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Chapter 1

Preliminaries

We assume that every topological space is Hausdorff. If X is any topological space, given A ⊆ X

we denote by clX(A) the closure of A in X. N denotes the set of natural numbers, and P its subset

of prime numbers. We use N+ to denote the set of strictly positive natural numbers.

1.1 Standard notations for groups

Symbols Z and C denote the groups of integer and complex numbers, respectively.

If (G, ·) is a group and X,Y ⊆ G, then we let

X · Y = {x · y : x ∈ X, y ∈ Y }. (1.1)

Given a group G and its subset X ∈ G we denote by ⟨X⟩ the smallest subgroup of G containing

X. In the event X is a singleton, i.e X = {x} for some x ∈ G, we identify ⟨{x}⟩ = ⟨x⟩ to simplify

our notation.

Following [16], we define

Cyc(A) = {x ∈ G : ⟨x⟩ ⊆ A} for every A ⊆ G. (1.2)

Thus, we shall say that an element x ∈ G is a cyclic element of a subset X ⊂ G if and only if

x ∈ Cyc(X). This notation shall be used in standard fashion throughout this text.
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1. PRELIMINARIES

1.2 A small summary of algebraic ranks

Let p ∈ N. For m,n ∈ Z, we write that m ≡ n (mod p) provided that m− n = pk for some integer

k.

Definition 1.2.1. Let G be an Abelian group and p ∈ P ∪ {0}.

(i) A subset X of G is said to be p-independent provided that for every n ∈ N, each pair-

wise distinct elements x1, . . . , xn ∈ X and arbitrary integers m1, . . . ,mn ∈ Z, the equation∑n
i=1mixi = 0 implies that mi ≡ 0 (mod p) for all i = 1, . . . , n.

(ii) The symbol rp(G) denotes the maximal cardinality of a p-independent subset of G (which

exists by Zorn’s lemma).

(iii) The cardinal rp(G) is called the p-rank of G.

(iv) The cardinal r(G) = r0(G) +
∑

p∈P rp(G) is called the rank of G.

The following fact is clear from these definitions.

Fact 1.2.2. If H is a subgroup of an Abelian group G, then rp(H) ≤ rp(G) for every p ∈ P∪ {0},

and thus, r(H) ≤ r(G).

The following property of the 0-rank is well-known (see [17, Section 16] and [10, Corollary 2.5]):

Remark 1.2.3. The following inequality holds for every subgroup H of an Abelian group G:

r0(G) ≥ r0(G/H). (1.3)

Definition 1.2.4. [15, Definition 7.2] For an abelian group G, the cardinal

rd(G) = min{r(nG) : n ∈ N+} (1.4)

is called the divisible rank of G.

The notion of the divisible rank was defined, under the name of final rank, by Szele [46] for

p-groups. The following is easily seen:
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1.3. TOPOLOGICAL GROUPS

Fact 1.2.5. The inequality r0(G) ≤ rd(G) holds for any group G.

The following is also straightforward:

Remark 1.2.6. An abelian group G satisfies rd(G) = 0 if and only if G is a bounded torsion group;

that is, if nG = {0} for some n ∈ N+.

1.3 Topological groups

For a group G with an operation ·G, there is a natural product mapping mG : G × G → G such

that mG(x, y) = x ·G y for all x, y ∈ G. Similarly, there is an inversion mapping inG : G→ G such

that inG(x) = x−1 for all x ∈ G. In cases where we consider no confusion possible, we shall simply

denote the product of x, y ∈ G as x · y. If this operation is commutative, the group G is said to be

Abelian.

A topology τ defined on a group G is a group topology on G if the product mapping mG and the

inversion mapping iG are continuous in the topological product (G, τ)× (G, τ) and in the topology

τ for G respectively. The pair (G, τ) of a group with such a topology is called a topological group.

In what follows, when we refer to a group G as being a topological group (without specifying τ),

we assume the group G to be equipped with some Hausdorff group topology. A good overview of

fundamentals and history of topological groups can be found in [8]. For even more detailed texts

see [1, 9].

1.4 Minimally and maximally almost periodic groups

1.4.1 Historical background on minimal and maximal almost periodicity

For a topological space X, the set B(X) denotes the family of all bounded complex-valued con-

tinuous functions on X equipped with the topology of uniform convergence. Given a topological

group G, an element g ∈ G and a complex-valued function f on G, we define the translation of f

by g as the function fg : G→ C satisfying fg(x) = f(xg) for all x ∈ G.

Definition 1.4.1. Let G be a topological group. A function f ∈ B(G) is almost periodic if every

sequence {fgn : n ∈ N} of translations of f by elements gn ∈ G (n ∈ N) has a subsequence which is

uniformly convergent in B(G).

3



1. PRELIMINARIES

Real-valued almost periodic functions play a central role in the works of Bohr pertaining to

harmonic analysis, and years later the same concept was considered by von Neumann in the context

of complex-valued functions. The following concepts were introduced by von Neumann in [32]:

Definition 1.4.2. A topological group G is called:

(a) maximally almost periodic (MAP) if and only if the family of continuous homomorphisms to

compact groups separate its points.

(b) minimally almost periodic (MinAP) if and only if it admits no non-trivial continuous homo-

morphism to a compact group.

These two properties are “orthogonal” in the following sense:

Remark 1.4.3. A maximally almost periodic group which is minimally almost periodic is trivial.

These concepts were motivated by [32, Theorem 36(i)], where von Neumann proves that the

family of all almost periodic functions of a topological group G separate its points when G is either

compact or locally compact Abelian (and separable). von Neumann notes in his monograph that

verifying the existence of such almost periodic functions may be quite problematic, and from the

desire of reducing this complexity he achieved the following result:

Theorem 1.4.4 ([32, Theorem 3](i)). Let G be a topological group.

(i) The family of almost periodic functions of G separates its points if and only if the family of

continuous homomorphisms to unitary groups separates its points.

(ii) The family of almost periodic functions of G is comprised of only the constant functions if

and only if it admits no non-trivial continuous homomorphism to a unitary group.

By the classical Peter-Weyl-van Kampen theorem, every compact group is isomorphic to a closed

subgroup of a product of unitary groups. Therefore, one may replace the words “unitary group”

by “compact group” in Theorem 1.4.4. This substitution (now presented in Definition 1.4.2) is the

most commonly used definition for both MinAP and MAP groups in the modern literature. von

Neumann’s original results [32, Theorem 36(i)] show that compact groups and (separable) locally

compact Abelian groups are contained in the class of MAP groups.

4



1.4. MINIMALLY AND MAXIMALLY ALMOST PERIODIC GROUPS

von Neumann and Wigner focused on minimally almost periodic groups in [33]. Here they

construct a handful of examples of minimally almost periodic groups [33, Section 5] via linear

transformations. And they note that constructing groups in this class is not a trivial effort. The

class of minimally almost periodic groups gained a great deal of attention from experts in topological

group theory thanks to two high-profile open problems which we shall describe in the next two

subsections.

1.4.2 The connection of MinAP groups to extreme amenability

The first problem is related to the concept of extremely amenable groups.

Definition 1.4.5. A topological group is extremely amenable (or satisfies the fixed point in compacta

property) if every continuous action of it on a compact space admits a fixed point.

Extremely amenable groups appeared in the context of Harmonic Analysis and Dynamical

Systems (see [23, 35]). These groups are intimately connected to the class of MinAP groups by the

following fact:

Fact 1.4.6. Every extremely amenable group is minimally almost periodic.

It is known that the converse implication does not hold in general. However, whether the

converse implication holds or not in the realm of Abelian groups remains as a major open problem

to this day:

Problem 1.4.7 (Pestov [35], 1998). Is every Abelian MinAP topological group extremely amenable?

A topological group is monothetic if it contains a dense subgroup which is isomorphic to the

group of integers. Every monothetic group is Abelian. The following particular version of Problem

1.4.7 was posed by Glasner as far back as 1988:

Problem 1.4.8 (Glasner [23], 1998). Must every monothetic MinAP topological group be ex-

tremely amenable?

This particular version of Glasner has important implications in number theory. A negative

answer to Problem 1.4.8 of Glasner would provide an answer to the following ancient problem (see

[47]) of combinatoric number theory:

5



1. PRELIMINARIES

Problem 1.4.9. If S is a big set of the integers, is it true that the difference S − S is a Bohr

neighbourhood of 0?

Problems 1.4.7, 1.4.8 and 1.4.9 are still open.

1.4.3 Algebraic structure of MinAP groups

The difficulty in the construction of MinAP groups sparked a great deal of interest in regards to their

algebraic structure. First examples of MinAP groups were the additive groups of some topological

vector spaces [6], as explained in [28]. Nienhuys [34] constructed a connected monothetic group of

cardinality at most continuum which is minimally almost periodic. This implies the existence of a

MinAP group topology on the group Z of integers.

In 1984 Protasov posed the question of whether every Abelian group admits a minimally almost

periodic group topology. In 1989 Remus provided an example of a bounded Abelian group which

does not admit a MinAP group topology, so Comfort proposed the following modification of the

original question of Protasov:

Problem 1.4.10 (Comfort, 1990 [3, Question 521]). Does every Abelian group which is not of

bounded order admit a minimally almost periodic group topology?

The case of bounded torsion Abelian groups was resolved by Gabriyelyan by making use of their

Ulm-Kaplansky invariants (see Fact 3.9.1):

Theorem 1.4.11 ([20, Corollary 3]). A torsion bounded Abelian group admits a minimally almost

periodic group topology if and only if all of its leading Ulm-Kaplansky invariants are infinite.

The general case was resolved by Dikranjan and Shakhmatov [11] in 2014.

Theorem 1.4.12 (Dikranjan-Shakhmatov [11, Theorem 3.3]). For an Abelian group G, the follow-

ing conditions are equivalent:

(i) G admits a minimally almost periodic group topology;

(ii) G is connected with respect to its Markov-Zariski group topology [13];

(iii) for every n ∈ N, the subgroup nG = {ng : g ∈ G} of G is either trivial or infinite.
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1.5. PROPERTIES RELATED TO SMALL SUBGROUPS

1.5 Properties related to small subgroups

1.5.1 The Hartman-Micyelski construction

In this section we describe the so-called Hartman-Mycielski construction [27].

Let G be an Abelian group and denote the unit interval [0, 1] by I. We denote by GI the set

of all functions from I to G, which is a group under the coordinate-wise operations. Given g ∈ G

and t ∈ (0, 1] we define the function gt ∈ GI such that

gt(x) =


g if x < t, and

0 if x ≥ t

where 0 is the zero element of G.

