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The final acceptability and consumers’ satisfaction to choose any food are affected by the flavor 

compounds of that product. It becomes a major challenge for food processor to add flavor compounds 

with minimal losses or degradation. However, high volatility and poor stability against oxygen or heat 

contact of those compounds make difficulties to reduce losses or degradation during application in food 

products. Microencapsulation is the powerful solution to reduce degradation of aroma compounds in a 

healthier way (Pham-hoang et al., 2016). The main purposes of flavor encapsulation are to stabilize 

flavor compound, convert liquid flavor in solid state, improve technological properties, handling 

properties, safety and control the release of core compounds (Uhlemann et al., 2002). Besides 

carbohydrate, protein or liposome, active or dead yeast cell itself (whole) or its other parts (cell wall, β-

glucan) are also gained tremendous interests to the researchers as encapsulant (Young and Nitin, 2019; 

Liu et al., 2018; Mokhtari et al., 2017) due to economic cost, health benefits and simple technique to 

complete encapsulation. It widens the scope of aroma encapsulation by providing the benefits of longer 

stability against temperature, oxygen and other environmental degradations (Normand et al., 2005; Shi 

et al., 2008). Spray drying is one of the oldest, mostly used and effective technique for flavor 

encapsulation, which produces high quality powder in very short time. In this research, two flavor 

compounds with different log P such as d-limonene (log P=4.8) and ethyl hexanoate (log P=2.8) were 

encapsulated by spray drying in Saccharomyces cerevisiae, from which β-glucans had been partially 

extracted. The release kinetics of encapsulated flavors were also investigated in this study. 

The formation of encapsulated slurry was prepared by incubating the mixture of flavor compounds, 

yeast cells and water. The optimize incubation time, temperature, mass ratio of flavors to yeast cells and 

spray drying conditions were investigated to obtain maximum encapsulation efficiency. Another two 

flavor compounds namely citral and ethyl propionate were also encapsulated as guest compounds. 

Finally, the encapsulated slurry was dried using a mini spray dryer B-290 (Büchi, Nihon Büchi K.K., 
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Japan) to make flavor encapsulated powder. The flavor contents in the incubation time could be 

correlated with the first-order encapsulation equation as follows (Fogler, 1999): 

 

𝐶𝑡 = 𝐶0 + {(𝐶𝑚 − 𝐶0)(1 − exp(−𝑘𝑡))} (1) 

 

Where, Ct: flavor content at the incubation time, t (h); Co: initial flavor content without incubation; 

Cm: equilibrium flavor content; and k: encapsulation rate constant (h-1). 

 

Figure 1 shows the effect of incubation time on flavor content after spray drying. The content of d-

limonene increased with incubation time and reached the equilibrium value at about 4 h. Conversely, 

content of ethyl hexanoate reached the equilibrium value at about 2 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effect of incubation time on flavor content in yeast at 40°C incubation temperature and 

200°C inlet air temperature ( yeast: d-limonene = 2:1,  yeast: d-limonene = 4:1,  yeast:ethyl 

hexanoate = 2:1,  yeast:ethyl hexanoate = 4:1) 

 

The rate of encapsulation for both flavors was found 0.69 h−1. From the research of Moyo et al. 

(2012), the rate constant (around 2.3 h-1) for adsorption capacity of phenol can be calculated using the 

same equation. The rate constant might vary based on the properties of compounds. Highest 

encapsulation efficiency for both flavors were found at 40°C incubation temperature for 4 h and an inlet 

temperature 200°C of spray drying. The maximum flavor contents for d-limonene and ethyl hexanoate 
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were found around 37 wt% and 49 wt%. The total extracted flavor content obtained was higher for yeast 

to flavor ratio 2:1 compared to 4:1. Inlet air temperature did not influence the encapsulation efficiency 

of ethyl hexanoate, while d-limonene content increased gradually with an increase in the inlet air 

temperature. The encapsulation efficiency varied for citral and ethyl propionate which might be 

influenced due to different log P, molecular structure or other physico-chemical properties. 

Controlled release and stability are important characteristics of encapsulated powder during storage. 

Controlled release has the beneficial effect of active compounds being released at controlled rates over 

prolonged times and can also reduce ingredient losses during cooking and processing (Dziezak, 1988). 

