and that

(8.6) / t"F(t,a)dt < oo for some a > 0.
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Then, for each continuous t-periodic function w_(t) such that

max lw_(t)| < a, equation (8.4) has a solution x(t) satisfying
z(t) =w_(t) +0o(l) (t— o0).

Corollary 8.2. Let k € {0,1,2,... ,n}. Suppose that (5.2) holds

and that
/ t" " F(t,a[g(t)]*)dt < oo for some a > 0.
Then (8.4) possesses a positive solution z(t) satisfying

(8.7) lim _f-‘_ exists and s a positive finite value.
t—oc

Remark 8.1. The solution obtained in Corollary 8.1 is oscillatory
or nonoscillatory according to whether the function w_(t) is oscillatory
or nonoscillatory. Since condition (8.6) do not depend on the choice of
the function of w_(t), equation (8.4) has both oscillatory solutions and

nonoscillatory solutions if (8.6) holds.

We consider neutral differential equations of the form

|‘!.il'i

(8.8) o

[x(t) —z(t — 7)) + o f(t,z(g(t))) = 0,
where 0 = +1 or —1, 7 > 0 and (1.2), (1.3), (1.6) and (5.22) are

assumed to hold.

Theorem 8.3. Let k € {0,1,2,... ,n}. Suppose that (5.22) holds.

Then (8.8) has a positive solution x(t) satisfying (8.7) if and only if
fo's
(8.9) / t"F f(t,alg(t)]*)dt < 00  for some a > 0.

Proof. The “if” part follows from Corollary 8.2 immediately. We
prove the “only if” part.

Let z(t) be a solution of (8.8) satisfying (8.7). Put y(t) = z(t) —
z(t — 7). From (8.8) and (5.22) it follows that

(8.10) oy\™(t) = —f(t,z(g(t))) <0 for all large ¢.
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Then we see that y'"(¢) (i = 0,1,2,...,n—1) are eventually monotonic,
so that limy_. ¥ (t) (i = 0,1,2,... ,n—1) exist in RU{—o00,00}. We

observe that

gty o [5() E-1)alt—7)
lim —= = lim — — — =),
=00 M t—o¢ fk .(A ( = T)k
Therefore, if k # n, then limy_,oo () =0fori=k. k+1,... .n— 1.

Consequently, if £ # n, then repeated integration of (8.10) vields

"OO (S al "}n—k—i

i f(s,xz(g(s)))ds

: (k) _ {_1\yn—k-1 e
(8.11) y(t) = (-1) Or‘/r (n—k—1)

for all large t.

We first assume that y(t) is eventually nondecreasing. Let M, =
minz(t) on [T'— 7,T] and M* = maxx(t) on [T — 7,T], where T is
sufficiently large. By virtue of Lemma 2.1, we have

m

(b)) = Z y(t —it) +z(t— (m+1)7), te[T+mr,T+ (m+1)7],
=0

T == U feae

Since y(f) is nondecreasing, we obtain

1 3 z T I
- [ y(s)ds < y(t) < - / y(s)ds. ’
3 rJt

) t—T
We find that

m P—iT

z(t) > Z% / y(s)ds + M,

i—=0 t—(141)7

s
e / y(s)ds + M,
T3 -(m+1)7

1t wa
=_ / y(s)ds + — / y(s)ds + M,
T t—(m+1)r

T i

forte [T+mr, T+ (m+1)r], m=0,1,2,..., so that

it
z(t) > ! j y(s)ds+ K,, t>T,
.

T
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where

VA
K,=M, + min / y(u)du.

1
T _;.;';[',f‘ J’,;"|_
Likewise, it can be shown that
| [
z(t) < = / y(s)ds+ K*, t>T,
T ! |'.
where
; .
K*=M*+— max / y(u)du.
T se[TT+7] J

Then we conclude that

of

Tlz(t —7) — K*] < / y(s)ds < 7lz(t) — K.}, t>T+r.
"
[f & = 0, since z(t) is bounded and y(t) is positive or negative, we

ot | it ;
see that [ y(s)ds is bounded and monotone on [T, 0c), so that y(t) is

integrable on [T, 00). If k& # 0, then

k! [t
=0y = Ji o itV
Jim y =0 (t) = lim i ). y(s)ds
kKlrlz(t) — K, .zt
< lim —m = 7k! lim M
iI— oo { t—o0 k
and
k! b
rllgii’ y{’t—l]({) — ;]l,]-]:‘ m /f fj(h)dh
klrlz(t) — K* x(t
> lim rz(t) ‘x J = 7k! lim L)
t—00 (f_ +- T)A t—oo R

This shows that

S S\ VI | () I
rli_’iilcy ()= TA..!.ILIL:J " if k # 0.

Hence we conclude that y™®)(t) is integrable on [T,00) for k = 0,1,

2,...,n. Integrating (8.10) or (8.11) over [T, 00), we obtain

el N o -y
/;r~ %f(“ z(g(s)))ds < oo,
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which implies that (8.9) holds. In the same way, we can prove that
(8.9) holds for the case where y(t) is eventually nonincreasing. The

proof is complete.

Now we make preparations for the proofs of Theorems 8.1 and 8.2.
Let T and T, be constants with T'— 7 > T, > t;,. We denote by

S[T,,00) the set of all functions u € C[T,, o0) such that the series

(8.12) D lu(t+ir)|, t>T-r,

i=1

converges uniformly on [T" — 7,00). For each u € S[T,00), we define

the function ¥[u] on [7,, o) by

= Zu(f i), 2T =7
Plu(t) =¢ =
V(u)(T—7), tel[l,T—1.

Obviously, ¥[u|(#) is continuous on [T}, o) for each u € S[T,, o), and

satisfies
(8.13) Ulu|(t) — Clu|(t —7) =u(t), t>T, ue S[T., 00).

Lemma 8.1. Let u € C[T,,0). Suppose that the series (8.12) con-

verges for each fized t € [T — 7,00) and

rl]rlrlulglz lu(t + i7)| = 0.
Then u € S[T.,00).

Proof. Put 1(t) = 37, |u(t + i7)|. Let m € N. We find that

Z lu(t + i7)| Z lu(t + (m — 1)1 +i7)|

i=m =1

=yY{t+(m-1)7), t>T—r,

I
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so that
as m — 00.

o0
e T S =
h(t) — 0

te[T )
= sup
te[T+(m—2)7,00)
This means that u € S[T,, o).
Lemma 8.2. Suppose that n € S[T,,00) such that n(t) > 0 for

i 17

t > T and define
U={ueCl[T.,,o0) : |u(t)| < n(t),

(8.14)
Then we have

(i) U ¢ S[T,00);

(ii) ¥ is continuous on U in the C[T,, oc)-topology.

Proof. 1t is clear that (i) holds. We prove that (ii) holds.
For every £ > 0, there is an integer p > 1 such that

e -~
E r;(t+r’r)<?~}. Ao BT
i=p+1 :
Take an arbitrary compact subinterval I of [T' — 7,00). Let {u;}%,
be a sequence in U converging to u € U uniformly on every compact

subinterval of [T,,00). There exists an integer j, > 1 such that

r -
3 uy(t +i7) — u(t +ir)| < -3 tel, j>j.

=1

We see that

Z Ju;(t + it)| + Z lu(t + i7)|

|Wlu;](t) — Wlu)(t)|
i=p+l

i=p+1

P
< Z luj(t + 1) — u(t + i7)| +
=1

o0
+2 Y glt+ir) <e, tel, j>j,

i=p+1

|

<

v

[




so that W[u;] converges W[u] uniformly on I. For t € [T,,T — 7], we
have |W[u;](t) — W[u](t)| = [¥[u;}(T — 7) — O[u](T — 7)|. Therefore, we

can conclude that ¥ is continuous on U.

Lemma 8.3. Let p € NU{0}. Suppose that G € C[T, ), G(t) > 0
fort > T and

A&W”((mw<x
If u € C[T,,00) satisfies
u(o)] < [ T (s—1PG(s)ds, t>T.
Ji
then u € S[T,,00) and
iwmungl/mﬁMGuw& t>T—.
4

Proof. We observe that

u(t +it)| < / (s —t —1i7)PG(s)ds
> i< |

i=1 +iT
o0 . 00 H(H—I}r
< Z Z [ (s — t)PG(s)ds
i=1 j=i YiHIT
0 t+(j41)T
:2:;/ (s —t)’G(s)ds, t>T —r.
t+j7

7=1
If s € [t+j7,t+ (j+1)7], then [(s —t)/7] =1 < j < (s —t)/7. Hence |

we have

i| = 1 ik o p+1 |
u(t +i7)| Z-T- =) = 1G(s)ds
=1 =1

Ji+3T

] (s — t)"*'G(s)ds

t+7

< 1/“ sPG(s)ds, t2T -1
t

L +T

3| =

Then Lemma 8.1 implies that v € S[T,.00). The proof is complete.