It is known that Gt = {gt : g ∈ G} is a subgroup of GI that is isomorphic to G for every

t ∈ (0, 1]. And furthermore the sum

HM(G) =
⊕

t∈(0,1]

Gt

is direct. If µ is the standard probability measure on I the Hartman–Mycielski topology on the

group HM(G) is the topology generated by the family of all sets of the form

O(U, ϵ) = {g ∈ GI : µ({t ∈ I : g(t) ̸∈ U}) < ϵ} (1.5)

where U is an open neighbourhood of 0 in G and ϵ > 0 forms the base of the identity function of

HM(G). This topology is known to be pathwise connected and locally pathwise connected [27].

1.5.2 The property DW of Dierolf and Warken

In 1978, Dierolf and Warken [7] proved that every topological group G can be embedded in a

minimally almost periodic group. The group in question being the Hartman-Mycielski contruction

HM(G) of G. To prove this, they showed that HM(G) has the following property:

Fact 1.5.1 (Dierolf and Warken [7, Theorem 1.1]). Let G be a topological group. For every

neighbourhood U of the identity of HM(G) and every g ∈ HM(G) there exists a finite sequence of

7



1. PRELIMINARIES

elements g1, . . . , gn ∈ U such that for every i = 1, . . . , n we have that gi ∈ Cyc(U) and g =
∏n

i=1 gi.

We can isolate the property above to obtain the following definition:

Definition 1.5.2 (Implicitly used in [7]). Let G be a topological group. We say that G satisfies

property DW if for every open neighbourhood U of the identity of G, the equality ⟨Cyc(U)⟩ = G

holds.

In [7, Proof of Theorem 1.1], Dierolf and Warken essentially prove the following

Proposition 1.5.3. A topological group with property DW is MinAP.

The original theorem of Dierolf and Warken [7] can thus be stated as follows:

Theorem 1.5.4 ([7, Theorem 1.1]). Every topological group G is topologically isomorphic to a

closed subgroup of some topological group HG (depending on G) which satisfies property DW. As a

consequence, the group HG is MinAP.

1.5.3 The small subgroup generating properties of Gould

Gould [25] isolated Proposition 1.5.3 from the result of Dierolf and Warken and considered the

following class of topological groups:

Definition 1.5.5 (Originally by Gould [25]). A topological group G has the small subgroup gen-

erating property (SSGP) if and only if for every open neighbourhood U of the identity of G, the

set ⟨Cyc(U)⟩ is dense in G.

The difference between the SSGP property of Gould and property DW used by Dierolf and

Warken is subtle, but none the less non-trivial. Property DW is an algebraic expression for all

elements of the group depending on the neighbourhoods of the identity. Meanwhile, in Definition

1.5.5, the requirement is that the set of elements which can be represented in the way proposed in

property DW is topologically dense.

While it is easy to show that

DW → SSGP → MinAP, (1.6)

8



1.5. PROPERTIES RELATED TO SMALL SUBGROUPS

constructing group topologies with properties DW and SSGP is by no means simple. Particular

evidence of this can be seen in the SSGP examples of Gould [4, 25, 26], which often require very

careful manipulation of group metrics to be obtained. In the final paper [4] from this series,

Comfort and Gould introduced a series of SSGP(n) properties, for every natural number n, defined

by induction as follows:

Definition 1.5.6. Let G be a topological group. We say that G is:

(i) SSGP(0) when G is the trivial group, and

(ii) SSGP(n+1) if the subgroup KU = clG(⟨CycG(U)⟩) is normal in G, and the algebraic quotient

HU = G/KU has SSGP(n) for every neighbourhood U of the identity of G.

Notice that SSGP(1) coincides precisely with the original definition of SSGP. The following

chain of implications is straightforward:

SSGP(0) → SSGP(1) → ...→ SSGP(n) → ...→ MinAP. (1.7)

Examples distinguishing all properties in (1.7) can be found in [4, Corollary 3.14, Theorem 4.6].

However, all properties in (1.7) coincide for bounded torsion abelian topological groups.

Theorem 1.5.7. [4, Corollary 2.23] A bounded torsion abelian topological group has the SSGP if

and only if it is MinAP.

1.5.4 A family of SSGP(α) properties of Dikranjan and Shakhmatov

In 2016, Dikranjan and Shakhmatov [16] initiated the study of the SSGP-type properties of Gould

by means of an operator-based approach with the goal of avoiding consecutive topological quotients

as in Definition 1.5.6. They introduced an operator denoted by SG, which when used with care-

fully defined transfinite iterations (denoted by S
(α)
G for every ordinal α) gives rise to the following

definition:

Definition 1.5.8. For an ordinal α, a topological group G is said to be SSGP(α) if S(α)
G (U) = G

for every neighbourhood U of the identity of G.

9



1. PRELIMINARIES

For a proper definition and more details regarding the SG operator, see Section 2.6 of Chapter

2.

We highlight the difference in fonts between the properties SSGP(n) and SSGP(n) for n ∈ N, as

their underlying definition is different. The connection between these properties is given in items

(i), (iv) and (v) of the following theorem.

Theorem 1.5.9. (i) SSGP(1) coincides with SSGP (which is equivalent to SSGP(1));

(ii) SSGP(α) → SSGP(β) whenever α, β are ordinals satisfying α < β;

(iii) for each ordinal α, SSGP(α) → MinAP;

(iv) SSGP(n) → SSGP(n) for every n ∈ N+;

(v) for every n ∈ N+, an Abelian topological group has the property SSGP(n) if and only if it has

the property SSGP(n).

Proof. Item (i) is [16, Lemma 2.2 and (7)], item (ii) is [16, Proposition 5.1], item (iii) is [16,

Proposition 5.3 (iii)], item (iv) is [16, Corollary 6.3] and item (v) is [16, Theorem 6.4].

It is unknown if SSGP(n) and SSGP(n) coincide for arbitrary topological groups [16, Question

13.4].

As a result of Theorem 1.5.9(v), there is absolutely no confusion between denoting SSGP(n)

or SSGP(n) while working with Abelian groups. From here, it follows that the properties SSGP(α)

(where α is an ordinal) create a very natural extension of the implications detailed in (1.7):

SSGP(0) → · · · → SSGP(n) → · · · → SSGP(α) → SSGP(α+ 1) → · · · → MinAP.

1.5.5 The algebraic structure of SSGP groups

Comfort and Gould [4, Questions 5.2 and 5.3] asked the following:

Question 1.5.10. (a) What are the (Abelian) groups which admit an SSGP topology?

(b) Does every Abelian group which for some n > 1 admits an SSGP(n) topology also admit an

SSGP topology?

10



1.6. SUMMARY OF RESULTS AND CONTENT OF EACH CHAPTER

As for Question 1.5.10, Dikranjan and Shakhmatov essentially split this problem into two parts:

the case of groups of infinite divisible rank (see [15, Definition 7.2] for the definition of the divisible

rank) and the case of groups of finite divisible rank.

In view of Remark 1.2.6, the next theorem coincides with [16, Corollary 1.7].

Theorem 1.5.11. A non-trivial abelian group G satisfying rd(G) = 0 admits an SSGP topology if

and only if all leading Ulm-Kaplanski invariants of G are infinite.

Theorem 1.5.11 resolves Question 1.5.10 (a) for Abelian groups of divisible rank zero, while the

next theorem resolves it for Abelian groups of infinite divisible rank.

Theorem 1.5.12. [16, Theorem 3.2] Every abelian group G satisfying rd(G) ≥ ω admits an SSGP

topology.

In [16], Dikranjan and Shakhmatov reduced the remaining case 0 < rd(G) < ω to a question

regarding the existence of SSGP topologies on Abelian groups of a very particular type:

Question 1.5.13. Let n ∈ N+ and

G = G0 × (

k⊕
i=1

Z(p∞i ))× F,

where F is a finite group, k ∈ N, p1, p2, . . . , pk are (not necessarily distinct) prime numbers, and

G0 is a subgroup of Qn containing Zn such that G0 ̸⊆ Qn
π for every finite set π of prime numbers.

Is it true that G admits an SSGP topology?

For the precise definition of Qπ subgroups, see Definition 4.3.1. Assuming a positive answer to

Question 1.5.13, they established in [16, Theorem 13.2] what is stated now as Theorem 4.1.1 in

Chapter 4, thus giving a (provisional, at that moment) complete characterization of Abelian groups

G admitting an SSGP topology in the remaining open case 0 < rd(G) < ω.

1.6 Summary of results and content of each chapter

Chapters 1–3 are single-authored, while the contents of Chapters 4–6 constitute a joint work with

Dmitri Shakhmatov.
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1. PRELIMINARIES

We say that a topological group G is SSGP(∞) (or that it has the SSGP(∞) property) if G is

SSGP(α) for some ordinal α (see Definition 2.3.1).

In Chapter 2 we introduce the following concept: Let C denote a class of topological groups.

We say that a topological group is MinAP(C) (or satisfies the MinAP(C) property) if all its non-

trivial homomorphisms to any group contained in the class C are discontinuous. Here the property

MinAP(Compact) coincides with the classic MinAP property.

We investigate MinAP(C) for three standard classes C: locally compact groups (LC), Lie groups,

and groups with no small subgroups (NSS). This triad of properties is well-known for being part of

the solution to Hilbert’s 5th Problem by Gleason, Montgomery-Zippin and Yamabe: a topological

group is Lie if and only if it is both locally compact and NSS.

The following diagram shows the relationships between the newly introduced properties (see

Figure 2.1 and Chapter 2 for full details).

SSGP(∞)

MinAP(LC) +MinAP(NSS)

MinAP(LC) MinAP(Lie) MinAP(NSS)

MinAP

MinAP(Compact)

Figure 1.1: Diagram of implications. LC denotes Locally compact

We prove that all of the above implications are not reversible in general (see Theorem 2.3.5),

yet some of them become reversible for Abelian topological groups:

Theorem 1.6.1 (Corollary 2.3.6). Properties MinAP(LC), MinAP(Lie) and MinAP coincide for

Abelian topological groups.

Our main result of Chapter 2 connects the new MinAP(NSS) property with the hierarchy

SSGP(∞) of Dikranjan and Shakhmatov (see Definition 2.3.1).

Theorem 1.6.2 (Corollary 2.3.8). The SSGP(∞) and MinAP(NSS) properties are equivalent for

Abelian topological groups.
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As a consequence, we significantly simplify Figure 1.1 to the following in Abelian topological

groups (see Figure 2.2):

MinAP(NSS) SSGP(∞)

MinAP MinAP(Lie) MinAP(Locally compact)

Figure 1.2: Simplified diagram of implications in Abelian topological groups

The group of integers Z is a well-known example of a group which can be equipped with a MinAP

group topology, but never with an SSGP(∞) group topology (see [16, Corollary 3.9]). Therefore,

the equivalent properties in the “upper-level” of the diagram do not imply any of the properties in

the “lower-level” of the diagram.

In Chapter 3 we introduce the following concept inspired by the MinAP property. Let P be a

property of topological groups. We say that a topological group G is MinAP modulo P (MinAP

mod P) if for each continuous homomorphism f : G→ K from G to a compact group K, the image

f [G] of G considered as a subgroup of K has property P.

