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Chapter 1. General Introduction 

Net photosynthetic rate (Pn), defined as net CO2 uptake, is essential in diagnosing plant physiological 
activities as a response to the environmental factors. It is an indication of actual plant growth, as well as a guide 
tool for greenhouse control based on the speaking plant approach (SPA). Recently, Pn measurement techniques 
have advanced from single-leaf to whole-plant level under greenhouse conditions. Moreover, the current 
technology of real-time remote sensing devices enables high time resolution, non-contact, non-intrusive 
measurement systems like the novel photosynthesis chamber of Shimomoto et al. (2020) does.  

Cherry tomato is a particularly interesting case for the photosynthesis study by using the novel chamber 
system due to several reasons: (1) it is of high economic value, especially in the summer season, (2) not much is 
known about the whole-plant photosynthetic rate of cherry tomato, (3) its complicated canopy architecture with 
different light distribution within the vertical can be a model plant to represent other plants with the same 
canopy characteristics. The present study used and analyzed the high time-resolution Pn of cherry tomato (S. 
licopersicum var. cerasiforme) cv. Scarlet under greenhouse conditions measured by the chamber. The 
objectives were to develop a Pn estimation model for cherry tomato plants and to gain an understanding of how 
plants interact with their aerial environment.  
 
Chapter 2. The High Time-resolution Net Photosynthetic Rates of Cherry Tomato Plants 

Measurements of the whole-plant net photosynthetic rates of mature cherry tomato plants were conducted 
in spring, summer, and winter in a commercial greenhouse in Mie Prefecture, Japan, by using the 
aforementioned chamber (Fig. 1). The greenhouse environment was optimized by a commercial microcomputer. 
In spring and summer, the opening and closing of greenhouse windows depended on the greenhouse condition 
to maintain the right temperature and the right humidity. In summer, shading was applied on sunny days at noon 
around 11:00 to 14:00. In winter, heating was used to maintain the base air temperature of 17°C, and no 
supplemental lighting was applied. In addition, the rate of CO2 supply was 530 ppm to maintain the set point of 
500 ppm/day in all seasons. There was no fixed time for irrigation. It depended on the needs of the plants based 
on the water content of the slab measured by a sensing device.  

The continuous measurements in high time resolution with 5-min interval established typical diurnal 
changes in each season. Distinct diurnal changes occurred due to different lengths of daytime. Also, the 
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variation of the changes existed due to climatic factors and different greenhouse control applied in the season. 
Net photosynthetic rate generally increased significantly at the start of the day (after sunrise), maintained at a 
high level at noon, and then decreased during the afternoon hours as the sun went down. Plotting the 30-min 
moving average Pn with the corresponding I, T, C, RH, and VPD was useful to emphasize the diurnal pattern in 
CO2 exchanges. Under the prevailing greenhouse condition, photosynthesis was driven by I, enhanced by C and 
limited by VPD. 

A linear model to estimate canopy Pn (µmol chamber-1 s-1) by using the original 5-min interval of high 
time-resolution Pn resulted in a moderate accuracy (R2 = 0.63; RMSE = 3.799 µmol chamber-1 s-1). The Pn was 
expressed as a linear function of instantaneous PAR above the canopy (I, W m-2), air temperature (T, °C), vapor 
pressure deficit (VPD, mmol mol-1), and CO2 concentration (C, µmol mol-1). The study implied for further data 
processing to improve model accuracy. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The novel photosynthesis monitoring chamber system of Shimomoto et al. (2020) for net 
photosynthetic rate measurements under a commercial greenhouse. 