We are ready to prove Theorem 8.1 for the case k # n.
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Proof of Theorem 8.1 (k # n). Let k € {0,1,2,... ,n —1}. Take a

number 7" such that
T. =min{T — 7, inf {g(t) : t > T}} > ¢,,

w(t) is continuous and satisfies (8.2) on [T,,00), and

s
= / s"KF(s)ds < ¢,
1

-
voJgm

where F'(t) = F(t, |w(g(t))| + £[g(t)]¥). Consider the set ¥ of all func-

tions y € C[T,, oc) such that

/'x(g —t)"*1F(s)ds, t>T,
|.U(f)| < . r-x;
/ (s =T)**1F(s)ds, t€ [T3,T].
JT

Then Y is a closed convex subset of C[T,,00). Lemma 8.3 applied to

the case p =n—k —1 and G(t) = F(t) implies that Y ¢ S[T,, o) and

wly)(t) < L / S"*F(s)ds<e, t>2T—1, ye¥,

Ji+T
and hence lim_, ., [y](t) = 0 for each yey.
For each y € YV, we assign the functions Wi[y](t) and Q[y](t) on
[T, 00) by

W[y](t), k

Reli= ([t = g)k
/.! Wq’[?f](-‘*)ds. k=1

0,

I

3%

Soimie—l

and
Qely](t) = w(t) + (=1)" 1 [y] ().

Then we find that (7.16) holds. In view of the fact that |P[y](t)| < &
for t > T,. we obtain [Wily](t)| < et* for t > T,.
We define the mapping F : ¥ — C[T,, o) by
0O (o / n—k—1
/ (—H—R——,f(hnSEA-.{;r;](y(rf)))ds- t> 1T,
(Fu)@)=4 J¢ (n=k-1)!

(Fy)(T), te [T.,T)




By the same arguments as in the proof of Theorem 7.1, we conclude
that F is well-defined and continuous and maps Y into itself. and
that F(Y') is relatively compact. The Schauder-Tychonoff fixed point
theorem shows that y = Fy for some 5 € Y. Set 2(t) = Qk[y](t). By
(7.16), z(t) satisfies z(t) = w(t) + o(t*) (t = o0). In a similar way to

(7.17), we see that x(t) is a solution of (8.1). This completes the proof.

We need a further preparation for the proof of Theorem 8.1 in the
extreme case k = n.

Let T and 7, be constants such that 7" — 7 > T, > ty. For each
u € C[T,, 00), we define the function ®[u](t) on [T,, o0) as follows:

( m

Z u(t —ir) + ”(T)(! —m7 —T),

T

1=

te[T+mr, T+ (m+ 1oy, m=0,1,..
Plu](t) = < T
t!(_;)(f—T+TJ~ te [T —r,T),

[l

0, te[T.,T -]

\

By the same arguments as in the proof of Proposition 3.1, we find that

® has the following properties:

(i) ® maps C[T.,00) into itself and is continuous in the C[T.,0)-

topology:

(ii) for each u € C[T.,0), ¥ satisfies ®lu)(t) — ®[u|(t — 7) = u(t) for
- el

Lemma 84. Let T > 21 and T — 7 > T, > t,. Suppose that
G € C[T,00), G(t) >0 fort > T and

00
/ G(s)ds < 0.
7
Assume moreover that u € C [T, 00) and

lu(t)| < [m G(s)ds, t>T.
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Then ®[u|(t) = o(t) (t = o) and
] (s
|<I)['u](f)| < — / G(s)ds, t>T,.
T Jr

Proof. If t € [T — 7, T], we see that

s

t T —T 2r — T
T

so that

|u(T)|

I

|@lu](t)] <

(t =T +7) < [u(T)| <

= | o=

/ .G(.t;)(f.s'.
JT

Thus we conclude that
¢ oo |
](I)[..-:.](-,-‘” = / G(s)ds, te [T, 45
T Jir

because of ®[u](t) = 0 for t € [T.,T — 7].
Let t € [T +m7, T+ (m+ 1)1}, m = 0,1,... . We observe that

m

|D[u](t)] < Z |u(t — ir) (FT)[(f —mr —T)

i=0
T SO0

§Z.‘!G rfs-i—/ G(s)ds
1=0 {

m

= (-m.+1)/ll G(s ds—l—Z/ G(s)ds + / G(s)ds,

and that

m t i t—(j—1)7 :
Z/ s)ds = ZZ/ (s)ds
i=1 v E-iT i=1 j=1 Jt=ir b
—(1—1)7
Z (m+1- ) / G(s)ds
t—jT
m t—(j—1)r Ie
SZ/ (m+1+ (s —t)/7]G(s)ds p

j=1 Y t=ir

ot of
= (m + I)/ G(s)ds + . / (s — t)G(s)ds,
t—mr T Jt—mr
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since if s € [t — j7,t — (j — 1)7], then [(s—t)/7] =1 < —j < (s —t)/7.

Hence we obtain
|D[u](t)]

55 ) 50
< (m+1) / G(s)ds + i [ (s —t)G(s)ds + / G(s)ds.
. . JT

t—mt tJt—mr

Since t —m7 > T and m < (t — T) /7, we have

(8.15)
e oo ot
|D[u](t)] < (u + l.) / G(s)ds + = / (s — t)G(s)ds
T Jr T Jr
+ | G(s)ds
Jr
- OO Jo's) t
= (2 — £) / G(s)ds + ! / G(s)ds + - / sG(s)ds
T T Jt T T
T S L
< = / G(.s)rf.s‘%—; /f sG(s)ds = p(t).
Ji JT
Then

Further, from
1 00
o'(t) = = / G(s)ds -0 ast— oo
Ji
it follows that ®[u](t) = o(t) as t — co. This completes the proof.

Proof of Theorem 8.1 (k =n). We can take a number 7' > 27 such
that

T. =min{T — 7, inf {g(t) : t > T}} > to,

w(t) is continuous and satisfies (8.2) on [T, o), and

1
—~ / F(s)ds < ¢,
I

T Jo
where F(t) = F(t,|w(g(t))| + €[g(t)]"). We consider the set Y of all
functions y € C[T,, o0) satisfying

y(t) =y(T) forte[T,,T]
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and
ly(t)| < / F(s)ds fort>T.
oo

For each y € V', we set

(I’[t}](f) n = L_

Duyl(®) =< pr (4 gyn-2
/ g{.'—).z).‘l’[:vl(s)ds._ n>2,

1 —2)!

and
Quly)(t) = w(t) + Puly](?).
In view of Lemma 8.4, we find that
Qa[yl(t) = w(t) + o(t") (t — o0),
and
1 (y](t)| < |w(t)| + ", t>T,,

for each y € Y.
Define the mapping F : Y — C[T\, c0) by

(Fy)(t) / £(5, Q] (g(s)))ds, t>T,
y)(t) =< /i

(Fy)(T), t € [T.,T). i

Using the same argument as in the proof of Theorem 8.1 for the case ;
k # n, we conclude that Fy = 7 for some § € Y, and that z(t) =
Q,[9](t) is a solution of (8.1) satisfying z(t) = w(t) + o(t") (t = o).

The proof is complete.

Proof of Theorem 8.2. By the same arguments as in the proof of

Theorem 7.2, we can show Theorem 8.2.

70




9. THE CASE h(t) = X WITH || # 1

In this section we consider the neutral differential equations

d" o
(9.1)4 =5 [z(t) + Az(t — 7)] + f(t, x(g(t))) = 0,
and
s (!H
(9.1)- m[r{f} — Az(t — 7)] + f(t,z(g(t))) = 0,

where A > 0, A # 1, 7 > 0, and (1.2), (1.3), (1.6), (1.7) and (4.2) are
assumed to hold.

Let w, and w_ € C[T, 00) be functions satisfying w, (t+7) = —w. (1)
and w_(t + 7) = w_(t), respectively, for t > T. We easily see that
A7w () and AY7w_(t) are solutions of the unperturbed equations

(‘;.H ”i'n

— |zt /.'f—T — e
(””[f()-i-\l( )] =0 and —

[z(t) — Mz(t — 7)] =0,

respectively. Thus it is natural to expect that, if f is small enough in

some sense, equation (9.1)4 [resp. (9.1)_] possesses a solution x(¢) be-

having like the function A\/7w. (1) [resp. ,\”Tu,'_(f)] as t — 00. Indeed,

we have the following theorem.

Theorem 9.1. Suppose that
O
(9.2) / A YTER(t,aNY7Ydt < 0o for some a > 0.

(1) For each wy € Clty,00) such that w (t +7) = —w,(t) fort > t,
and max |w(t)| < a, equation (9.1)4 has a solution x,(t) satis-
L

fying
(9.3)+ T4 (t) = ATwy(t) +0(1)] (t = o0).

(ii) For eachw_ € Clty, 00) such that w_(t+7) = w_(t) fort > t, and

Ill:inw'\.{fH < a, equation (9.1)_ has a solution x_(t) satisfying

(9.3)_ z_(t) = A\ w_(t) +0(1)] (t— o).




Remark 9.1. For the case w,(t) # 0, the solution of (9.1), ob-
tained in (i) of Theorem 9.1 is oscillatory. For the case w_(t) # 0,
the solution of (9.1)_ obtained in (ii) of Theorem 9.1 is oscillatory or
nonoscillatory according to whether the function w_(t) is oscillatory or
nonoscillatory. Since the condition (9.2) is independent of w_(t), (9.1)

has both oscillatory solutions and nonoscillatory solutions if (9.2) holds.