When P is the property of being the trivial group then MinAP mod P coincides with classical

minimal almost periodicity. Our interest in this modification of the MinAP property is to analyze

potential changes to algebraic structure by weakening the restrictions on continuous homomorphic

images to compact groups.

Naturally, when P and Q are properties of topological groups such that P implies Q, then

MinAP mod P → MinAP mod Q.

We study five modifications of the MinAP property by considering a handful of properties P:

one set-theoretic (finite), two algebraic (torsion and bounded torsion) and two topological (compact

and connected). The properties relate as follows (see Figure 3.1):

MinAP MinAP mod finite MinAP mod compact

MinAP mod connected MinAP mod bounded MinAP mod torsion.

Figure 1.3: Diagram of implications

13
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We prove that none of the above implications are reversible (see Examples 3.3.2 and 3.6.8).

First, if P is an invariant of continuous homomorphisms, then we have a description of MinAP

mod P groups in the following theorem:

Theorem 1.6.3 (Theorem 3.6.1 Corollary & 3.6.3). The following are equivalent for an Abelian

group G and a property P invariant under continuous homomorphisms:

(i) G is MinAP modulo P,

(ii) The image bG(G) of G to its Bohr compactification has property P; and

(iii) The quotent G/n(G) of G with respect to its von Neumann kernel has property P when

equipped with its Bohr topology.

Next, we apply our Theorem 1.6.3 along with Dikranjan-Shakhmatov’s description of algebraic

structure of Abelian MinAP topological groups (Theorem 1.4.12). This allows us to describe alge-

braic structure of Abelian groups corresponding to all properties in Figure 1.3:

Theorem 1.6.4 (Theorem 3.8.1 & Corollary 3.8.2). An Abelian group G admits a MinAP mod

connected group topology if and only if it admits a minimally almost periodic group topology.

Theorem 1.6.5 (Theorem 3.9.5 & Corollary 3.9.6). Every Abelian group G admits a group topology

which is MinAP mod P for P = {finite, bounded, compact, and torsion}.

The former result shows that MinAP modulo connected imposes the same algebraic restrictions

as the classical minimal almost periodicity. Meanwhile, the latter shows that MinAP mod P for

P = {finite, bounded, compact, and torsion} is too lenient algebraically, as any Abelian group may

be equipped with such a topology “easily”.

Comfort and Gould previously asked for a characterization of Abelian groups which admit

an SSGP group topology (see Question 1.5.10). Dikranjan and Shakhmatov essentially split this

problem into two parts: the case of groups of infinite divisible rank and the case of groups of finite

divisible rank. They obtained an almost complete description of the algebraic structure of SSGP

and SSGP(α) groups for any ordinal α, and they additionally reduced the sufficiency to a single

remaining case (Question 1.5.13), which we resolve in Chapter 4.

The main result in Chapter 4 is the following theorem, which provides a solution to a more

general statement than that of Question 1.5.13:
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Theorem 1.6.6 (Theorem 4.7.4). Suppose that m ∈ N+ and G is a wide subgroup of Qm. Then

for each at most countable abelian group H, the direct sum K = G ⊕ H admits a metric SSGP

topology.

The notion of a wide subgroup of Qn is defined in Definition 4.3.1. We highlight the following:

Remark 1.6.7. By Corollary 6.5.5, the groups K considered in Theorem 1.6.6 cannot be equipped

with DW group topologies.

To construct the topologies in Theorem 4.7.4 of Chapter 4 (as well as the one in Theorem 5.1.1

of Chapter 5) we devise a technique for extending a “finite neighbourhood system” on a group to

some other “finite neighbourhood system” of a bigger group. With these extensions we define some

canonical representations of elements of “extended neighbourhoods” by elements from “smaller

neighbourhoods” and a fixed set which can be viewed as a base for such an extension. In this

technique we introduce a partially ordered set (P,≤) comprised of “finite neighbourhood systems”

on our groups. Then, we construct a countable family D of dense subsets of the poset (P,≤). We

then select some linearly ordered subset F of (P,≤) which intersects all members of the family D

of dense subsets of (P,≤); this can be done due to a folklore Lemma 4.7.3 (historically attributed

to Rasiowa-Sikorski). Finally, we obtain a countable base of neighbourhoods of zero for a group

topology T , which is defined by means of elements of the linearly ordered set F.

A reader who is familiar with Martin’s Axiom undoubtedly notices that our technique makes

use of a “ZFC version” of this axiom when the family of dense sets is at most countable. The choice

of such an exposition was determined by the authors’ desire to replace a direct construction of the

topology T via an induction (which would be totally incomprehensible) by a “much smoother”

forcing-type argument using a poset (P,≤) and some dense subsets of it (which is much easier

to follow than the direct inductive construction). We hope that, after discovering the technical

complexity even of this “smooth” approach, the reader would fully agree with our judgment. We

note that (other than the construction of SSGP-type group topologies) Shakhmatov and the author

have succesfully applied this same technique for the construction of “coherent splitting-maps” in

[39, Section 9].

Theorem 1.6.6 above resolves Question 1.5.13 of Dikranjan and Shakhmatov. And as a conse-

quence we fully complete the following description for the algebraic structure of SSGP and SSGP(α)
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topological groups.

Theorem 1.6.8 (Theorem 4.1.1). The following are equivalent for an Abelian group G:

(a) G admits an SSGP group topology,

(b) G admits an SSGP(α) group topology for some ordinal α, and

(c) one of the two conditions is satisfied:

(i) G is of infinite divisible rank, or

(ii) the quotient H = G/t(G) of G by its torsion part t(G) has finite free rank r0(H) and

r(H/A) = ω for some (equivalently, every) free subgroup A of H such that H/A is

torsion.

In Chapter 5 we construct group topologies with the stronger DW property in free groups of

infinite rank. This is our only non-Abelian case in this thesis. Our main results in this chapter are

the following.

First, for free groups with countably many generators:

Theorem 1.6.9 (Theorem 5.1.1). The free group F (X) over a countably infinite set X admits a

metric DW group topology.

In this case, we are able to make this topology metric. The construction of this topology is

done by adapting our technique from Chapter 4 (explained above) to a substantially more complex

non-Abelian version.

In case the set of generators is uncountable, we have an answer as well:

Theorem 1.6.10 (Theorem 5.1.2). Every free group with infinitely many generators admits an

DW group topology.

This result is achieved by finding an algebraically isomorphic copy of the desired free group

(with uncountably many generators), which inherits a DW subgroup topology in some uncountable

power of a free group obtained in Theorem 1.6.9. Whether the DW group topologies can be made

metric in these cases remains open.
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In Chapter 6 we provide some initial results on algebraic structure of Abelian groups which

admit a group topology with property DW. The main result of this chapter consists of the following

necessary conditions for Abelian groups of finite free rank:

Theorem 1.6.11 (Theorem 6.5.1). Let G be an Abelian group of finite free rank. If G admits a

DW group topology, then either one of the following holds:

(i) If r0(G) = 0 (i.e. G is torsion) then every non-trivial p-component of G admits an DW group

topology.

(ii) If 0 < r0(G) then there exists p ∈ P such that the p-component of G has infinite divisible

rank.

As a consequence this poses restrictions on certain common groups, such as finite powers of the

group of rationals Q:

Corollary 1.6.12 (Corollary 6.5.5). For every n ∈ N+ the following hold:

(i) The only subgroup of Qn which admits an DW group topology is the trivial group.

(ii) Every wide subgroup of Qn admits an SSGP group topology but not an DW one.

As a consequence of Corollary 1.6.12(ii) the finite powers of Q are now shown to never admit

DW group topologies even though they admit SSGP group topologies by our Theorem 1.6.6 above.

This shows that the implication DW =⇒ SSGP(∞) from (1.6) cannot be reversed even by asking

for “existence” of topologies.

17





Chapter 2

Strengthening minimal almost

periodicity via the classical triad

resolving Hilbert’s Fifth Problem

2.1 Introduction

Inspired by Definition 1.4.2(b), for every class C of topological groups we propose corresponding

MinAP-like and MAP-like classes of topological groups.

Definition 2.1.1. Let C be a non-empty class of topological groups and G be a topological group.

We say that:

(i) G is MinAP(C) (or has the MinAP(C) property) if G admits no non-trivial continuous homo-

morphisms to groups contained in the class C, and

(ii) G is MAP(C) (or has the MAP(C) property) if there exists a family of continuous homomor-

phisms of G to groups contained in the class C separating the points of G.

With a slight abuse of notation, we shall also denote by MinAP(C) and MinAP(C) the class of

topological groups having the corresponding property.

Remark 2.1.2. In the terminology of Definition 2.1.1, the class of minimally almost periodic groups

(MinAP) from Definition 1.4.2(b), is precisely the class of MinAP(Compact) groups. Analogously,
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2. MINAP GROUPS AND THE TRIAD OF HILBERT’S 5TH PROBLEM

the class of maximally almost periodic groups (MAP) from Definition 1.4.2(a), is precisely the class

of MAP(Compact) groups.

In this chapter, our interest is in considering natural classes C of topological groups for which the

class of MinAP(C) groups forms a proper subclass of MinAP groups. In particular, we investigate

the classes of MinAP(Locally compact), MinAP(Lie) and MinAP(NSS) groups. Here NSS denotes

the class of topological groups having No Small Subgroups.

Definition 2.1.3. A topological group G is said to have no small subgroups (commonly abbrevi-

ated to NSS) if there exists an open neighbourhood of the identity of G containing no non-trivial

subgroups of G.

Locally compact groups and NSS groups play a fundamental role in the historical Hilbert Fifth

Problem from the 1900s, concerning the characterization of Lie groups. The results which comprise

the solution of this problem are due to Gleason [24] and Montgomery-Zippin [31]:

Theorem 2.1.4 (Gleason, Montgomery and Zippin). For a topological group G, the following are

equivalent:

(i) G is Locally compact NSS, and

(ii) G is a Lie group.

The following is an immediate consequence of this theorem.

Corollary 2.1.5. The following are equivalent for a topological group G:

(i) G is MinAP(Locally compact NSS), and

(ii) G is MinAP(Lie).

We prove that the Abelian groups in the classes MinAP(Locally compact) and MinAP(Lie) are

precisely the minimally almost periodic groups (Corollary 2.3.6), while the Abelian MinAP(NSS)

groups turn out to coincide with a certain class of Abelian groups considered by Dikranjan and

Shakhmatov in [16]; see Corollary 2.3.8. The (more complex) relationships between these three

classes of topological groups without the assumption of commutativity are summarized in Figure

2.1 found in Theorem 2.3.5.
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2.2. BASIC RESULTS ABOUT MINAP(C) AND MAP(C) PROPERTIES

2.2 Basic results about MinAP(C) and MAP(C) properties

The following three properties can be verified easily from Definition 2.1.1.