To prepare encapsulated powder, a pilot scale spray dryer (Ohkawara-L8; Ohkawara Kakohki Co., Ltd., 

Yokohama, Japan) equipped with a centrifugal atomizer was used instead of a mini spray dryer (B-290; 

Büchi, Japan) in this study. d-Limonene encapsulated emulsified maltodextrin (MD) (DE=19) powders 

with small and big oil-droplet were prepared to compare the stability of d-limonene in those powders 

with yeast powder. Flavor release rate constants were correlated using Gaussian distribution of the 

activation energy (∆G) of the release rate constant. The equation is as follows (Yoshii et al., 2003; Ishido 

et al., 2003): 

 

                          𝜙 =
𝑅𝑇

√2𝜋𝜎
∫ exp [−

𝑅2𝑇2(𝑙𝑛𝑘1 − 𝑙𝑛𝑘10)2

2𝜎2
] exp(−𝑘1𝑡) 𝑑(𝑙𝑛𝑘1)

∞

−∞

 (2) 

 

Where, ϕ: flavor retention; k1: release rate constant; T: absolute temperature, and R: gas constant, t: 

time; k10: average release rate constant; and σ: standard deviation of activation energy distribution. 

 

 

 

    

 

 
 
 
 
 
 
 

 

 

 

Figure 2. SEM images of spray-dried powders (a, d: yeast powder; b, e: MD1 powder: having 

larger oil-droplet; c, f: MD2 powder: having smaller oil-droplet) 
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The morphological images of flavor encapsulated spray-dried MD powders and yeast powder are 

shown in Figure 2. The surface of the yeast powder had an aggregated shape, whereas the MD powders 

were spherical. Some of the MD particles had a smooth surface and some had a dented surface. However, 

the broken part shows the bigger oil droplets for MD1 (using a mechanical homogenizer) and smaller 

droplets for MD2 (using a high-pressure homogenizer). The morphology of MD powder may depend on 

several factors such as DE value, spray drying condition, homogenization pressure etc.  

The effects of dry heating (105, 120, and 140°C) and wet heating (40, 60, 80, and 105°C) to release 

encapsulated flavors were also investigated. Different amounts of water (0, 50, 100, and 200% of 

powder) were added to investigate release behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of storage temperature on flavor release from yeast powder and MD powder ( 

40ºC;  60ºC;  80ºC;  105ºC with 200% water added to powder) 

 

Figure 3 shows the effect of storage temperature on the release behavior of encapsulated flavor 

from the yeast powder and MD powder. In this experiment, small oil droplets containing MD powder 

(MD2) were used with an average oil-droplet diameter of 0.65 μm. The release kinetics of encapsulated 

d-limonene and ethyl hexanoate were investigated at 40, 60, 80, and 105ºC (using 200% water added to 

the powder). For the yeast powder, the release rate was faster at a higher temperature compared with a 

lower temperature. The release profile for yeast depended completely on the temperature. Both types of 

flavor were released in two steps. The first step was a very rapid release, whereas the second step was a 

very slow release of flavor. The release behavior of d-limonene from the MD2 powder was different 

from the yeast powder at different temperatures. This finding might be the reason for particle aggregation 

by adding water directly to the powder. The release rate constant of the MD2 powder for all temperatures 

was 0.006 min−1 and the standard deviation of activation energy distribution was 4.0. 
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Flavor release from yeast cell was almost stable in a dry heating condition (without addition of 

water), even at very high temperature (140ºC). The addition of water affected the release of flavor. 

However, the release rate was not noticeably different with the addition of different amount of water. 

Oliveira et al. (2006) pointed out that the oxidation of liquid limonene can proceed by two pathways: 

epoxidation (limonene oxide is the main product) and allylic oxidation or autoxidation. Oxidation of d-

limonene results in the formation of limonene oxide, carveol, and carvone. Limonene oxide and carvone 

were chosen as the indicator of d-limonene oxidation in this study. A slower formation rate of limonene 

oxide and carvone was found for yeast powder after the incubation of 2 months at 30ºC. However, a 

faster formation rate of those two compounds were found for both types of maltodextrin powder. The 

better stability of yeast powder might be due to the antioxidation properties of mannoproteins and β-

glucans present in yeast cell wall (Wu et al., 2015; Križková et al., 2001; Jaehrig et al., 2007). 