In what follows we superpose the plus sign + and the minus sign —.
For example, the two equalities wy(t +7) = —w, (t) and w_(t +7) =
w_(t) are written as w. (t+7) = Fwy (), and the two conditions (9.3).,

and (9.3)_ are written as
(9.3)+ zil(t) = AN [wy(t) + o(1)] (¢t — o0).

Let T and T, be constants with T — 7 > T, > t;. We denote by
S[T.,oc) the set of all functions u € C|T,,o0) such that the series
(8.12) converges uniformly on [T" — 7,00). For each u € S[T., c0), we |
assign the function ¥, [u] on [T, 00) by

o 2]

- Z(¥1)"u(?‘. +it), t>T—1,
‘I’i[?f](f) = =1 i
I
Wy [u|(T —71), te|T,, T —T]. ;
i
By the same argument as in Section 8, we have the following result. l

Proposition 9.1. Suppose that ) € S[T,,00) such that n(t) > 0 for
t > T and define the set U by (8.14). Then Wy maps S[T.,00) into 4
C|T., <) and satisfies

Wylu](t) £ Vilu](t—7) =u(t), t>T, wue ST, ),
and is continuous on U in the C[T,,o0)-topology.

We first prove the case 0 < A < 1 of Theorem 9.1. To this end, we

need the next lemma.




Lemma 9.1. Let 0 < A <1 and k € NU {(]}. Suppose that G €

C|T, ) satisfies

(9.4) G(t)>0 fort>T and / MG (t)dt < oo
-

Then
(9.5) Y aUHnf / (s —t —ir)*G(s)ds
oy JirT
< Tk!\'/ | X*"@3Yds, t> T —7
t+T
where JC = Y70, AR
Proof. Let t > T — 7 be fixed. Observe that
(9.6) D Aty / (s —t —ir)*G(s)ds
=i JbiT
0 X et (j41)7
= Yo PR N / (s —t — i)k G(s)ds
i=1 j=i YEHIT
i st4-(F+1)T J _
=% / D A=t (g g — i) EA=SITG (s)ds.
F=1* t+it i=1

Ifseft+jrt+(j+1)7r],then (j—i)r <s—t—ir < (j+1—19)r

Hence we have

L, J
(9.7) D Metiin(g g i)t < K 3T NG 41— )
=1 i=1

J
< r* Z N1k < K
=1

for s € [t + j7,t+ (7 + 1)7]. By (9.6) and (9.7), we obtain (9.5).
Proof of Theorem 9.1 (0 < A < 1). Let 0 < A < 1. Put

¢ = max lwe(®)| and @) =7""'K / AT R(s)ds

J 4T
for all large ¢, where F'(t) = F(t,a\Y/7) and K = Yoo N W

can choose a number T > ¢, such that

T, = min{T — 7, inf{g(t) : t > T}} > ¢t
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and ¢¥(t) < a —cfor t > T,. We define the function n € C[T., cc0) and
the set Y by
A=t / (s— )" F(s)ds, t>T,
)= s
Sl / (s —=T)"'F(s)ds, te[L,T],
JT
and

(9.8) Y ={y € C[T,,) : |y(t)| < n(t) for t > T.,},

respectively. It is obvious that n(t) > 0 for t > T, and Y is closed and

convex. Lemma 9.1 implies that

0o
(9.9) Z nt+ir) <P@E), t>T -1
i=1
In view of Lemma 8.1 and the fact that lim,_, . ¥(¢) = 0, we see that 7 €

S[T.,0). From Proposition 9.1 it follows that ¥, : Y — C[T,, ) is

continuous and satisfies

(9.10) Uilyl(t) £ Yefylt—7)=y(t), t>T, yeY.
Since ¥(t) < a —c for t > T,, from (9.9) we find that

(9.11) Celyl(®)| <¥(t) <a—¢, t>T-71, yevy.

We define the mapping F, : Y — C[T,, o0) as follows:

(Fiy)(t)

(_1):1—1)\—!'.;%

*0 (o _ )Nl
X./;. %ﬁ_jjl—)!-f('“’ [we(g(s)) + Wi [y]l(g9(s))]AT)ds,

o

=1,

| (Fey)(T), t € [T.,T).
From (9.11), we have

ws(8) + Tl (1)) < Jws(®)] + |aly)(O)] < o+ (a— ) =a, t>T,
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for each y € Y, so that F. is well defined and maps Y into itself. By
using the same arguments as in the proofs of Theorems 4.1 and 4.2.
we conclude that F, is continuous and F.(Y) is relatively compact.
Application of the Schauder-Tychonoff fixed point theorem shows that
there exist y+ € Y such that yo = Foy,. Put z24(t) = [we(t) +
U [y+](¢)]AY". Then we obtain

for t > T, which implies that x4 (¢) are solutions of (9.1)y. From
(9.11) it follows that x4 () satisfy (9.3)s. This completes the proof of

Theorem 9.1 for the case 0 < )\ < 1.

Now we turn to the the case A > 1 of Theorem 9.1.

Lemma 9.2. Let A > 1 and k € NU{0}. Suppose that G € C|[T, )
satisfies (9.4). Then

o L4t
(9.12) Z/\ (her)/7 [ (t + it — 8)*G(s)ds

i=1 &

oo vi4-T
< L/ AT G(s)ds + 25 L) ‘f’T/ G(s)ds
Jtr JT

ok T

+ e l/\_”r ]] (t+7 - 5)*G(s)ds

fort > T — 1, where L = 7* DD s




Proof. Let t > T — 7 be fixed. We observe that
>0 . 1T
(9.13) Z b ki g / (t + it — $)*G(s)ds
i=1 T
o0 sitT
=N & ”“*‘Jf"f/ (t + it — s)*G(s)ds
i=1 g
oC : i—1 (G417
+ x5 [ i - )G )ds
i7=2 g=] * t+j7
y o0 s
2 \’Z\/ (t + it — $)*G(s)ds
= =
00 st (j+1)r o
irH Z / Z /\—(!"él".l' .\'];’T(!._ 4T — H)J.'/\—.«,‘T(’;(S)(!H.
j=1" t+jgT i=j+1

We have
(t+ir—s)k =[(t+7—s)+ (i — 1))k
< 28[(t +7 — 8)* + (i — 1)Fr*]

for s € [T,t+ 7], because of (u+wv)* < 28(uk +v*) for « > 0 and v > 0.

Then we see that

o3 T
(9.14) ) ,\-*/ (t + it — s)¥G(s)ds
=1 r
o0 b7
D T / (t+7—s)*G(s)ds
",

o0 A4+T
+ 2’*r’~‘ZA-*’(a = 1)’*/ G(s)ds
i=1 J

7

T T
/ (t+ 71— 5)*G(s)ds + 2¥L / G(s)ds.
i s

)
-

<
il

Ifse[t+jnt+(j+1)r],then (i—j—1)r <t+ir—s < (i —j)r.
Thus,
(9.15) 3 AHe pir gt <ok S A-b-FN( gk

i=j+1 i=741

Tk Zx: /\—H-I’;Ik = T
=1




for s € [t+ j7,t+(j+1)7]. Combining (9.13)-(9.15), we obtain (9.12).

Lemma 9.3. Let A > 1 and k € NU {0}. Suppose that G € [T, )
satisfies (9.4). Then

47

(9.16) lim A4/ / (t +7 — 8)*G(s)ds = 0.
{—oc Jr

Proof. 1t suffices to give the proof for the case k = 0. In fact, if

L—00

b7
lixg A" / G(s)ds = 0,
Jip

then for k& # 0 we have

47
lim A~4" / (t+7— s)"G(s)ds
T

t—oc

: d"'- T o ffk tlr
= fl_l_f; F/; (t+7—2s) ('(-"')'f*"/ ﬁ/\

K T
= lim k! | — =4 7(s)ds = 0.
f@;A..[]()gAJ A A G(s)ds =0

Put o(t) =A% [: G(s)ds. An easy computation shows that

¢ o
9.17 (s)ds =
(9.17) [ ols)ds = {

B |
I'hen we have

ot
/ ATG(s)ds — ;(.“)} , t2T.

T )

0< /'f ©(s)ds < . /.%A_S/’(F(‘w)rfﬁ, AB=g 14
Jr log A Jp

which implies that ¢ is integrable on [T,00). It follows from (9.17)

that [ = lim,_,, ¢(t) exists and is a nonnegative finite value. Since ¢ is !

integrable on [T, 00), it is impossible that [ > 0. Consequently, (9.16)

holds for the case k = 0. This completes the proof.