Proposition 2.2.1. Let G be a topological group. If C is a subclass of D, then the following holds:

(a) If G is MinAP(D), then it is MinAP(C);

(b) If G is MAP(C), then it is MAP(D);

(c) If G is MinAP(D) and MAP(C), then it is the trivial group.

Proposition 2.2.2. Properties MinAP(MAP(C)) and MinAP(C) coincide for every class C of

topological groups.

Proof. First, observe that any group in the class C is MAP(C) by Definition 2.1.1(ii) (it suffices

to take the identity homomorphism). This implies that C is a subclass of MAP(C). Proposition

2.2.1 (a) then shows that every MinAP(MAP(C)) group is MinAP(C).

Let us now show the converse. Assume G is MinAP(C) and let f : G → H be a continuous

homomorphism from G to a MAP(C) group H. By contradiction, assume that f is non-trivial,

so there exists some x ∈ G such that f(x) ̸= e. Since H is MAP(C), Definition 2.1.1(i) implies

the existence of a continuous homomorphism g : H → K from H to a group K ∈ C which

satisfies g(f(x)) ̸= e. This implies that the composition g ◦ f : G → K is a non-trivial continuous

homomorphism from G to a group K in the class C. By Definition 2.1.1(ii), this means that G is

not MinAP(C), giving a contradiction with our assumption. Since the group H ∈ MAP(C) and the

continuous homomorphism f : G → H were arbitrary, we conclude that G is MinAP(MAP(C)) by

Definition 2.1.1(i).

As was mentioned in the introduction, our interest is in finding natural classes C of topological

groups for which MinAP(C) groups form a proper subclass of MinAP groups. The next corollary

shows that, in order for this to happen, C must contain at least one group which is not MAP.

Corollary 2.2.3. If C is a subclass of MAP groups, then every MinAP group is MinAP(C).

Proof. Assume that G is a MinAP group. Then G is MinAP(Compact) by Remark 2.1.2, and so

G is MinAP(MAP(Compact)) by Proposition 2.2.2. Note that the class MAP(Compact) coincides
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with the class of MAP groups by Remark 2.1.2, so G is MinAP(MAP). Since C is assumed to be the

subclass of the class of MAP groups, we conclude that G is MinAP(C) by Proposition 2.2.1(a).

Corollary 2.2.4. If C and D are classes of topological groups such that properties MAP(C) and

MAP(D) coincide, then properties MinAP(C) and MinAP(D) coincide as well.

Proof. It easily follows from the assumption of our corollary and Definition 2.1.1(i) that proper-

ties MinAP(MAP(C)) and MinAP(MAP(D)) coincide. By Proposition 2.2.2, the former property

coincides with MinAP(C) while the latter one coincides with MinAP(D).

Corollary 2.2.5. Let C and D be classes of topological groups satisfying C ⊆ D ⊆ MAP(C). Then

properties MinAP(C) and MinAP(D) coincide.

Proof. It follows from C ⊆ D ⊆ MAP(C) and Proposition 2.2.1(b). that

MAP(C) ⊆ MAP(D) ⊆ MAP(MAP(C)) = MAP(C).

Therefore, MAP(C) = MAP(D), and the conclusion follows from Corollary 2.2.4.

Recall that a topological group is precompact if it is a subgroup of some compact group.

Corollary 2.2.6. Properties MinAP, MinAP(Precompact) and MinAP(MAP) coincide.

Proof. Indeed, let C be the class of compact groups. Since MinAP(C) = MinAP and MAP(C) =

MAP by Remark 2.1.2, we have C ⊆ {Precompact} ⊆ {MAP} = MAP(C). The conclusion now

follows from Corollary 2.2.5.

The following proposition is useful when dealing with Abelian topological groups.

Proposition 2.2.7. Assume that C is a class of topological groups invariant under taking closed

subgroups. If G is an Abelian topological group, then G is MinAP(C) if and only if G is MinAP(C ∩

Abelian).

Proof. Since C∩Abelian is a subclass of C, it follows from Proposition 2.2.1(a) that every MinAP(C)

group is MinAP(C ∩Abelian). Therefore, it suffices to show that if G is MinAP(C ∩Abelian), then

it is MinAP(C). Let G be a MinAP(C ∩ Abelian) group, and let f : G → H be a continuous

22



2.3. RESULTS IN THIS CHAPTER

homomorphism where H is a group contained in the class C. Since G is Abelian, the image f [G] is

an Abelian subgroup of H. If we take K = clH(f [G]) to be the closure of f [G] in H, then K is also

an Abelian group. Since K is closed in H, this implies that K is contained in C by our hypothesis.

Since f [G] is a subgroup of the Abelian group K from the class C, the homomorphism f is trivial

by the MinAP(C ∩Abelian) property of G. To conclude, we note that the group H from C and the

homomorphism f : G→ H were arbitrary, so G is MinAP(C) by Definition 2.1.1(i).

To close this section, let us recall the following classical facts in the theory of compact topological

groups.

Remark 2.2.8. (i) It follows from the Peter-Weyl theorem that every locally compact Abelian

group is MAP (see [8, Corollary 11.2.1]).

(ii) The Peter-Weyl-van Kampen theorem shows that every compact group is MAP(U), where U

is the class of all unitary matrix groups (see [8, Theorem 9.3.2]).

2.3 Results in this chapter

In [16, Proposition 5.3 (ii)], Dikranjan and Shakhmatov prove that, for every ordinal α, each

SSGP(α) group is MinAP(NSS). To simplify this and upcoming statements regarding SSGP(α)

groups, let us introduce the following notation.

Definition 2.3.1. We say that a topological group G is SSGP(∞) (or that it has the SSGP(∞)

property) if G is SSGP(α) for some ordinal α.

We can now restate the result of Dikranjan and Shakhmatov as follows:

Proposition 2.3.2 ([16, Proposition 5.3 (ii)]). Every SSGP(∞) group is MinAP(NSS).

Our next result establishes a “sister implication”:

Theorem 2.3.3. Every SSGP(∞) group is MinAP(Locally compact).

The proof of this theorem is postponed until Section 2.9.

Corollary 2.3.4. Every SSGP(∞) group is both MinAP(Locally compact) and MinAP(NSS).
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Proof. This follows from Proposition 2.3.2 and Theorem 2.3.3.

Our next theorem establishes connections between MinAP(C) properties for the triad of prop-

erties C appearing in Theorem 2.1.4, as well as the newly introduced SSGP(∞) property.

Theorem 2.3.5. In the following diagram of implications, solid arrows hold for all topological

groups, while dashed arrows hold (only) for Abelian topological groups.

SSGP(∞)

MinAP(Locally compact) +MinAP(NSS)

MinAP(Locally compact) MinAP(Lie) MinAP(NSS)

MinAP

MinAP(Compact)

9

8
2

1

5

3

7

6
4

Figure 2.1: Diagram of implications

Proof. Since every unitary matrix group is a Lie group, Remark 2.2.8(ii) implies that the class of

compact groups is a subclass of the broader class MAP(Lie). At the same time, the class of Lie

groups is a very well-known subclass of NSS topological groups. From this, Propositions 2.2.1, 2.2.2

and Remark 2.1.2, we get

MinAP(NSS) → MinAP(Lie) = MinAP(MAP(Lie)) → MinAP(Compact) = MinAP.

This proves the implications denoted by arrows 3 and 5 (and thus, also by arrow 4).

Each Lie group is locally compact, so arrow 1 follows from Proposition 2.2.1 (a). Arrows 2 and

8 are trivial. Arrow 9 is proved in Corollary 2.3.4. The remaining solid arrows in Figure 1 are

either trivial or follow from the (solid) arrows whose validity is established above.

Now we turn our attention to dashed arrows. Observe that arrow 7 will follow as long as we

show that arrow 6 does, so we focus on showing that arrow 6 holds for Abelian topological groups.

Let G be an Abelian MinAP group. Then G is MinAP(MAP) by Corollary 2.2.6. Let f : G→ H

be a continuous homomorphism from G to a locally compact Abelian group H. Since H is MAP

24



2.3. RESULTS IN THIS CHAPTER

by Remark 2.2.8(i), and G is MinAP(MAP), it follows that the homomorphism f is trivial. We

have checked that every continuous homomorphism from G to a locally compact Abelian group is

trivial. By Definition 2.1.1(i), this means that G is MinAP(Locally compact Abelian). Since G is

Abelian and the class of locally compact groups is invariant under taking closed subgroups, G is

MinAP(Locally compact) by Proposition 2.2.7.

The triangle of arrows 1, 5 and 6 in Figure 1 establishes the following

Corollary 2.3.6. For an Abelian topological group G the following are equivalent:

(i) G is MinAP,

(ii) G is MinAP(Locally compact), and

(iii) G is MinAP(Lie).

The equivalence of items (ii) and (iii) of Corollary 2.3.6 shows that, in the realm of Abelian

groups, Corollary 2.1.5 remains valid even without the word NSS in its item (i).

It is not immediately clear if the MinAP(NSS) property can be included in the list of equivalent

conditions of Corollary 2.3.6, to fully encompass the solution triad of the fifth problem of Hilbert.

Our nearest goal is to show that this cannot be done.

In the realm of Abelian groups, MinAP(NSS) topological groups are SSGP(α) if one chooses a

suitable ordinal α:

Theorem 2.3.7. An Abelian MinAP(NSS) group G is SSGP(|G|+).

We leave the proof of this theorem for Section 2.8.

Our next result provides a complete characterization of Abelian MinAP(NSS) groups. Quite

surprisingly, these are precisely SSGP(∞) groups:

Corollary 2.3.8. The following are equivalent for every Abelian topological group G:

(i) G is SSGP(∞),

(ii) G is MinAP(Locally compact) and MinAP(NSS).

(iii) G is MinAP(NSS).
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Proof. (i) =⇒ (ii) follows from Proposition 2.3.2 and Theorem 2.3.3.

(ii) =⇒ (iii) clearly follows.

(ii) =⇒ (i). By Theorem 2.3.7, G is SSGP(α) for α = |G|+, so G is SSGP(∞) by Definition

2.3.1.

This corollary shows that the implication of Proposition 2.3.2 becomes reversible for Abelian

topological groups. Combining this with Corollaries 2.3.6 and 2.3.8, we obtain the “substantially

collapsed” Figure 2.1 in the Abelian case:

MinAP(NSS) SSGP(∞) MinAP(Locally compact) +MinAP(NSS)

MinAP(Lie) MinAP MinAP(Locally compact)

7

3

9

8

Figure 2.2: Simplified diagram of implications in Abelian groups

In the above diagram, none of the equivalent “high-tier” properties imply any of the equivalent

“lower-tier” properties. This shows that, in Abelian groups, the fine structure presented in Figure

2.1 essentially reduces to only two distinct properties, MinAP(NSS) and MinAP.