 
Chapter 3. Averaging Techniques in Processing the High Time-Resolution Photosynthesis Data of 
Cherry Tomato Plants for Model Development 

The next study of the model development encompassed averaging techniques in processing the original 
data by applying a moving average (MA) and simple average (SA) with several time frames (30-min, 1-h, 2-h). 
A multiple regression analysis in SPSS ver 25 was used to establish the models. Data on spring measurements 
were used for this study. Model accuracy generally increased with longer time frames; however, it can be varied 
depending on the datasets and the variables used in the models. The 2-h simple average datasets gave the best 
accuracy for both 5-variable model (I, T, RH, VPD, C) and 3-variable model (I, VPD, C) with R2 of 0.81 and 
0.67, respectively. This study indicated that datasets of a 2-h time frame with a simple average were promising 
to make a practical general linear regression model.  
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Chapter 4. Practical Photosynthesis Model for Cherry Tomato using the High Time-resolution 
Photosynthesis Data 

Further study was conducted by using a 10-day dataset processed with a 2-hour simple average to estimate 
the next five-day Pn. In this study, four linear models by four variables ((I, T, RH, C) were explored namely the 
general linear model (Model A), the linear interaction model (Model B), the linear-quadratic model (Model C), 
and the linear interaction-quadratic model (Model D). The regression learner application in MATLAB® R2019a 
was used to establish the models by using processed data of summer measurement. The stepwise method was 
used to select the variables included in each model. As a result, models A, B, C, and D correspond to Equation 1, 
2, 3, and 4, respectively. The Pn by Eq. 4 (Model D), which expressed as a linear function that incorporated the 
quadratic and interaction components of I, T, and C, resulted best. The model estimated Pn with high accuracy 
(R2 = 0.94, RMSE = 1.727 µmol chamber-1 s-1) and performed well on both sunny and rainy conditions, but 
with lower time resolution. The study implied that further data processing has succeeded in increasing model 
accuracy. The model is more suitable for long-term analysis meaning that under the prevailing optimized 
condition in summer, the dominant factors contributing to Pn were I, T, and C.  

𝑃𝑃𝑛𝑛 = 𝛼𝛼0 + 𝛼𝛼1𝐼𝐼 + 𝛼𝛼2𝑇𝑇 + 𝛼𝛼3𝐶𝐶 + 𝛼𝛼4𝑉𝑉𝑃𝑃𝑉𝑉        (1) 

𝑃𝑃𝑛𝑛 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼 + 𝛽𝛽2𝑇𝑇 + 𝛽𝛽3𝐶𝐶 + 𝛽𝛽4𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛽𝛽5𝐼𝐼 × 𝑇𝑇 + 𝛽𝛽6𝐼𝐼 × 𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛽𝛽7𝑇𝑇 × 𝑉𝑉𝑃𝑃𝑉𝑉   (2) 

𝑃𝑃𝑛𝑛 =  𝛾𝛾0 + 𝛾𝛾1𝐼𝐼 + 𝛾𝛾2𝑇𝑇 + 𝛾𝛾3𝐶𝐶 + 𝛾𝛾4𝐼𝐼2        (3) 

𝑃𝑃𝑛𝑛 =  𝛿𝛿0 + 𝛿𝛿1𝐼𝐼 + 𝛿𝛿2𝑇𝑇 + 𝛿𝛿3𝐶𝐶 + 𝛿𝛿4𝐼𝐼 × 𝑇𝑇 + 𝛿𝛿6𝐼𝐼2 + 𝛿𝛿7𝑇𝑇2      (4) 

where Pn is in units of µmol chamber-1 s-1, I is in units of W m-2, T is in units of °C, C is in µmol mol-1, VPD is in 
µmol mol-1, and α, β, γ, and δ are regression coefficients. 
 
Chapter 5. Whole-plant Net Photosynthetic Rate Model for Cherry Tomato under Commercial 
Greenhouse using the High Time-resolution Photosynthesis Data 

For a higher time-resolution estimation, further study was conducted by using a 10-day dataset processed 
with a 5-point moving average of the original data to estimate the next five-day Pn. In this study, Model A, B, C, 
and D, as in Chapter 4, were trained with the processed data by using the regression learner application in 
MATLAB® R2019a. The stepwise method selected the significant variables for each model. As a result, models 
A, B, C, and D correspond to Equation 5, 6, 7, and 8. The whole-plant Pn (µmol plant-1 s-1), expressed as a linear 
function that incorporated the quadratic and interaction components of I, T, VPD, and C as in Model D (Eq. 8), 
resulted best. Estimations of Pn were agreed well (R2 = 0.89, RMSE = 1.471 µmol plant-1 s-1). Model validation 
with a sunny and rainy day showed that the model could predict well despite the dynamic changing of Pn as a 
response to the dynamic changing of environmental factors. Figs. 2 and 3 show the time course of measured and 
estimated whole-plant photosynthetic rate for test dataset on a sunny day on 24th June (n = 183) and a rainy day 
on 23rd June 2018 (n = 181), respectively. 