Proof of Theorem 9.1 (A > 1). We assume that A > 1. Set F(t) =
F(t,aXW/m), ¢ = max lw (2)],

0 )
: _ 1
L - | Tli—l E A—-J.'Flin.—l‘ .-'U L 2”,—1 max {L‘ \ 1 } .. d

t=1




and

oS T

W(t)=L / ATF(s)ds + MX\ YT / (14 (t+ 7 — 5)"'|F(s)ds

Jt4r JT

for t > Ty — 7, where T is a sufficiently large number. By Lemma 9.3,
we have limy_, 1(t) = 0. Hence, we can take a number T > T; such

that
T, =min{T — 7,inf{g(t) : t > T}} > Ty
and Y(t) < a—cfort > T,. We put

ot
N / (t —s)" 'F(s)ds, t>T,

n(t) = Jr

0, A [

and define Y by (9.8). In view of Lemma 9.2, we see that (9.9) holds,
so that n € S[T,,00) by Lemma 8.1. Proposition 9.1 implies that W :
Y — C[T,,00) is continuous and satisfies (9.10) and (9.11). By the
same arguments as in the proof of Theorem 9.1 for the case 0 < A < 1,
there exist y+ € Y such that y. = Fiyy, where Fy : Y — C[T.,00)

is the mapping defined by

(Fey)(t)

g

| — 5 n—1
_"_Ur[,. %f (5, [we(g(s) + L lyl(g ()N T)ds,

P

e

0, e[ ).

\

Let 24 (t) = [we(t) + Yi[ge](t)]AYT. Then we find that

t — n—1
Ta(t) LAzt —7) = —/ uf(s,.ri (g(s)))ds, t>T,

r (n—1)!
so that xy () are solutions of (9.1).. From (9.11), we conclude that

x4 (t) satisfy (9.3)+. This completes the proof of Theorem 9.1 for the

case A > 1.




10. THE CASE h(t) = h(7™(t)) + o(1)

We consider the equation

('}'H

10.1
( ) dtn

[z(t) + h(t)z(7(t))] + f(t, x(g(t))) =0
for the following case:

(10.2) lim [A(t) — h(r™(t))] =0

t—oc
for some N € N. It is assumed throughout this section that (1.2)-(1.7)
and (4.2) hold.

Pairs of the functions
h(t) = (1/2)sint +o(1) (t— 00), 7(t)=¢t— (2m/N);
h(t) = 3 +sin(2wlogt) +o(1) (t = o0), 7(t) = e—VNy

give typical examples satisfying (10.2).
Now we suppose that (—1)Y Hy(t) # 1 fort > 7~ ¥=1(¢,) and define

the function wy(t) by

wn(t) = [Z(—U*Hm

1=0

JlL= (DVHy@), 2 73 to).

It is easy to check that if h(t) = h(7™(2)) for t > 7= (¥=1(t,), then
wn(t) + h(Qwn(r(t) =1, t>7N(t).

Thus it is natural to expect that, if (10.2) holds, then there exists a

continuous function w(t) which satisfies
(10.3) w(t) + h(t)w(7(t)) =1

for all large t and behaves like the function wy(t) as t — oo. In fact,

we have the following result.

Lemma 10.1. Suppose that h(t) is bounded on [ty,o0) and that ei-

ther (4.9) or (4.10) holds. Assume moreover that (10.2) holds. Then
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there exists a continuous function w(t) satisfying (10.3) for all large t

and
.x,’(f) = .4,“_-\'(1’) o o O(l) (! — "X..)

Proof. Put p(t) = —h(t) and use the notation (2.3). Then

0 /u—rxun

First we claim that
(10.4) Fuﬂwxﬂ)—gﬂﬂgx(ﬂfn]:l.
We observe that

[wn () = p(t)wn (7(6))][1 = P ()][1 — Pn(7(2))]
N —

N-1 N-1
= Y P@#)[1 - Pulr n—§: t)Pi(7(t))[1 — Pn(t)]
N—-1

)1 — Pn(r ]—E:P [1 — Pyt

= Pi(t)[1 — Pn(7(t)) — 1+ Pn(t)] + 1 — Py(7(t))

{ogl
b

f=]
— Py (8)[1 — Py (t)]
N-1
= > P(t)[Pn(t) = Px(7(t))] + [1 — Py (r(t))][1 — Py (t)]
=1

= Y P(t)[Px(t) — Pu(r(t)] + [1 — Py(r()][1 — Px(1)],

so that

wn(t) = p(t)wn(7(t))

= P'\ 1 t) Zz’vlp t
~ 1= Py(®)][1 = Px(7(t))]

[p(t) — (™ (1))] + 1
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for all large ¢. Since p(t) is bounded and since either [Py ()] < A < 1

or |Py(t)| > > 1. there is a constant M > 0 such that

lwn (t) — p(t)wn(T(t) — 1| < M|p(t) — p(r™(t))|

for all large ¢. From (10.2) it follows that (10.4) holds.
By applying Lemma 3.2 with ¢(¢) = 1 — wx(t) + p(t)wn(7(t)), there

is a continuous function v(t) satisfying

v(t) —p(t)v(7(t)) = 1 —wn(t) + p(t)wn(7(t))

for all large ¢ and limy_,» v(t) = 0. Set w(t) = wy(t) + v(t). Then we
easily see that w(t) satisfies (2.6) for all large t and w(t) = wy(t) +o(1)

(t — o0). This completes the proof.

Lemma 10.2. Let k € NU {0}. Suppose that h(t) is bounded on
[to,00) and that either (4.9) or (4.10) holds. Assume moreover that
(10.2) holds and limy o, 7(t)/t = 1. Then there exists a continuous

function w(t) satisfying
(10.5) w(t) + h(t)w(r(t)) = t*
for all large t and
(10.6) w(t) = [wn(t) + o(1))tF  (t = ).
Remark 10.1. For the case where A(t) is bounded, if either (4.9)

or (4.10) holds and lim,_,, 7(t)/t = 1, then either (4.3) or (4.4) holds

with £y replaced by sufficiently large number 7}.
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Proof of Lemma 10.2. Notice that

i o0 2] [2]

k

p ,I_i]_“_[h(!) — h(™(t))] {T_!’)]
. A T(,“.') k T"\w"(f) L
+f11}1:;h(a (1)) HTl - [ ) ] J

=),

Applying Lemma 10.1 with A(t) replaced by h(t)[7(t)/t]*, we see that

there exists a continuous function () such that

k
0(t) + h(t) [—-] 0(r(t)) = 1

for all large ¢ and

e [Z_(*”’H"(” [f)] } / [‘ ~ ()" Hx(t) [ iw] ]

=0

It is not difficult to verify that

N-1 : T".(.’) k " T"\:(f) k
[Z(—l)hﬂ-(f)[ ,_ H/[l—(—n HN(*‘)[ , H

i=0

=wn(t) +0(1) (t—> o0).
Thus, w(t) = t*0(t) satisfies (10.5) for all large ¢ and (10.6). )

From Theorem 4.1, Lemmas 10.1 and 10.2, we obtain the following

results. !

Theorem 10.1. Suppose that h(t) is bounded on [ty,00) and that
either (4.9) or (4.10) holds. Assume moreover that (10.2) holds. Then
(10.1) has a solution x(t) satisfying

x(t) = cwn(t) +0o(1) (t — o0) for somec# 0,
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provided
(10.7) / t" ' F(t,a)dt < oc for some a > 0.

Theorem 10.2. Let k € {0,1,2,... ,n — 1}. Suppose that h(t) is
bounded on [ty, 00) and that either (4.9) or (4.10) holds. Assume more-
over that (10.2) holds and limy_,o 7(t)/t = 1. Then (10.1) has a solu-

tion x(t) satisfying

x(t) = clwn(t) + o(1)|t*  (t = o) for some ¢ # 0,
provided
(10.8) /F’C t"*1E(t, a[g(t)]*)dt < 00 for some a > 0.

In particular, for the cases N = 1 and N = 2, Theorems 10.1 and

10.2 give the following results.

Corollary 10.1. Suppose that
(10.9)  A(t) is bounded on [ty, 00), limy_eo[h(t) — h(7(t))] = 0, and
either |h(t)] < A < 1 for some X\ > 0 or |h(t)] > > 1 on

[to, 00) for some p > 0.

If (10.7) holds, then (10.1) has a nonoscillatory solution x(t) satisfying

z(t) = 1 +;{” +o(1) (t—>oc) for somec#D0.

Corollary 10.2. Let k € {0,1,2,... ,n — 1}. Suppose that (10.9)
holds and limy_, 7(t)/t = 1. If (10.8) holds, then (10.1) possesses a

nonoscillatory solution x(t) satisfying

2t =ec [Tlhfﬁ + r)(l]] t* (t — o0) for some ¢ #0.

Corollary 10.3. Suppose that
(10.10)  A(t) is bounded on [ty, o0), limy_oo[h(t) — h(7%(t))] = 0, and
either |h(t)h(T(t))| < A <1 on [17'(ty),00) for some X > 0
or |h(t)|™" is bounded on [ty,00) and |h(t)h(r(t))] > p > 1

on [77(ty), 00) for some p > 0.
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If (10.7) holds, then (10.1) has a solution x(t) satisfying

c[1 — h(t)]

x(t) = L — h(t)h((t))

+o(l) (t—00) for somec#D0.

Corollary 10.4. Let £k € {0,1,2,...,n — 1}.  Suppose that
(10.10) holds and limy_,» 7(t)/t = 1. If (10.8) holds, then (10.1) has
a solution x(t) satisfying

1 — h(t)

z(t)=c = hDA(r D) +o(1)|[t* (t = o00) for somec# 0.