2.4 Reversibility of implications in Figure 2.1

In this section we turn our attention to the question of the reversibility of all arrows in Figure 2.1.

Below is a summary of our examples:

(i) Arrow 1 is not reversible (Example 2.4.6),

(ii) arrows 2, 3, 4 and 8 are not reversible, even in Abelian groups (Example 2.4.3),

(iii) arrow 5 is not reversible (Example 2.4.1),

(iv) arrow 6 does not hold outside the class of Abelian groups (Example 2.4.1),

(v) arrow 7 does not hold outside the class of Abelian groups (Example 2.4.6),

(vi) arrow 9 is not reversible for all topological groups (Example 2.4.8).

Example 2.4.1. Each of the following three examples is a non-trivial MinAP Lie group G.
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(i) Shakhmatov and Dikranjan point out in [16, Example 5.4 (f)] that the special linear group

SL(2,R) is known to be minimally almost periodic as seen in [32].

(ii) It is shown in [2, Example 9.11] that the special linear group SL(2,C) is minimally almost

periodic.

(iii) It is shown in [2, Example 9.11] that the special linear group SL(2,C)d taken with the discrete

topology is minimally almost periodic.

Since the identity map from G to itself is a non-trivial homomorphism, it follows that G is not

MinAP(Lie) by Definition 2.1.1(i). Therefore, arrow 5, and consequently, also arrows 4 and 6, are

not reversible for general (non-Abelian) topological groups. Since G is locally compact, a theorem

of Veech [47, Theorem 2.2.1] implies that G is not extremely amenable as well.

For our next example, we shall need the following

Lemma 2.4.2. Each MinAP group topology on the integers Z is NSS.

Proof. Let τ be a MinAP group topology on Z. Suppose that (Z, τ) is not NSS. By Definition

2.1.3, every τ -open neighbourhood of 0 contains a non-trivial subgroup. Since τ is Hausdorff, we

can choose U ∈ τ such that 0 ∈ U and cl(Z,τ)(U) ̸= Z. Let N be a non-trivial subgroup of U . Then

K = cl(Z,τ)(N) is a τ -closed subgroup of Z contained in cl(Z,τ)(U), so K is a proper subgroup of Z

by our choice of U . Therefore, the quotient group Z/K is non-trivial. Since K is τ -closed, Z/K

is Hausdorff. Let q : (Z, τ) → Z/K be the quotient homomorphism. Since N is non-trivial, so is

K. Being a non-trivial subgroup of Z, K has a finite index in Z; that is, the quotient group Z/K

is finite. In particular, Z/K is compact. We conclude that q is a continuous homomorphism of

(Z, τ) onto a non-trivial compact group Z/K. By Definition 1.4.2(b), this means that (Z, τ) is not

MinAP, contradicting our assumption. This contradiction shows that (Z, τ) is NSS.

Example 2.4.3. There exists a MinAP group topology τ on the group of integers Z which is

not MinAP(NSS). Note that τ is both MinAP(Lie) and MinAP(Locally compact) by Corollary

2.3.6. Therefore, arrows 2, 3, 4 and 8 of Figure 2.1 are not reversible, even for Abelian groups.

Indeed, by the result Nienhuys [34], Z is known to admit a minimally almost periodic group

topology τ . The topology τ is NSS by Lemma 2.4.2. By Definition 2.1.1 (i), this implies that
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(Z, τ) is not MinAP(NSS), because the identity homomorphism of (Z, τ) is a non-trivial continuous

homomorphism onto itself, an NSS group.

Recall that a topological group G is said to be topologically simple if G does not contain non-

trivial proper closed normal subgroups.

The following fact is part of folklore.

Lemma 2.4.4. If f : G→ H is a non-trivial continuous homomorphism from a topologically simple

group G to a topological group H, then the kernel ker(f) = {x ∈ G : f(x) = e} of f is trivial; that

is, f is a monomorphism.

Proof. Since f is non-trivial, the kernel ker(f) = {x ∈ G : f(x) = e} of f is a proper subgroup of

G. Since f is continuous, ker(f) is a closed normal subgroup of G. Since G is topologically simple,

we conclude that ker(f) = {e}.

Lemma 2.4.5. Let G be a topologically simple group which is not NSS. Then G is MinAP(NSS).

Proof. Assume that G is not MinAP(NSS). By Definition 2.1.1(i), there exists a non-trivial con-

tinuous homomorphism f : G → H from G to some NSS topological group H. Then ker(f) = {e}

by Lemma 2.4.4. Since H is NSS, there exists an open neighbourhood U of the identity of H

containing no non-trivial subgroups of H. Since ker(f) = {e} and f is continuous, the preimage

f−1[U ] of U is an open neighbourhood of G containing no non-trivial subgroups of G. By Definition

2.1.3, this means that G is NSS, in contradiction with our assumption.

The following is example makes use of a construction of Willis [48]:

Example 2.4.6. There exists a locally compact group G which is MinAP(NSS). As a consequence,

the MinAP(NSS) property does not imply MinAP(Locally compact). In particular, arrow 1 of Figure

2.1 is not reversible.

Consider the topological group G constructed by Willis in [48, Section 3]. This group is non-

discrete, locally compact, topologically simple and totally disconnected. Since G is locally com-

pact and totally disconnected, a classical result of van Dantzig shows that its open subgroups

form a neighbourhood basis of the identity. Since G is non-discrete, this implies that it is not

NSS. Therefore, G satisfies the hypotheses of Lemma 2.4.5 from which we deduce that G is
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MinAP(NSS). Since G is locally compact, the identity homomorphism is a non-trivial continuous

homomorphism to itself, a locally compact group. By Definition 2.1.1(i), this shows that G is not

MinAP(Locally compact).

Let X be the set. We denote by S(X) the group of all bijections from X onto X with the

composition of maps as the group operation. Recall that S(X) is called the symmetric group of X.

We endow S(X) with the pointwise convergence topology, i.e. the topology S(X) inherits from the

Tychonoff product XX when X is equipped with the discrete topology.

Corollary 2.4.7. For every infinite set X, the symmetric group S(X) is MinAP(NSS).

Proof. Indeed, S(X) is known to be topologically simple [9, Proposition 7.2.1(b)]. Since X is

infinite, every open neighbourhood of the identity of S(X) contains a non-trivial subgroup. In

particular, S(X) is not NSS. Now the conclusion follows from Lemma 2.4.5.

The following example is due to Shakhmatov.

Example 2.4.8 (Shakhmatov). Let G be the symmetric group S(N) of the natural numbers N

equipped with the topology of pointwise convergence. Then G is a Polish group which is both

MinAP(Locally compact) and MinAP(NSS), but G does not admit an SSGP(∞) group topology.

Therefore, arrow 9 of Figure 2.1 is not reversible. Indeed, according to [16, Example 5.4 (ii)], G

does not admit an SSGP(∞) group topology. Furthermore, G is MinAP(NSS) by Corollary 2.4.7.

So it remains only to show that G is MinAP(Locally compact). By contradiction, assume that G is

not MinAP(Locally compact). By Definition 2.1.1(i), there exists a non-trivial continuous homo-

morphism f : G→ H from G to some locally compact group H. Note that f is a monomorphism by

Lemma 2.4.4. Since H is Hausdorff and the topology of pointwise convergence on G is the weakest

Hausdorff group topology on G by [22, Theorem 2], it follows that f is a topological isomorphism

between G and f [G]. Since G is complete, so is the subgroup f [G] of H. Since a complete group

is closed in every bigger (Hausdorff) group, f [G] must be closed in H. Since H is locally compact,

so is f [G]. Since f is a topological isomorphism between G and f [G], we conclude that G must

be locally compact as well. By a theorem of Gaughan [22, Theorem 3], a locally compact group

topology on the symmetric group S(N) must be discrete. Since G is non-discrete, this contradiction

finishes the proof that G is MinAP(Locally compact).
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2.5 The algebraic structure of Abelian MinAP(NSS) groups

In the next result we give a full description of the algebraic structure of Abelian MinAP(NSS)

groups.

Corollary 2.5.1. An Abelian group G admits a MinAP(NSS) group topology if and only if one of

the following two conditions holds:

(i) G is of infinite divisible rank, or

(ii) the quotient H = G/t(G) of G by its torsion part t(G) has finite free rank r0(H) and

r(H/A) = ω for some (equivalently, every) free subgroup A of H such that H/A is torsion.

Proof. To prove the “if” part, assume that G satisfies either (i) or (ii). From the implication

(c)→(b) of Theorem 4.1.1, G admits an SSGP(α) group topology for some ordinal α. This topology

is SSGP(∞) by Definition 2.3.1, and so MinAP(NSS) by Corollary 2.3.8.

To prove the “only if” part, assume that G admits a MinAP(NSS) group topology. By Corollary

2.3.8 and Definition 2.3.1, this topology is SSGP(α) for some ordinal α. Applying the implication

(b)→(c) of Theorem 4.1.1, we conclude that G satisfies either (i) or (ii).

From the equivalence of items (a) and (c) of Theorem 4.1.1 and Corollary 2.5.1 we get the

following

Corollary 2.5.2. An Abelian group admits a MinAP(NSS) group topology if and only if it admits

an SSGP group topology.

This corollary can be used to find numerous examples of Abelian minimally almost periodic

groups which cannot admit MinAP(NSS) group topologies. Indeed, by this result it is now enough

to focus on MinAP groups which cannot admit SSGP group topologies. The author recommends

the reader to check [4, 16, 25] for numerous examples. We highlight the following example, as it

shows the existence of extremely amenable groups which do not admit a group topology with the

MinAP(NSS) property:

Example 2.5.3. No finite power of the integers Z admits a MinAP(NSS) group topology. Indeed,

by [4, Corollary 3.14] no finite power of the integers admits an SSGP group topology, so they may
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not admit a MinAP(NSS) group topology by Corollary 2.5.2. On the other hand, it is well-known

that Z can be equipped with an extremely amenable group topology [23, Theorem 1.1].

We note that this example strengthens Example 2.4.3.

Remark 2.5.4. It follows from Corollary 2.3.6 that the algebraic structures of Abelian MinAP(Lie)

groups and Abelian MinAP(Locally compact) groups are the same and coincide with the algebraic

structure of Abelian MinAP groups. The latter is fully described in [11].

Remark 2.5.5. In 2019, Shakhmatov and the author [43] proved that a non-Abelian free group of

infinite rank admits a group topology with the property of DW (see Chapter 5). To the knowledge

of the author, this provides first examples of non-Abelian DW groups which are not obtained by

means of Dierolf-Warken’s construction.