𝑃𝑃𝑛𝑛 = 𝛼𝛼0 + 𝛼𝛼1𝐼𝐼 + 𝛼𝛼2𝑇𝑇 + 𝛼𝛼3𝐶𝐶 + 𝛼𝛼4𝑉𝑉𝑃𝑃𝑉𝑉        (5) 

𝑃𝑃𝑛𝑛 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼 + 𝛽𝛽2𝑇𝑇 + 𝛽𝛽3𝐶𝐶 + 𝛽𝛽4𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛽𝛽5𝐼𝐼 × 𝑇𝑇 + 𝛽𝛽6𝐼𝐼 × 𝐶𝐶 + 𝛽𝛽7𝐼𝐼 × 𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛽𝛽8𝑇𝑇 × 𝐶𝐶 + 𝛽𝛽9𝑇𝑇 ×

𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛽𝛽10𝐶𝐶 × 𝑉𝑉𝑃𝑃𝑉𝑉           (6) 
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𝑃𝑃𝑛𝑛 =  𝛾𝛾0 + 𝛾𝛾1𝐼𝐼 + 𝛾𝛾2𝑇𝑇 + 𝛾𝛾3𝐶𝐶 + 𝛾𝛾4𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛾𝛾5𝐼𝐼2 + 𝛾𝛾6𝑇𝑇2 + 𝛾𝛾7𝐶𝐶2 + 𝛾𝛾8𝑉𝑉𝑃𝑃𝑉𝑉2    (7) 

𝑃𝑃𝑛𝑛 =  𝛿𝛿0 + 𝛿𝛿1𝐼𝐼 + 𝛿𝛿2𝑇𝑇 + 𝛿𝛿3𝐶𝐶 + 𝛿𝛿4𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛿𝛿5𝐼𝐼 × 𝑇𝑇 + 𝛿𝛿6𝐼𝐼 × 𝐶𝐶 + 𝛿𝛿7𝐼𝐼 × 𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛿𝛿8𝑇𝑇 × 𝐶𝐶 + 𝛿𝛿9𝑇𝑇 ×

𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛿𝛿10𝐶𝐶 × 𝑉𝑉𝑃𝑃𝑉𝑉 + 𝛿𝛿11𝐼𝐼2 + 𝛿𝛿12𝑇𝑇2 + 𝛿𝛿13𝐶𝐶2 + 𝛿𝛿14𝑉𝑉𝑃𝑃𝑉𝑉2      (8) 

where Pn is in units of µmol plant-1 s-1, I is in units of W m-2, C unit is µmol mol-1, VPD is in kPa, and α, β, γ,  
and δ are regression coefficients.  
 

 
 
 
 

 
 
 
 

 
 

 
 

 
 
Fig. 2 Measured (black dot) and estimated (white dot) whole-plant photosynthetic rate for test 
dataset (n = 183) on a sunny day on 24th June 2018 of Equation 5 (A), Equation 6 (B), Equation 7 
(C), and Equation 8 (D). 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
Fig. 3 Measured (black dot) and estimated (white dot) whole-plant photosynthetic rate for test 
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dataset (n = 181) on a cloudy day in 23rd June 2018 of Equation 5 (A), Equation 6 (B), Equation 7 
(C), and Equation 8 (D). 

Chapter 6. Summary 
The results of the present study suggest that whole-plant Pn of cherry tomato plants can be empirically 

estimated from aerial environmental factors without including the leaf area into the function by using the high 
time-resolution photosynthesis data. The study implied that by applying feature engineering, a linear model 
could fit the high time-resolution photosynthesis data and was able to estimate whole-plant Pn in reasonable 
accuracy. Further study to implement the model in process computer control at a greenhouse is needed. Once 
the system has been settled, the controlling of greenhouse environmental factors based on the SPA becomes 
feasible. 
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