Now assume that
(10.11)  limy_o0[h(t) +h(7(t))] = 0 and |h(t)| < A < 1 on [T} (t), 0)
for some A > 0.
Then we easily see that

lim [h(t) — h(7%(t))]

t— o0

:fl._‘!'”[h-( ) + h(r ]—Ilm[h (t)) + h(r2(t))] =0

and

1 — h(t) 1 —A(1)
1 — h(t)h(r(t)) 1+ [h(t)]?

Consequently, from Corollaries 10.3 and 10.4, we have the following

+o0(1) (t — o0).

results.

Corollary 10.5. Suppose that (10.11) holds. If (10.7) holds, then
(10.1) has a nonoscillatory solution x(t) satisfying

e[l — h(t)]

+o(l) (t—o0) for somec#N0.

Corollary 10.6. Let £k € {0,1,2,...,n — 1}. Assume that
(10.11) holds and limy_,, 7(t)/t = 1. If (10.8) holds, then (10.1) has

a nonoscillatory solution x(t) satisfying

1 — h(t)
1+ [A(2))?

Z(t) = +o(1)|[t* (t = 00) for somec# 0.




Remark 10.2. The solutions obtained in Corollaries 10.3 and 10.4
are oscillatory or nonoscillatory. Indeed, this is confirmed by the fol-

lowing example.

Example 10.1. We consider the equation

T

(10.12)

S [z(t) + A(1 —sint)z(t — 7)] + f(t, z(g(t))) =0,

where

Al < 1. Here, h(t) = A(1 —sint) and 7(¢) = t —x. It is
easy to check that (10.10) holds and limy . 7(t)/t = 1. Let k €
{0,1,2,... ,n — 1}. Applying Corollary 10.4 to equation (10.12), we
see that if (10.8) holds, then (10.12) has a solution z(t) satisfying

iy 1+ Afsint — 1)

. +o(1)| t* (t = oo) for some ¢ # 0.
‘ 1+ A2(sin®¢ — 1) o(1) ( ~>0) for some ¢ #

This solution z(t) is oscillatory if 1/2 < A < 1 and is nonoscillatory if

1 A< 112

11. POSITIVE SOLUTIONS FOR THE CASE h(t) = h(7(t))

In this section we shall be concerned with the existence of positive
solutions of the equation

(11.1) [z(t) + h(t)z(7(t))] + o f(t,z(g(t))) = 0,

dtn

where o = 41 or —1, (1.2)-(1.6), (5.22) and the following condition

hold:

(11.2) h(t) = h(7(t)) and h(t) > -1 fort > 77 (t).

We obtain the following theorem, in which the “if” part is an ana-

logue of Corollary 10.1.

Theorem 11.1. Equation (11.1) has a positive solution x(t) satis-

fying

(11.3) x(t)

+o0(l) (t—>o00) for somec>0




if and only if
OG0
(11.4) / "1 f(t,a)dt < oo for some a > 0.

[t should be emphasized that neither |h(t)| < A < 1 nor |h(t)| > A >
1 is necessary in Theorem 11.1.

We give an example illustrating the above theorem.

Example 11.1. We consider the neutral differential equation

T

(11:5) [z(t) + h(t)z(t — 7)] + ae " [P(g(t))] " [z(g(t))]" = 0.

dtm
where n > 1, ¢ = +1 or =1, v > 0, 7 = log(4/3), g € C[to, 0),
limy ;o g(t) = 00, g(t) = 0 for t > tg, h(t) = 1+ (3/2)sin(2xt/7), and

; 11 3¢t
P‘ A e e _] n- I—_
U=msm Y T nm
i 9,
= . +o(—1)"! - t > 0.

4 + 3sin(27t/T) 7+ 6sin(2rt/T)’ —
Clearly, h(t) > —1, h(t) = h(t —7) for t > t, and P(t) > 1/7 for t > 0.
Then it is easy to check that

/.x t" e [P(g(t))]aVdt < oo (a>0).

J i

By Theorem 11.1, we conclude that (11.5) has a positive solution z(t)

satisfying
-
z(t) = —- + o(1 t = o0) for some ¢ > 0.
(*) 4 + 3sin(2nt/T) (1) ( ) i
Indeed, x(t) = P(t) is such a positive solution. T

Suppose that (11.2) holds. Then note that
[to, 00) = UpZo[r7"(t), 7~V (to)]

and that the range of h(t) for t € [to, 7' (¢y)] is identical to the range
of h(t) (= h(rP(t))) for t € [T7P(to), 7~ P*V(t)], p = 0,1,2,... . Let

= min h(t) on [ty, 77" (t9)] and A = maxh(t) on [ty, 7' (t;)]. Then we
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find that —1 < u < h(t) < A < oo for all t > 1y, so that the asymptotic

condition (11.3) for x(f) implies

0 < liminfaz(t) < limsupz(t) < oc.

t—=o00 1—+00

Consequently, the “only if” part of Theorem 11.1 follows from Theorem

9.4.
Now we give the proof of “if” part of Theorem 11.1.
It is possible to take sufficiently large numbers T" > t; and T, >

such that
h(T) = max{h(t) : t € [ty,0)},
and
to < T. < min{r(T), inf{g(t) : t > T}}.

Let n € C[T, 00) be fixed such that 5(t) > 0 for t > T and limn(t) =0
as t — oo. We consider the set Y of all functions y € C[T,, o0) which

is nonincreasing on [T, 00) and satisfies
y(t) =y(T) forte[T.,T], 0<y(t) <n(t) fort>T.

It is easy to see that Y is a closed convex subset of C[T,, 00).

To prove Theorem 11.1, the following proposition is used.

Proposition 11.1. Let n € C[T,00) with n(t) > 0 for t > T and
limy o () = 0. For this n, define Y as above. Then there exists a

mapping ® : Y — C[T.,00) which possesses the following properties:

(i) For each y € Y, ®ly] satisfies
Oly](t) + h()®[y|(r(t)) = y(t), t>T and rlim_ D(yl(t) = 0;
(i1) @ is continuous on'Y in the C[T.,o0)-topology.

The proof of Proposition 11.1 is deferred to Section 13.
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Proof of the “if” part of Theorem 11.1. Put

n(t) = / ..w”"f(.-;.r.f}rfs. >
Ji

We use Proposition 11.1 for this 7. We can take constants ¢ > 0, 5 > 0

and £ > 0 such that

3
0<dt+e<———<ag—g 1>T..
S O

Define the mapping F : Y — C[T,, 00) as follows:

"0 (o 4\M- 1
| I s wlao) + o1 @lil(g(s))ds,

(Fy)(t) = i ST,

(Fy)(T), t € [T, T),

where w(t) = ¢/[1 + h(t)] and

f(t,a), u>a
ftu)=13 f(t,u), 6<u<a

|
. !
f(t,6), u<é. f
[t is easy to see that F is well defined on Y, maps Y into itself and is b
i
continuous on Y, and that F(Y') is relatively compact. Consequently, I
I
we are able to apply the Schauder-Tychonoff fixed point theorem to |I
the operator F and we conclude that there exists a y € Y such that ilv
y=Fy. Set |
a(t) = w(t) + a(=1)""'®[7] (). E
Proposition 11.1 implies that z(¢) satisfies (11.3) and that there ex- i

ists a number T > T such that § < z(g(t)) < a for t > T. Then
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f(t,2(g(t)) = f(t.2(g(t))) for t > T. Observe that
(11.6)

z(t) + h(t)z(7(t))
i

L+ h(7(t))

!
ST rRm

+o(—1)""'[@[y](t) + h(t)R[F]((t))]

= c+a(-1)""'5(1)

ge's (h_ __f)n—l .

= c+o(=1)*"" / — - f(a,zlg(s)))ds, t= T,
Ji (n=1)! :
By differentiation of (11.6), we see that z(t) is a solution of (11.1).
The proof is complete.
12. POSITIVE SOLUTIONS FOR THE CASE WHERE f.’(f) IS PERIODIC

In this section we consider the neutral differential equation

d_u
dtn

(12.1) [z(t) + h(t)z(t — 7)] + o f(t,2(g(t))) = 0.

For equation (12.1), we always assume that ¢ = +1 or —1, 7 > 0, and

that (1.2)-(1.4), (1.6), (5.22) and the following condition (12.2) hold:
(12.2) h(t)=h(t—7) and h(t)> -1, t>t,.

We define the functions wy(t) (k= 0,1,2,...) on the interval [tg, o0)

by
1
1+ h(t)’ k==f].
wi() = k k-1
L+h(t) 1+ h(?) 23 (.,;)(—T) wi(t), k=1,2,....

1=0

By induction, we easily see that wy(t) satisfies
wi(t) + ()t =17) =tF, t>to+,

and

1

(123 k) = | T

+ 0(1)] t* ast— oo.
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Thus, if £k € {0,1,2,... ,n— 1}, a positive constant multiple of w(t)

is a positive solution of the unperturbed equation

(f'”
dtm

[(t) + h(t)z(t — 7)] = 0.

In this section we have the following theorem, in which the “if” part is

an analogue of Corollary 10.2.

Theorem 12.1. Let k € {0,1,2,... ,n — 1}. Then (12.1) has a

solution x(t) satisfying

(12.4) .;.-(x):[m +o(1)} tf (t —00) forsomec>0

if and only if
(12.5) / " f(t,alg(t)]*)dt < oo for some a > 0.