2.6 NSS groups and the SG operator

In this section we recall the concept of the SG operator introduced in [16]. For a subgroup H of

a group G we denote by NG(H) the largest normal subgroup of G which is contained in H (this

is often referred to as the heart of H in G). Observe that NG(H) is closed whenever H is closed,

as the closure of a normal subgroup of G is also normal in G. Finally, if X ⊆ G is now a subset

of a topological group G, then we denote by CsG(X) the smallest closed subgroup of G containing

X. Since the closure of a subgroup of a given topological group is also a subgroup of it, we can

describe CsG as

CsG(X) = clG(⟨X⟩) (2.1)

for every subset X ⊆ G. We begin with the definition of the operator SG.

Definition 2.6.1 ([16, Section 2]). Let G be a topological group. We define the operator SG :

P(G) → P(G) as the composition SG = NG ◦ CsG ◦ CycG. That is, for every subset X ⊆ G the

operator SG assigns the subset

SG(X) = NG ◦ CsG ◦ CycG(X). (2.2)

Observe that for every X ⊆ G the result of the operator SG(X) is always a closed normal
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subgroup of G. In the case of an Abelian group, however, every subgroup is normal. This implies

that the operator NG is simply the identity function when it is restricted to the set of all subgroups

of G.

Remark 2.6.2. If G is an Abelian topological group, then the equality SG = CsG ◦CycG holds, so

SG(X) = clG(⟨Cyc(X)⟩) for every X ⊆ G. (2.3)

The relationship between NSS groups the SG operator becomes clear from the following:

Proposition 2.6.3. Let G be a topological group. Consider the following properties:

(i) G is an NSS group,

(ii) CycG(U) = {eG} for some open neighbourhood of the identity U of G, and

(iii) SG(U) = {eG} for some open neighbourhood of the identity U of G.

Then (i) =⇒ (ii) =⇒ (iii). If we assume G to be Abelian, then all three properties are equivalent.

Proof. Implications (i) through (iii) were proven implicitly in [16, Proposition 5.3 (i)].

We now focus on proving the implication (iii) =⇒ (i) for an Abelian group G. Let U be an

open neighbourhood of 0 of an Abelian group G satisfying SG(U) = {0}.

Claim 1. If h ∈ G and ⟨h⟩ ⊆ U , then h = 0.

Proof. Note that h ∈ CycG(U) by our assumption and (1.2). Since the group G is Abelian, we can

use (2.3) to conclude that

h ∈ CycG(U) ⊆ clG(⟨CycG(U)⟩) = SG(U). (2.4)

Since SG(U) = {0} holds by hypothesis, we deduce that h = 0.

It easily follows from Claim 1 that U does not contain non-trivial subgroups of G, so G is NSS

by Definition 2.1.3.
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Remark 2.6.4. As an observation, we point out that the hypothesis of G being Abelian is only

used to perform the step outlined in (2.4). Indeed, if the group G is not Abelian, then the cyclic

subgroup ⟨h⟩ may fail to be normal. If ⟨h⟩ is not normal, then it may not necessarily be a subset

of SG(U) as per (2.2) (the additional operation NG(U) now plays a non-trivial role).

We shall need the following result about the relation of the SG operator and topological quo-

tients.

Lemma 2.6.5 ([16, Lemma 4.9](ii)). Let H be a quotient of a topological group G. Let q : G→ H

be the corresponding quotient mapping. The equality

SG(q
−1(Y )) = q−1(SH(Y )) (2.5)

holds for every subset Y of H satisfying eH ∈ Y .

2.7 Transfinite iterations of the SG operator

One important detail to observe is that the operator SG is idempotent; that is, the equality

SG(SG(X)) = X holds for every X ⊆ G [16, Lemma 4.1]. Therefore, if one wishes to iterate

the operator SG, one needs to take an alternative approach described in [16, Section 2].

For every ordinal α, the α-th iteration S
(α)
G of SG is defined as follows. Let

S
(0)
G (X) = {eG} for every X ⊆ G. (2.6)

If α > 0 is an ordinal and S
(β)
G has already been defined for all β < α, then we let

S
(α)
G (X) = SG(X ·

∪
β<α

S
(β)
G (X)) for every X ⊆ G. (2.7)

From (2.6) and (2.7) one can see that

S
(1)
G (X) = SG(X) for every X ⊆ G. (2.8)

Here we make great emphasis on the use of the brackets (α) to indicate the α-th iteration of
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SG. This is done deliberately to differentiate these operations from the usual function composition.

As a helpful term we shall use the following.

Definition 2.7.1. Let G be a topological group. If X ⊆ G is a subset of G and α is an ordinal,

then we shall say that the operator SG stabilizes X in α if the equality S
(α)
G (X) = S

(δ)
G (X) holds

for every δ > α.

One of the key properties held by the operator S
(α)
G is its monotonicity:

Lemma 2.7.2 ([16, Lemma 4.8 (ii)]). Let X be a subset of a topological group G. If β and α are

ordinals satisfying β < α, then the inclusion S
(β)
G (X) ⊆ S

(α)
G (X) holds.

For a cardinal κ we denote by κ+ its cardinal successor. We shall make use of the following

observation from elementary Set Theory:

Lemma 2.7.3. Let X be a set. Suppose that for every ordinal α we have a subset Yα of X. If

Yβ ⊆ Yγ holds whenever β ≤ γ, then there exists some ordinal δ < |X|+ such that Yβ = Yδ for all

β > δ.

Lemma 2.7.4. Let G be a topological group. For every subset X of G the operator SG stabilizes

X in |G|+.

Proof. Let X ⊆ G be arbitrary. We use Lemma 2.7.2 to see that S(β)
G (X) ⊆ S

(α)
G (X) holds whenever

the ordinals β and α satisfy β ≤ α. We then use Lemma 2.7.3 (setting Yα = S
(α)
G (X)) to find some

ordinal δ < |X|+ such that S
(β)
G (X) = S

(δ)
G (X) holds for every β > δ. Finally, observe that the

inequalities δ < |X|+ ≤ |G|+ hold. This implies that SG stabilizes X in |G|+ by Definition 2.7.1.

Since the subset X of G was arbitrary, this concludes the proof of our lemma.

Lemma 2.7.5. Let G be a topological group. If H is an open subgroup of G then S
(α)
G (H) ⊆ H for

every ordinal α.

Proof. We shall prove this by induction on α. Since H is an open subgroup of G, then it is also

closed in G. Observe the following: if H is a closed subgroup of G then SH(H) = NG(H) ⊆ H is

satisfied by (2.2). We finally apply (2.6) and (2.7) to verify that

S
(0)
G (H) = {eG} ⊆ S

(1)
G (H) = SH(H) ⊆ H. (2.9)
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As our induction hypothesis, let us assume that

S
(β)
G (H) ⊆ H

holds for every ordinal β < α. Our goal is to show that S
(α)
G (H) ⊆ H holds.

Claim 2. The following inclusion is satisfied:

H ·
∪
β<α

S
(β)
G (H) ⊆ H. (2.10)

Proof. By our induction hypothesis, S(β)
G (H) ⊆ H for every β < α. This shows that

∪
β<α

S
(β)
G (H) ⊆ H.

Since H is a subgroup of G, the above equation and (1.1) imply our desired conclusion:

H ·
∪
β<α

S
(β)
G (H) ⊆ H ·H ⊆ H.

Claim 3. The inclusion S
(α)
G (H) ⊆ H holds.

Proof. If we apply Lemma 2.7.2(ii) (with respect to S
(1)
G ) to (2.10), then we have

S
(1)
G (H ·

∪
β<α

S
(β)
G (H)) ⊆ S

(1)
G (H). (2.11)

By (2.6), we can replace S
(1)
G with SG in (2.11). We then use (2.7) and (2.9) to deduce that

S
(α)
G (H) = SG(H ·

∪
β<α

S
(β)
G (H)) ⊆ SG(H) ⊆ H.

Claim 3 shows that the induction step is satisfied, concluding our induction. We have thus
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shown that the inclusion S
(α)
G (H) ⊆ H holds for every ordinal α, as desired.

2.8 Proof of theorem 2.3.7

Lemma 2.8.1. Suppose that U is a subset of a topological group G containing its identity eG, α is

an ordinal, H = G/S
(α)
G (U) is the quotient group of G and q : G→ H is the corresponding quotient

map. If the operator SG stabilizes U in α, then SH(V ) = {eH}, where V = q[U ].

Proof. Since V is a subset of H satisfying eH ∈ V , we apply Lemma 2.6.5 to deduce the equality

SG(q
−1(V )) = q−1(SH(V )). (2.12)

Since q is a homomorphism with the kernel S(α)
G (U), we have

q−1(V ) = q−1(q[U ]) = U · S(α)
G (U),

so

SG(q
−1(V )) = SG(U · S(α)

G (U)). (2.13)

We now apply Lemma 2.7.2 for every ordinal γ < α to obtain the equality

S
(α)
G (U) =

∪
γ<α+1

S
(γ)
G (U). (2.14)

We then apply (2.14) to the right-hand side of (2.13) to see that

SG(U · S(α)
G (U)) = SG

U ·
∪

γ<α+1

S
(γ)
G (U)

 = S
(α+1)
G (U) (2.15)

holds by (2.7). Since the operator SG stabilizes U in α by our hypothesis, Definition 2.7.1 implies

that the equality

S
(α)
G (U) = S

(α+1)
G (U) (2.16)
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holds. We then combine (2.12),(2.13),(2.15) and (2.16) to obtain the equality

q−1(SH(V )) = S
(α)
G (U).

Since the mapping q is surjective, we apply it to both sides of the above equation to get

SH(V ) = q[q−1(SH(V ))] = q[S
(α)
G (U)] = {eH}.

This finishes the proof.

Corollary 2.8.2. Suppose that U is an open neighbourhood of 0 of an Abelian topological group

G such that the operator SG stabilizes U in α for some ordinal α. Then the quotient group

H = G/S
(α)
G (U) is NSS.

Proof. Denote by q : G→ H the quotient mapping from G to H. Since q is open, the set V = q[U ]

is an open neighbourhood of 0 of H. By Lemma 2.8.1, SH(V ) = {0} holds. Since the group H is

Abelian, we can apply the implication (iii)→(i) of Proposition 2.6.3 to conclude that H is NSS.

Proof of Theorem 2.3.7: Let G be an Abelian MinAP(NSS) group. Our goal is to prove that G

is SSGP(|G|+). By Definition 1.5.8, to show this, it suffices to check the following

Claim 4. S
(|G|+)
G (U) = G for every open neighbourhood U of 0 of G.

Proof. By Lemma 2.7.4, the operator SG stabilizes U in |G|+. Since the group G is Abelian, we

can apply Corollary 2.8.2 to deduce that the quotient group H = G/S
(|G|+)
G (U) of G is NSS. Let

q : G → H be the (continuous) quotient homomorphism. Since G is MinAP(NSS) by hypothesis

and H is an NSS group, q is trivial by Definition 2.1.1 (i). Therefore, S(|G|+)
G (U) = ker(q) = G.