The flavor release and stability of encapsulated powder are influenced by the glass transition 

temperature (Tg) of the powder. At the Tg, the molecular movement in the powder increases and the 

amorphous material changes from a glassy to a rubbery state, with consequences of stickiness and 

collapse of the powder (Levine and Slade, 1986). Furthermore, the stickiness of the powder observed at 

the Tg results in poor quality and low yields during drying, handling and storage condition (Shrestha et 

al., 2007). In this study, a method for the measurement of the Tg of flavor-encapsulated spray-dried 

emulsified powders and yeast powders is proposed using a simple instrument named aroma sensor. The 

rapid increment in flavor release from the encapsulating powders was monitored using a ramping method 

(linear programmed temperature gradient).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Release behaviors of (a) ethyl hexanoate and (b) d-limonene from yeast powders (solid 

lines: flavor strength; dotted lines: retention [-] of flavor) 

b a 
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Figure 4 illustrates the release behavior of ethyl hexanoate and d-limonene from yeast cells with 

the increasing temperature at 1°C/min. The initial high flavor strength possibly corresponds to the 

surface flavor of the yeast powder. After that, the flavor strength decreases and finally increases again 

at very high temperatures (180–190°C). The complex structure of yeast, i.e., the presence of different 

sugars, proteins, and other species, hampers the accurate monitoring of the flavor release. To confirm 

the apparent Tg of the flavor-encapsulated yeast powders, d-limonene and ethyl hexanoate were extracted 

from yeast cells under ramping temperature conditions (at 1°C/min) and analyzed by GC-FID. The 

retention of the encapsulated flavor was calculated following the method by Sultana et al. (2018). The 

obtained intercept point was very similar to the apparent Tg value found using the aroma sensor. The 

presence of trehalose, sucrose, and other sugars in yeast cells may be the reason behind the high apparent 

Tg of yeast cells. 

Encapsulated flavors release profiles under a home-built dynamic vapor sorption instrument (DVS) 

in a stepwise changed humidity condition were analyzed in this study. The relative humidity (RH) was 

stepped to 50, 60, 70, and 80% from 20% at individual incubation temperature of 30, 40, 50, and 60°C. 

The RH was stepped after leaving the sample for 2 h at 20%. The flavor release flux of the encapsulated 

powder was calculated using Eq. 3 and 4 (Yamamoto et al., 2012) as follows: 

 

𝐹 = 𝑁/(𝐴 × 𝑚) (3) 

 

𝑁 = 𝐶𝑔 × 𝑉 (4) 

 

Where, F: flavor release flux (mg/s∙m2∙g-powder); N: flavor release rate (mg/s); Cg: flavor 

concentration (mg/mL N2); V: N2 flow rate (mL/s); A: area of the sample plate (1.3×10−4 m2); and m: 

mass of the sample (g). 

 

The maximum release flux was found at 60°C with 80% RH condition. The Weibull distribution 

function was well fitted to the experimental data to analyze release kinetics. An integrated release was 

found using above-mentioned equation (Eq. 5). 

 

ln [−ln (
𝑀∞ − 𝑀𝑡

𝑀∞
)] = 𝑛ln𝑘 + 𝑛ln𝑡 (5) 

 

Where, t: time from the stepped RH change; k: release rate constant; n: release mechanism parameter. 

Mt: integrated released flavor (mg/m2-g powder) and M∞: total amount of released flavor after stepwise 

change of RH (mg/m2-g powder).  
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Figure 5. Graphical illustration of (a) release mechanism number ( d-limonene;  ethyl 

hexanoate) and (b) maximum integrated release ( 30°C,  40°C,  50°C, and  60°C; 

solid keys: d-limonene and open keys: ethyl hexanoate) as a function of RH 

 

Figure 5 shows the mechanism number n and the total amount of released flavor after stepwise RH 

change M∞ as a function of RH. As expected, M∞ increased sharply with RH. The increasing amount of 

flavor release with RH is due to the moisture sorption properties of the yeast cell. Water molecules 

migrate to the deeper side via the protein layer and glucan layer of the yeast cell wall (Dardelle et al., 

2007). The formation of gel or solubilization of β-glucan by absorbing water perhaps initiates the flavor 

release behavior of yeast cells. According to Bouquerand et al. (2004), flavor release from particles to 

water occurs when polymer is completely solvated or forms a hydrogel. The values of n (release 

mechanism parameter) for both the flavors were greater than 1.0. A release with induction period (initial 

constant stage or initial slow stage of release flux) occurs if the value of n is higher than 1.0 (Furuta et 

al., 2011).  

It can be concluded that yeast (Saccharomyces cerevisiae) cell is a very good encapsulating vehicle 

for flavor compounds. The maximum load of flavor compounds is dependent on several factors such as 

physico-chemical properties of flavor compounds, incubation time, temperature or spray drying 

conditions. However, the prolong release of flavor and better stability of those compounds play the 

beneficial role of using yeast cells. 

 

 

(a) (b) 
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