We note here that the conditions |h(#)| < A < 1 and |h(t)| > A > 1
are not required in Theorem 12.1.

Theorem 12.1 for the case k = 0 is already shown as Theorem 11.1.
Therefore, in what follows, we assume that £ € {1,2,... ,n—1}. Sup-
pose that (12.2) and (12.5) hold. We can take a sufficiently large num-

ber T' > ty + k7 and positive constants ¢; and ¢; such that

h(T') = max{h(t) : t € [ty,00)},

T, =min{T — 7, inf{g(t) : t > T — kr}} > ¢y,
and

(12.6) 0<io; <2

< Ca, f _->__ r[“.
Because of (12.3), it is possible to take ¢, ¢o > 0 satisfying (12.6). Put

n(t) = * / s"*1f(s,a[g(s)]F)ds, t>T.

Ji=kTt |
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Then n € C[T,00) with n(t) > 0 for ¢ > T and limy_,o n(t) = 0. We
consider the set Yj of all functions y € C[T,, 00) which is nonincreasing

on [T, 00) and satisfies
y(t) =y(T) forte [T, T], 0<y(t)<n(t) fort>T.

[t is easy to check that Y} is a closed convex subset of C[T.,c0). From
Proposition 11.1, there exists a mapping ®q : Yy — C[T.,00) which

is continuous on Yy and satisfies
Poly](t) + h(t)Poly](t — 7) = y(t), t>T and !‘Iim Po[yl(t) =0
[ —3 0

for each y € Yj.

We use the notation:

Alu)(t) = u(t) — u(t — 7);

Alul =u; Au] = A A])], =1,2,....
Define the sets Y; (i = 1,2,...,k) inductively as follows:
Y={yeC[T. —ir,0): Alyl € Yi_1}, i=1,2,...,k.

We see that

(12.7) Y, ={y€C[T, —ir,00) : A'ly] e Yo}, i=1,2,...,k,
and that Y; (i = 1,2,... , k) are closed convex subsets of C[T, —it, 00).
For each y € Y;, we define the functions ®;[y] (i = 1,2,...,k) on
[T, 00) by
+ Q1 [Alyl](t), t>T -,
fI’,—[y](f) = 1+ h(t) 1+ h.(f,)
;[y|(T — 7), te Ty, T —7],
i N A

The method of induction shows that, for every i € {1,2,... ,k}, ®; is

well-defined on Y; and maps Y; into C[T., o0), and continuous on Y; in
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the C[T, — i, oo)-topology and satisfies
Pi[y](t) + h()Rilylt —7) =y(t), t>T, yeY.
We need the following lemmas.

Lemma 12.1. Let y € Yy. Assume that lim, . y(t)/t* = 0. Then
“mt 300 q’k[!f](f)/fk =1

Proof. We observe that
el = T2+ Al
B 1?!?({) T fﬁ:(}f)]zi["]“H {1 -t(:;.)(r rd)"' (A7)
= T+ Al + A A

h(t) 3() A3
4 [1 M m} Dis[A[y]] )

()] ., 0 e
> IO + || At
Since limy_,» y(t)/t* = 0, we have
im 200 _ o 01,2, k-1
t—00 tk

Using the fact that
lim ®o[A*[y]](t) = 0,
t—o0

we conclude that lim,_, . ®x[y](t)/t* = 0.

Lemma 12.2. Suppose that u € C*[t;, — k7,00). Then, for every

t € [t1,00), there is a number a € (t — k7,t) such that A¥[u](t) =

™*u®)(a).




ay € (t — 7,1) such that

In exactly the same way, we obtain

that o; € (o — 7, 1) and

Since

g

increasing on [T, 00).

AF[u)(t) = A*[u](t) — A*[u](t — 1)

fori = 3,4,... k. Consequently, we have

Ak [u](f.) = 7 AF-1 [”;](”'I) - T?Ak—‘Z[”H](n_z)

(k-1 — Tyak-1) C (@r—2 — 27,4 _2) C -+

Proof. Let t > t, be arbitrary. Note that (A’[u])'(t) = (A*[u/])(2) for

t=20,1,2,... .k — 1. By the mean value theorem, there is a number

= T(Ak_jl.*r])’(m]

= 7A ().

A ) (n) = TA*u"|(az)

for some ay € (ayy — 7, ), and there are numbers «s, oy, . .. . such
2 1 1 1 i1 !

A=D1 ED ) = TAR D] ()

coe = TR AR (o) = 7Fu®) (0.

- C (g —(k—=1)1,q) C (t — kT, 1),
we see that ay € (¢t — k7,t). This completes the proof.

Lemma 12.3. Let T > T,. Suppose that u € C*[T, — kr, 00).
(i) If u(t) > 0 for t > T — kr, then A¥[u](t) > 0 fort > T.
(ii) Assume thatv € C[T,00). If u®(t) < 7% (t+k7) fort > T—kr

and v(t) is nonincreasing on [T,00), then AF[u](t) < v(t) for

(iii) If u®)(t) is nonincreasing on [T — kt,00), then A¥[u](t) is non-




= u*)(T) fort € [T, — k7, T), then A¥[u](t) = A*[u)(T)
i.T].

(iv) If u®)(t)
fort e [T
Proof. (i) The conclusion follows from Lemma 12.2.

(i) Put

V(t) v(s)ds fort > T — kr

r (k= 1)!

and w(t) = V() — u(t) for t > T — kr. Then w®)(t) = 7% (t 4 k7) —
u¥l(t) > 0 for t > T — kr. In view of (i), we have A¥[w](t) > 0 for
t > T. We note that A*[w](t) = A¥[V](t) — A¥[u](t). Lemma 12.2

implies that
A*u](t) < AFVI(t) =V ®(a) =v(a + kr), t>T,
for some « € (t — k7, t). Since v is nonincreasing on [T, 00), we get
AMul()) < w(t), t>T.

(iii) Let £ > 0 be arbitrary. Set z(t) = u(t) — u(t +¢). Since u'*)(¢)
is nonincreasing on [T — k7, 00), 2% () = u®(t) — u®)(t +£) > 0 for

t > T — kr. From (i), we obtain

A*[u](t) — A*[ul(t +¢) = A*[2](t) >0, ¢t>T.

Consequently, A¥[u](t) is nonincreasing on [T, 00).

(iv) Let ¢t € [T.,T]. By virtue of Lemma 12.2, there is a number
o € (t — kr,t) such that A¥[u](t) = 7%u®(a). Since u®)(s) = u®)(T)
for s € [T, —k7,T] and a € [T, — k7, T|, we have A*[u](t) = rFu®)(T).

In particular, A*[u)(T) = 7%u®)(T). Hence, A¥[u](t) = A*[u)(T) for
te[T.,T).

Lemma 12.4. Let u € C¥[T, — k7, 00). Assume that u*)(t) is non-

increasing on [T — k7, 00) and satisfies

0<u®(t) <7 %yt +kr), t>T — kr,
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and

Then u € Y.

Proof. Applying Lemma 12.3, we ecasily see that A*[u] € Y. From

(12.7) it follows that u € Y.

Proof of Theorem 12.1. The “only if” part follows immediately
from Theorem 5.4. Moreover, as stated before, the case k = 0 is
already shown in Theorem 11.1. We therefore prove the “if” part of
Theorem 12.1 for k # 0.

Let k € {1,2,... ,n—1}. From (12.6), there are constants ¢ > 0,

0 > 0 and £ > 0 such that
0.< (6 +e)t* <ecunlt) < (a—e)tt, t>T.,

Here, a is a number in the integral condition (12.5). For each y € Y5,

we denote the function ¥[y](t) by
(128)  W[y(t) = cwnlt) + (1) *lodyfyl(), ¢ > T..

We note here that W is continuous on Y} in the C[T, — k7, 00)-topology

and that, for each y € Y},

(12.9)  C[y](t) + h(t)C[y)(t — 7) = ct* + (—1)" *loy(t), t>T.

Define the mapping F : Yy, — C[T., — k7, o0) as follows:

(Fy)(t)

{

t — s k—1 oo _._Su—k—l_ n
[;_ (f(k _)1)! [ E'r” — A) D f(r, Olyl(g(r)))drds, t>T,

= e k O (p — T n—k-1_
15 A--.!T) /I ( ) !f(""e‘I’[?}](g('r')))d'r,

(n —k—-1)

t € [T, — kT, T,




where
f(t,alg(®)]F), u> alg(t)]F,

flt,u)=< ftu), ri[!}(-’)]k Su< ”-["7(")]#‘

f(t,8[g()]%), u < d[g(t)]*.

We see that, for each y € Y},
(Fy)®(2)

*OC (..,. = f)n.—k—l__ ’
/r mﬂ"«ll’[_e_;](g(r)))rfr. 1> T

00 —T n-—k-l_
/r ﬁf“?‘I’[Hl(ﬁ(f')))dr: t € [T, — kr,T),

so that (Fy)*)(t) is nonincreasing on [T — k1,00) and satisfies
(12.10) 0< (Fy)®) <r*nt+kr), t>T—kr,
and

(Fy) () = (Fy)P(T), te [T, —kr,T).