2.9 Proof of Theorem 2.3.3

The following proposition is an improvement of [16, Example 5.4(b)] closely resembling a classical

folklore fact that every Abelian MinAP topological group has no proper open subgroup. However,

the strengthening of minimal almost periodicity to the SSGP(∞) property allows one to remove the

hypothesis on the group being Abelian.
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Proposition 2.9.1. If H is an SSGP(∞) subgroup of a topological group G, then H is contained

in every open subgroup of G.

Proof. Assume that G′ is an open subgroup of G. Our goal is to show the inclusion H ⊆ G′. Since

H is SSGP(∞) by our assumption, we can use Definition 2.3.1 to fix some ordinal α such that H

is SSGP(α). Since G′ is open in G, the intersection H ′ = G′ ∩ H is an open subgroup of H. In

particular, H ′ is an open neighbourhood of the identity of H. Since H is SSGP(α), we deduce from

Definition 1.5.8 that S
(α)
H (H ′) = H. Now H = S

(α)
H (H ′) ⊆ H ′ = G′ ∩ H by Lemma 2.7.5. This

establishes the inclusion H ⊆ G′.

Proof of Theorem 2.3.3: Let G be an SSGP(∞) group, and suppose that f : G → H is a

continuous homomorphism from G to a locally compact group H. Note that G is MinAP(NSS) by

Proposition 2.3.2, and in particular, G is MinAP by arrow 4 of Figure 2.1.

Claim 5. The image f [G] of G is contained in every open subgroup H ′ of H.

Proof. Indeed, assume that H ′ is an open subgroup of H. Then H ′ ∩ f [G] is an open subgroup of

f [G]. It follows from Definition 2.3.1 and [16, Theorem 5.2(i)] that every continuous homomorphic

image of an SSGP(∞) group is again an SSGP(∞) group. As f is a continuous homomorphism, f [G]

is an SSGP(∞) group. Since no SSGP(∞) group has a proper open subgroup by Proposition 2.9.1,

we conclude that H ′ ∩ f [G] = f [G] holds. This shows that f [G] ⊆ H ′.

Claim 6. There exists a compact subgroup N of H such that f [G] ⊆ N .

Proof. Recall that H is locally compact. By a theorem of Yamabe [49, Theorem 5’], there exists an

open subgroup H ′ of H and a normal (with respect to H ′) compact subgroup N of H ′ such that the

quotient H ′/N is a Lie group. Since H ′ is open in H, Claim 5 implies that f [G] ⊆ H ′. Therefore,

if q : H ′ → H ′/N denotes the quotient homomorphism, the composition f ◦ q : G → H ′/N is

well-defined. Since G is MinAP(NSS) and H ′/N is NSS (being a Lie group), the homomorphism

f ◦ q must be trivial by Definition 2.1.1(i). This implies the inclusion f [G] ⊆ ker(q) = N .

Claim 7. The homomorphism f : G→ H is trivial.

38



2.10. OPEN QUESTIONS

Proof. By Claim 6, there exists a compact subgroup N of H such that f [G] ⊆ N . So f can be

viewed as a continuous homomorphism from G to a compact group N . Since G is MinAP, the

homomorphism f must be trivial by Definition 1.4.2(b).

Since Claim 7 holds for every continuous homomorphism f : G → H from G to a locally

compact group H, we conclude from Definition 2.1.1(i) that G is MinAP(Locally compact).

2.10 Open questions

We finish this chapter with a list of open questions.

Question 2.10.1. Can one describe which (Abelian) MinAP(NSS) groups are also extremely

amenable?

Question 2.10.2. Can one find a class C of topological groups such that an Abelian topological

group is extremely amenable if and only if it is MinAP(C) for this class C?

Question 2.10.3. Can one find a suitable class C of topological groups such that a (Abelian)

topological group is DW (or SSGP) if and only if it is MinAP(C) for this class C?

Question 2.10.4. For a “reasonable” class C of topological groups, can one describe the (Abelian)

topological groups which belong to the class MinAP(C) (or MAP(C), respectively)?

Question 2.10.5. For a “reasonable” class C of topological groups, can one describe the algebraic

structure of the (Abelian) groups which admit a MinAP(C) (or a MAP(C)) group topology?

The last question can be viewed as a natural extension of Problem 1.4.10.
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Chapter 3

Precompact continuous homomorphic

images of topological groups

3.1 Introduction

The MinAP topological groups (Definition 1.4.2(b)) were introduced by von Neumann and Wigner

[33] with the idea to distinguish points via almost periodic functions. Obtaining examples of MinAP

topological groups is difficult, as one would require to check all possible continuous homomorphisms

to all possible compact groups. Due to this, providing a characterization of groups which can

admit a minimally almost periodic group topology became a major open problem in the theory of

topological groups.

In the realm of Abelian groups, the combination of results by Gabriyelyan [19] and Dikranjan-

Shakhmatov [11] provides a full description of the algebraic structure of groups that admit a

minimally almost periodic group topology. The former result focuses on the case of bounded groups,

while the latter is a solution of the famous Protasov-Comfort problem regarding all remaining

unbounded Abelian groups. These results were an important source of inspiration to the author,

particularly for understanding the relationship between a property of topological groups, and the

algebraic restrictions it demands for it to hold true.

The main motivation of the results in this chapter comes from attempting a very naïve modifi-

cation of Definition 1.4.2(b) summarized in the following question:
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Question 3.1.1. What are topological groups every continuous homomorphic image of which in a

compact group is finite?

This question naturally splits into two parts:

Question 3.1.2. (i) Does this modification of the MinAP property result in a new class of

topological groups?

(ii) If (i) has a positive answer, then how does this modification alter the algebraic restrictions

imposed by the MinAP property in Abelian groups?

We completely resolve both items of the above question in this chapter. Furthermore, we in-

troduce the following notion: A topological group is MinAP modulo a property P of topological

groups if every continuous homomorphic image of it in a compact group has property P. Topo-

logical groups from our naïve Question 3.1.1 are precisely MinAP modulo finite groups in this new

terminology. We compare simultaneously five similar naïve modifications of Definition 1.4.2(b):

MinAP modulo finite, modulo compact, modulo bounded, modulo torsion and modulo connected.

The chapter has been organized as follows. In Section 3.2, for a given property P of topological

groups, we introduce the notion of MinAP modulo P groups and study their basic properties.

In Section 3.3 we consider five concrete properties P: one set-theoretic (finite), two algebraic

(torsion and bounded torsion) and two topological (compact and connected). We outline the

relationships between these properties in Figure 3.1 and show that they are all distinct and differ

from the classical minimal almost periodicity (Examples 3.3.2 and 3.6.8).

In Section 3.4 we give a quick summary of the Bohr compactification and the von Neumann

kernel of a topological group, as well as the Bohr topology of a MAP group.

In Section 3.5 we interpret the categorical meaning of the Bohr compactification of a topological

group (Proposition 3.5.3 and Corollary 3.5.4) and clarify the role of the von Neumann kernel when

it is used in topological quotients. Specifically, we prove that the quotient group G/n(G) of a

topological group G with respect to its von Neumann kernel n(G) is the reflection of G in the

class of MAP groups, with the quotient map playing the role of the reflection homomorphism

(Proposition 3.5.5). Furthermore, we describe the Bohr topology of the MAP quotient group

G/n(G) by showing that this group equipped with its Bohr topology (denoted by (G/n(G))+) is
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topologically isomorphic to the image of G under the canonical map to the Bohr compactification

of G (Corollary 3.5.8).

In Section 3.6 we introduce our main result which states that if a property P of topological

groups is an invariant of surjective continuous homomorphisms, then a topological group G is

MinAP modulo P if and only if the image of G under the canonical mapping to its Bohr com-

pactification has property P (Theorem 3.6.1). Combining this with our results from Section 3.5,

we obtain a new version of Theorem 3.6.1 which is significantly easier to verify (Corollary 3.6.2).

As an application, we establish that a topological group G is MinAP modulo finite if and only if

the von Neumann kernel n(G) of G has finite index in G (Remark 3.6.6). This resolves item (i) of

Question 3.1.2. We close this section by showing a couple of examples.

In Section 3.7 we find a necessary condition for the MinAP modulo connected property to

coincide with standard minimal almost periodicity in Abelian groups. Specifically, we show that if

the 0-rank of an Abelian group is less than the cardinality of the continuum, then MinAP modulo

connected and MinAP properties coincide (see Theorem 3.7.5).

In Section 3.8 we prove that if an Abelian group G can be equipped with a MinAP modulo

connected group topology, then for every positive integer m ∈ N+ the subgroup mG of G is either

the trivial subgroup or has infinite cardinality. This condition becomes sufficient as well, as it

is one of the conditions appearing in Dikranjan and Shakhmatov’s description of Abelian groups

admitting minimally almost periodic group topologies (see Theorem 1.4.12). These results provide

some answers to Question in 3.10.1.

In Section 3.9 we deduce from the results of Gabriyelyan and Dikranjan-Shakhmatov on mini-

mally almost periodic topologizations of Abelian groups that every Abelian group is a direct sum

of a finite group and a group which admits a MinAP group topology (Theorem 3.9.5). It now

easily follows that, for every property P satisfied by all finite groups, every Abelian group admits

a MinAP modulo P group topology (Corollary 3.9.6). In particular, every Abelian group admits a

MinAP modulo finite group topology (Corollary 3.9.7). This implies a slightly more general result:

Every Abelian group G admits a group topology τ such that every continuous homomorphic image

of (G, τ) in a precompact group is finite (Corollary 3.9.8).

Coming back to Question 3.1.1, we see that the modification of the definition of minimal almost

periodicity proposed in this question becomes somewhat weak for Abelian groups, as it poses no
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restrictions on the algebraic structure. This resolves item (ii) of Question 3.1.2.

To finish this chapter, in Section 3.10 we propose some open questions.

3.2 MinAP modulo a property P of topological groups

We formulate a general concept inspired by Question 3.1.1.

Definition 3.2.1. Let P be a property of topological groups. We say that a topological group G

is MinAP modulo P (MinAP mod P) if for each continuous homomorphism f : G→ K from G to

a compact group K, the image f [G] of G considered as a subgroup of K has property P.

Remark 3.2.2. Clearly, when P is the property of being the trivial group, MinAP modulo P

groups are precisely the classical minimally almost periodic groups.

Recall that a topological group is precompact if and only if it is topologically isomorphic to a

subgroup of some compact group. The following remark is clear from this definition.

Remark 3.2.3. Let P be a property of topological groups.

(i) A topological group G is MinAP modulo P if and only if every continuous homomorphic

image of G in a precompact group has property P.

(ii) If a topological group G is MinAP modulo P and precompact, then G has property P.