From Lemma 12.4 it follows that Fy € Y} for every y € Y;, and hence
F maps Y} into itself. It is easy to verify that F is continuous on Y} and
{(Fy)(t) : y € Yi} is relatively compact. By the Schauder-Tychonoff
fixed point theorem, there exists an element y € Yy such that y = Fy.
Set z(t) = W[y](t). The inequality (12.10) and the fact lim,_,o 7(t) = 0
lead us limy_,o §(¢)/t* = 0. In view of Lemma 12.1, (12.3) and (12.8),
we find that z(t) satisfies (12.4) and d[g(¢)]* < z(g(t)) < alg(t)]* for
all large t, say t > T. We have f(t,z(g(t)) = f(t.z(g(t))) for t > T.

From (12.9) it follows that

z(t) + h(t)x(t — 7)

= f.‘h’

! — g)k-1 00 ,._qn—k— iy
+ (1) %1 / L) / \r—2) | f(r,z(g(r)))drds
JT s

(n—k—1)"




for t > T. Differentiation of the above equality yields

“fir n

- [2(t) + h(O)z(t — 7)) = —oF(t, 2(9(1)) = —of(t,2(9(1))), t>T.

This means that z(t) is a solution of (12.1). The proof of is complete.
13. PROOF OF PROPOSITION 11.1
Throughout this section, we assume that (11.2) holds.

For each y € Y, we define the function ¥[y| by

Y CY)FHHB] YR, t 2> (),
Uly|(t) = i=1
W[y](r(T)), t € [T, 7(T)),

where H(t) = max{1, h(t)}. We note that H(7(t)) = H(t) and H(t) >

1 for ¢ > tp.

Lemma 13.1. (i) For each y € Y, the series

fo's)

D (CHH@)] (i ()

converges uniformly on [7(T),00), hence V[y| is well defined and
is continuous on [T,,00);

(ii) For each y € Y, V[y| satisfies

(13.1) 0 < Ulyl(t) <n(r '), t>7(T),
and
(13.2) Wly)(t) + HO)Wl)(r(t) = y(t), t>T;

(iii) W s continuous on Y in the C[T,, o0)-topology.

Proof. (i) Let y € Y. We set

W [yl(t) = Z(_l)HI[H“)]_i?l(T_i("‘-))~ t>27(T), m=12,.... I[:
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Now we claim that

(13.3) 0 < W,lyl(t) < n(r~'(t), t> (1),
for m =1,2,... . Since y is nonincreasing on [T, 00) and H(t) > 1, we
have

(134)  y(r @) — [HEO] 9 20) 20, > 7(T),
and
(13.5) [H ()] 'y( ) < n(v7'(t), t=>7(T).

Hence, we easily see that (13.3) holds for the cases m = 1 and 2. If
m > 3 is odd, we can rewrite U,,[y](t) as

(m—=1)

U, [y](t Z [H @=D[y(r=@=N(t)) — [H ()] y(r%(t))]
+ [H@®)] ™y (™))
and

Wlyl(t) = [H(t)] 'y(r7'(2))
- > [H®I P2 @) - [HG] y(r @D @),

I[f m > 4 is even, we can rewrite W,,[y|(t) as

m/2

Uoly)(t) = D [H(6)] @ D[y(r= @D (1)) — [H@®)] (2 (2))],
and

Unlyl(t) = [H(t)]".u(r‘l(f))

(m/2)
Z [H r4(t)) — [H(®)] " y(r (1))

— [HO] ™y (r™(1)).

From (13.4) and (13.5) we conclude that (13.3) holds for m = 3,4,... .
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Using (13.3), we find that if m > p > 1, then

(13.6) Z Y HUH )] 'y (r7 (1)
1=p

m—p+1

Z (_l)f_r-}.ﬂ—|}+-|“_’(U)]- [fa;i—l]‘fj(r-r{T-JJ-i“)))

= [(=1) PV [H ()] Py [y] (P (1))

IA

n(r7(t), t=7(T).

Here, we have used the equality H(t) = H(7 P*'(t)), p > 1. Since
n(77"(t)) — 0 as p — oo, the series Y = (—1)"[H(t)]"y(r(t)) con-
verges for each fixed t € [7(7'),00). From (13.6) it follows that

o0

Sup Z =1 H ()] y (7 ()

te[(T),00)

i=p
<  siap nplr D))= sup n(t) =0 asp— oo,
te[7(T),00) te[r—P+1(T),00)
which shows that the series Y, (—=1)""'[H(t)] 'y t)) converges

uniformly on [7(T), 00).
(ii) Letting m — oo in (13.3), we have (13.1). [t is easy to check
that (13.2) holds.

(iii) Let € > 0. There is an integer p > 1 such that

sup p(r~ ") =  sup nt) <
te[7(T),00) te[r=r(T'),00)

| ™

Let {y;}72, be a sequence in Y converging to y € Y uniformly on every
compact subinterval of [T}, 00). Take an arbitrary compact subinterval

I of [7(T"),00). There exists an integer j, > 1 such that

tel, j2jo

2l ®) =y (e <

Co| M




[—

t follows from (13.6) that

|Wly;](t) — ¥lyl(t)|

< Y CHG] |y (7 1) — y(r 7 (1)
=1

+ [ ) (CO)FHO y @) + | Y (D HE)] (i)
i=p+1 =p+]

‘H
< Y lyltriH ) -y @) + 2@ <6, tel, > o,
1=1

which implies that W[y;] converges ¥[y] uniformly on 7. It is easy to see
that ¥[y,] — ¥[y| uniformly on [7,,7(T)]. Consequently, we conclude

that ¥ is continuous on Y. This completes the proof.
For each y € Y, we assign the function ¢[y] as follows:

y(T) .
elylt) = L +AT) t e [T, 7.
Uly|(t) L) 215

Lemma 13.2. (i) For each y € Y, ply] satisfies
Ply)(T) + h(T)ely](7(T)) = y(T);

(ii) Suppose that {y;}32, is a sequence in Y converging to y € Y
uniformly on every compact subinterval of [T, ,00). Then |y,

converges to ly| uniformly on [T,,T].

Proof. 1t is obvious that (i) and (ii) hold for the case hA(T) < 1. For

the case h(T') > 1, (i) and (ii) follow from (ii) and (iii) of Lemma 13.1.

For each y € Y, we define the function ®[y] as follows:

SO 1ROy (1) + (1™ (B ] (™ (1),

i=0
Pyl(t) = 1 t€ [r(T), ™ )(T)], m=0,1,...,
L elyl(t), t € [1,,T).

Lemma 13.3. Lety €Y.




(i) @[y] is continuous on [T.,0);

(ii) @[y] satisfies
O[y(t) + h(t)D[y](r(t) = y(t), t>T;

(iii) Fort € [7(T),00) with h(t) > 1,

Ply|(t) = P[y(1);
(iv) @ is continuous on Y in the C[T,, 00)-topology.

Proof. From Lemmas 2.1 and (i) of 13.2 it follows that (i) and (ii)
hold. We prove (iii) and (iv).

(iii) If A(T') < 1, then there is no number ¢t € [7(7),00) such that
h(t) > 1 (recall the choice of T'). Assume that A(T) > 1. Then

Dly](t) = @lyl(t) = C[y](t) for t € [r(T),T].

We suppose that there is an integer m > 0 such that ®[y|(¢) = ¥[y](¢)
for all t € [7~"=(T),7=™(T)] with h(t) > 1. In view of (ii) of Lemma
13.3 and (13.2), we find that if t € [v~™(T"), 7=(™+)(T')] and if h(t) > 1,

then

P[y](t) = y(t) — h(t)2[y](7(t)) = y(t) — H(t)¥[y](7(t)) = ¥[y](t).

By induction, we conclude that ®[y|(t) = ¥[y|(t) for t € [7(T),00)
with h(t) > 1.

(iv) Let {y; }J?‘;, be a sequence in Y converging to y € Y uniformly
on every compact subinterval of [T,,00). Lemma 13.2 implies that
®[y,| converges to ®[y] uniformly on [T,,7T]. It suffices to prove that
®[y;] — ®[y] uniformly on I,, = [r~™(T),r~™+)(T)],m =0,1,2,....
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Since |A(t)| < A on [tg, 00) for some A > 1, we observe that

:4:1:'[1 |(I)[_‘:;J](f) — ®[y](1)|

m

< Z A sup |_fjJ(Tj(.’)) —y(7'(1))]

i=0 €M
+A™ sup Joly)(7" () = eyl ()]
telm

m

5 i Z sup ly; (1) — y(&)] + 2™ sup |oly;](t) — ely](t)].

te[T.,T]

IA

i=0 Elm—i

Then, sup,c; |®[y;](t)—®[y](t)] — 0 as j — oo, so that ®[y;]| converges

to ®[y] uniformly on I, for m =0,1,2,....

Lemma 13.4. Let {t;};2, be a sequence satisfying lim;_ o t; = 00

and [h(t;)|<v<1,j=1,2,... for somev > 0. Then
lim ®[y|(t;) =0 for eachy €Y.
Jj—o0

Proof. Let y € Y. Since lim;_,» y(t) = 0, for each £ > 0, there is an
"

integer p > 1 such that

-
|
=
ol m

There exists an integer ¢ > 1 such that

for all » > p + q.

Lol m

y(T)vr -+
l—v

and "' sup |oly](t)| <

<
te[T..T)

Lol m

Let m > p+q. Then 7™ 2(¢) > 77P(T) for t € [v~™(T), 7~ ™+)(T)].

In view of the monotonicity of y, we see that if t € [7=™(T'), 7~ (™+1)(T)]
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and |h(t)| < v, then

m

R[] < S viy(r (1) + v e[yl (7™ (1))

=0
m—p m 5
2 vy(ri(t)) + Vy(r'(t)) + =
<) MO+ Y0 vyl +3
=0 i=m—p+1
m-—p p—1 -
S U(Tm _u( )) s +y f) m—p+1 U 4 ;
Sl

. —p( - 1 m—p+1
< W),y TR
1l — 1 —w 3

This implies that |®[y](t)| < € for t € [7PTD(T), 00) with |h(t)| < v

and hence the conclusion follows.

Lemma 13.5. Let m = 0,1,2,.... If t satisfies t > 7 ™(T) and
0 < h(t) <1, then

m

(13.7) D (CDIR@Fy(F ()| < 2u(r™(1), yEeY-

1=0

Proof. Let t > 7—™(T) satisfying 0 < h(t) <1 and let y € Y. Put

.4(f.)zZ(—1)*'[h iy (7 ().

i=0
[t is easy to see that (13.7) holds for m = 0 and 1. If m > 3 is odd, we
can rewrite A(f) as

(m—1)/2

A(t) = y(t) — [R()]7 [y(7271(t)) — h(t)y(7¥(t))]

= [h ]m ?n(!))!

and

(m—1)/2

= > [P [y(r¥ (1)) — MOy (T (1))].

j=0

If m > 2 is even, we can rewrite A(t) as

m/2

A(t) = y(t) — SO [y (1) — h()y(r (1)),

J=1




and
(m/2)-1
A = 3 (ROl (0) — h(t)y (@) + [h@)] (" (0)).
=i}
Since y is nonincreasing on [T, 00), we see that

y(t) = h(t)y(r(t)) < [L = h(®)y(t), t>7'(T).

Hence, for the case where m > 3 is odd, we have

(m— IJr
“.U] Z JJ 1 l—h( )],}(T?J | = [h lm (Tm(f))
Jj=1
(m—1)/2
2 == [h(r)]zj_l[]_ ( )]U(‘m . [h ]m ?N
=l
= y(r™(t)) ) _(-1)'[h(t)’
i=1
; 1 — [—h({H)]™
- —.l'}(‘r‘n(l'()}h(f)& > _2"1( m( ))

1 + h(t)
In the same way, we can show that A(t) < 2y(7™(¢)) for the case where
m > 3 is odd, and that —2y(7™(t)) < A(t) < 2y(7™(t)) for the case

where m > 2 is even.
Lemma 13.6. Let y € Y. Then lim,_, ®[y](t) =

Proof. Assume that lim,_,,, ®[y|(t) = 0 does not hold. Then we first

claim that there is a sequence {#;}72, such that

(13.8)
lim t; = 0o, lim ®[y|(¢;) exists in RU {oo, —o0}\{0},
j—r00 Jj—oo
0<h(t;)) <1 forj>1 and lim A(t;) = 1.

j—oo

By assumption there is a sequence {s; }';‘;] for which s; — oo and
®lyl(s;) = ¢ € RU{oo,—oc}\{0} as j — oo. Since -1 < p <
h(t) < A for t > fy, there is a subsequence {t;}72, of {s;}32, such
that lim; . h(t;) = d € [u, \]. Lemma 13.4 implies that d > 1. It can

be shown that A(t;) < 1, j > jo for some jy. Otherwise, there exists a
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subsequence {f‘_?};‘ , of {#;}32, such that h.(:‘i,) > 1 for all j. From (iii)

of Lemma 13.3 and (ii) of Lemma 13.1, it follows that

lim 4’[;/](%)‘ = < lim n(r '('FJ:}} =0,

le} = lim W[y|(1;)
j—=0o0 J—00 : J—=00
which is a contradiction. Since d > 1, we see that d = 1, so that

0 < h(t;) < 1, j = ji for some j, > jo. This proves the existence of

{t;}32, satisfying (13.8).
Suppose that {.“_J,}J’-?__1 is a sequence satisfying (13.8). Let £ > 0 be

arbitrary. There is an integer p > 1 such that

n(t) < Ao e (6 i)

(23]

There is a number § > 0 such that if sy, s, € [777(T), 7 P*)(T)] with

|s1 — s2| < 4, then

m

(13.9) |@[y](s1) — @[y](s2)| <
Consider the mapping N : [777(T"),00) — NU{0} such that
¥O(1) € [rP(T), 7~ P)(T)) for t > 777(T).

We note that lim_, N(t) = oc. It is easily verified that {t; =1 has a

2 such that

subsequence {u;}%, :

lim 7V (u;) exists in [77P(T), 7~ )(T)].

j—o0

Put % = lim;_,, 7V (u;). Then we find that

h(@) = lim h(7V")(u;)) = lim h(u;) = 1.

j—oc Jj—oo
There exists an integer jy such that u; > 777(7T) and |T‘\'{"-I](nj)—-ﬁ| )
for j > jo. From (ii) of Lemma 13.3, we observe that
(13.10) @[y](t) = y(t) — h(t)P[y](r(t))

= y(t) — h(t)y(r(t)) + [a(O)] @[y](r* (1))

m—1

= (=1 A@))y(r () + (1) [R(DO]™@[Y) (7™ (1)),

1=0




for t > 7~™*Y(T). Since h(u) = 1, we have

(13.11)

P[] (u;) — [y](r V™) (@))]

Nu;)-1 Nuj)—1
<| 3 0@ y(r)|+| Y (—1)’;;(r"(r--“’*"-f*(,—.)))‘
1=0 =0

| ) @[] (V) (5)) — Bl (V) (@) .

Lemma 13.5 implies that if j > jy, then

N(uj)—1

(13.12) Z (=)' [Ah(uw) ] y(T*(u;)| < 2y(rV) 1 (u;))
=0
< (rNMI1 () < 2

and

N(uy;)—1
(1313) | S (~U)iy(r N @)| < 2y N0 @)

=0

< 2n(r7' (@) < 2e.

From (iii) of Lemma 13.3, (ii) of Lemma 13.1 and the fact that h(u) = 1,

it follows that
[Bly](@)| = [Py](@)| < n(r™' (@) < e.
Then we observe that

(13.14) |[h(”-j)]N{u’}(r’[?f](TN(”")( ) — B[](zV (v~ (@)))]
< |[R(uz)]N || @[y] (7Y () — @[y) (@)
+ [[A(uy)]V™) — 1]|@[y] (@)
< |@[y)(rV ™) (uy)) — @[y (@)| + 2|@[y] ()| < 3, j > j,

because of (13.9). Combining (13.11)-(13.14), we obtain

|@ly](u;) — @y)(r~ " (@))| < Te, j > jo-
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This means that
lim |®[y](u;) — [y](r ‘“”J](ﬁ)” = ().
j—roc

On the other hand, in view of (iii) of Lemma 13.3 and (ii) of Lemma

13.1, we see that
lim |®[y](r~N™)(@))| < lim p(r~™)~1(m)) = 0.
j—00 j—+oc
From (13.8) it follows that
lim |[®[y](u;) — ®[y](r~ ") (@))| exists and is not equal to 0.
j—o0
This is a contradiction. The proof is complete.

Proposition 11.1 follows from Lemmas 13.3 and 13.6.

14. BIBLIOGRAPHIC NOTES

Sections 2-5 and 10 are based on [57]. Lemmas 2.1, 2.2 and 2.10
were obtained by Y. Naito [45]. The proofs of Theorems 4.1 and 4.2 are
extended adaptations of the method introduced by Ruan [50]. Theorem
5.1 is a generalization of the results of Jaros and Kusano [28], [29], [30]
and [32], and Y. Naito [45]. Theorem 5.2 is an extension of the results of
Chen, Yu and Wang [3], Chen [4] and Y. Naito [45]. Section 6 is taken
from Y. Naito [47], and a related work can be found in [48]. Sections
7-9 are based on [58]. The existence of oscillatory solutions of neutral
differential equations was first investigated by Jaros and Kusano [33].
Corollary 7.1 is an improvement of the result in [33]. Corollary 7.3 was
obtained by M. Naito [44]. Corollaries 8.1 and 8.2 were established
by Kitamura and Kusano [35]. The proof of Theorem 8.3 is due to
Zhang and Yang [66], see also Yang and Zhang [63] and Zhang and
Yu [67]. Theorem 9.1 (i) extends the result in [33]. Theorem 9.1 (ii)
was obtained by Kitamura and Kusano [35], see also Jaros, Kitamura
and Kusano [27], Kitamura, Kusano and Lalli [36], and Y. Naito [47].

Section 11 is due to [54] and [55]. Section 12 is based on [56].
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