(iii) If P is an invariant of surjective continuous homomorphisms, then every topological group

with property P is MinAP modulo P.

For our convenience, we shall use the following notation:

Definition 3.2.4. We shall say a property is P upwards hereditary provided that: for every Haus-

dorff space X and every pair of subspaces A,B ⊆ X, if the inclusion A ⊆ B ⊆ clX(A) holds and A

has property P, then B also has property P (here clX(A) denotes the closure of A in X.)

Proposition 3.2.5. Let P be a property of topological groups.

(i) If f : G → H is a surjective continuous homomorphism from a MinAP modulo P group G

onto a topological group H, then H is MinAP modulo P.
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(ii) Let H be a topological group having a dense MinAP modulo P subgroup. If P is upwards

hereditary, then H is MinAP modulo P.

Proof. (i) Follows in fairly straightforward fashion.

(ii) Let f : H → K be a continuous homomorphism from H to a compact group K. Since G is

a subgroup of H, the restriction mapping f ↾G: G→ K is a continuous homomorphism from G to

K. Since G is MinAP modulo P, the image f [G] = f ↾G [G] ⊆ K has property P as a subgroup of

K. By continuity of f , the following inclusion holds:

f [G] ⊆ f [H] = f [clH(G)] ⊆ clK(f [G]).

Since P is upwards hereditary by hypothesis, Definition 3.2.4 implies that f [H] itself has property

P. Since f : H → K was an arbitrary homomorphism from H to K, we conclude that H satisfies

all conditions of Definition 3.2.1, and is therefore MinAP modulo P.

Proposition 3.2.6. Let P be a property of topological groups invariant under finite direct products

and surjective continuous homomorphisms. Then every finite direct product (equivalently, direct

sum) of MinAP modulo P groups is MinAP modulo P.

Proof. The conclusion of our proposition would easily follow by induction provided we can prove

that it holds for two factors.

Let G and H be MinAP mod P topological groups. Let f : G × H → K be an arbitrary

continuous homomorphism from G × H to some compact group K. It suffices to show that the

image f [G×H] has property P.

Let φ : G×H → K ×K be the homomorphism defined by

φ(x, y) = (f(x, e), f(e, y)) for (x, y) ∈ G×H. (3.1)

Since f is continuous, so is φ. Let us denote by m : K×K → K the product mapping of K defined

by m(x, y) = x · y for (x, y) ∈ K ×K.

Claim 8. The equality m ◦ φ = f holds.
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Proof. For every (x, y) ∈ G×H we have

m(φ(x, y)) = m((f(x, e), f(e, y))) = f(x, e) · f(e, y) = f(x, y),

as f is a homomorphism. This shows the equality m ◦ φ = f .

Claim 9. The restriction m ↾φ[G×H]: φ[G×H] → K of m to φ[G×H] is a homomorphism.

Proof. This follows from Claim 8 and the fact that both φ and f are homomorphisms.

Claim 10. φ[G×H] has property P.

Proof. Note that G is topologically isomorphic to M = G× {e} and H is topologically isomorphic

to N = {e} ×H. Since G and H are MinAP modulo P, so are M and N . Since f is a continuous

homomorphism, both f [M ] and f [N ] have property P by Definition 3.2.1. Since P is assumed

to be invariant under finite direct products, the product f [M ] × f [N ] has property P. Finally,

φ[G×H] = f [M ]× f [N ] by (3.1).

The mapping m is continuous, so Claim 9 implies m ↾φ[G×H] is a continuous homomorphism.

Since φ[G×H] has property P by Claim 10, and P is an invariant of surjective continuous homo-

morphisms, m ↾φ[G×H] [φ[G×H]] has property P. We now apply Claim 8 to deduce that

m ↾φ[G×H] [φ[G×H]] = m ◦ φ[G×H] = f [G×H].

We have shown that f [G×H] has property P, as desired.

3.3 Five properties P and the corresponding MinAP modulo P

groups

The following is clear from Definition 3.2.1.

Remark 3.3.1. If P and Q are properties of topological groups such that P implies Q, then

MinAP mod P → MinAP mod Q.
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In this chapter we shall focus on five properties P: finite, bounded torsion, torsion, compact

and connected. The corresponding five new properties MinAP modulo P are weaker than MinAP.

Indeed, from Remarks 3.2.2 and 3.3.1, we get the following diagram of implications:

MinAP MinAP mod finite MinAP mod compact

MinAP mod connected MinAP mod bounded MinAP mod torsion.

1

3

2

4

5

Figure 3.1: Diagram of implications

The following examples show that arrows 1,2,4 and 5 (in this order) are not reversible in general.

We shall also show arrow 3 is not reversible in Example 3.6.8.

Example 3.3.2. (i) The group Z(2) consisting of two elements (with discrete topology) is a finite

(so MinAP mod finite by Remark 3.2.3(iii)) Abelian group which is not MinAP mod connected.

Thus, arrow 1 is not reversible. Indeed, since Z(2) is precompact and not connected, it is not

MinAP mod connected by Remark 3.2.3(ii).

(ii) The circle group T is a compact (so MinAP mod compact by Remark 3.2.3(iii))) metric Abelian

group which is not MinAP mod torsion. Thus, arrow 2 is not reversible. Indeed, since T is

precompact and not torsion, it cannot be MinAP mod torsion by Remark 3.2.3(ii).

(iii) The Cantor cube Z(2)ω of countable weight is a Boolean (thus, bounded and so MinAP mod

bounded by Remark 3.2.3(iii)) compact metric group which is not MinAP mod finite. Thus,

arrow 4 is not reversible. Indeed, Z(2)ω is precompact and infinite, so it cannot be MinAP

mod finite by Remark 3.2.3(ii).

(iv) For a prime number p, the Prüfer group Z(p∞) equipped with the topology inherited from the

circle group T is a countable precompact metric torsion (thus, MinAP mod torsion by Remark

3.2.3(iii)) Abelian group which is neither MinAP mod compact nor MinAP mod bounded.

Thus, arrow 5 is not reversible. Indeed, since the precompact group Z(p∞) is neither compact

nor bounded, Remark 3.2.3(ii) implies that it is neither MinAP mod compact nor MinAP

mod bounded.

Remark 3.3.3. It is worth noting that some of the arrows in Figure 1 are reversible under certain

algebraic conditions:
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(i) Arrow 3 is reversible for torsion Abelian groups. Indeed, let us take an Abelian torsion

topological group G, and assume that G is MinAP mod connected. Suppose that G is not

MinAP. By Definition 1.4.2(b), there exists a non-trivial homomorphism f : G → K from

G to a compact group K. Since G is Abelian, so are both f [G] and N = clX(f [G]). Fix

x ∈ G such that f(x) ̸= 0. As N is a closed subgroup of a compact group K, it is compact as

well. By the Peter-Weyl theorem, there exists a continuous character χ : N → T such that

χ(f(x)) ̸= 0. Therefore, h = χ ◦ f : G → T is a continuous homomorphism from G to the

compact group T. Since G is MinAP mod connected, h[G] is a connected subgroup of T by

Definition 3.2.1. Since G is torsion, so is h[G]. Since T does not contain non-trivial connected

torsion subgroups, h[G] must be trivial. This contradicts the fact that 0 ̸= h(x) ∈ h[G].

(ii) Arrow 5 is reversible for bounded groups. Indeed, every homomorphic image of a bounded

group is again a bounded group.

The next two propositions list basic properties of five new classes from Figure 1.

Proposition 3.3.4. Let P be any of the five properties: finite, bounded torsion, torsion, compact

and connected. Then:

(i) the corresponding property MinAP modulo P is preserved by taking finite direct products, and

(ii) every topological group with property P is MinAP modulo P.

Proof. Note that P is invariant under taking finite direct products and surjective continuous

homomorphisms, so item (i) follows from Proposition 3.2.6 and item (ii) follows from Remark

3.2.3(iii).

Proposition 3.3.5. Let P be one of the four properties: finite, bounded torsion, compact and

connected. Then the property MinAP modulo P is upwards hereditary.

Proof. Indeed, the property P is upwards hereditary, so the conclusion follows from Proposition

3.2.5(ii).
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3.4 The Bohr compactification and the von Neumann kernel

All facts in this section (with the possible exception of Proposition 3.4.6), are either well known or

part of folklore.

Definition 3.4.1. For every topological group G, there exists a compact group bG along with a

continuous homomorphism bG : G→ bG having the following two properties:

(i) bG[G] is dense in bG, and

(ii) for each continuous homomorphism f : G→ K from G to a compact group K, there exists a

continuous homomorphism f+ : bG→ K satisfying the equality f = f+ ◦ bG.

The group bG is called a Bohr compactification of G with respect to bG.

The existence of a Bohr compactification is a well-known fact of topological group theory. The

next remark asserts the uniqueness of such compactification, thereby allowing one to speak about

the Bohr compactification.

Remark 3.4.2. The Bohr compactification of a topological group G is unique up to an isomor-

phism; that is, if bG and b′G are Bohr compactifications of G with respect to bG and b′G, respectively,

then there exists a topological isomorphism π : bG→ b′G between bG and b′G such that b′G = π◦bG.

Definition 3.4.3. If bG is the Bohr compactification of a topological group G with respect to a

homomorphism bG, then n(G) = ker(bG) is called the von Neumann kernel of G.

It follows from Remark 3.4.2, Definition 3.4.3 and the existence of the Bohr compactification,

that n(G) is a well-defined normal subgroup of a topological group G.

Definition 3.4.4. For a topological group G, we denote by qG : G → G/n(G) the quotient

homomorphism from G to its quotient group G/n(G).

Remark 3.4.5. Being a quotient homomorphism, the map qG is continuous, open and surjective

(see [1, Theorem 1.5.11]).

The von Neumann kernel has been an important object of study in the literature of MinAP and

MAP topological groups. The following proposition shows that the quotient of a topological group

with respect to its von Neumann kernel satisfies a universal property for MAP groups.
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Proposition 3.4.6. Let G be a topological group. For each continuous homomorphism f : G→ H

from G to a MAP group H there exists a continuous homomorphism f− : G/n(G) → H satisfying

the equality f = f− ◦ qG.

Proof. Let f : G→ H be a continuous homomorphism from G to a MAP group H.

Claim 11. The inclusion n(G) ⊆ ker(f) holds.

Proof. By contradiction, suppose that n(G) \ ker(f) ̸= ∅. Let us fix some x ∈ n(G) \ ker(f). Since

H is a MAP group, Definition 1.4.2 implies that there exists a compact group K and a continuous

homomorphism g : H → K such that g(f(x)) ̸= e. The composition g ◦ f : G→ K is a continuous

homomorphism from G to the compact group K. By condition (ii) of Definition 3.4.1 there exists

a continuous homomorphism (g ◦ f)+ : bG → K satisfying g ◦ f = (g ◦ f)+ ◦ bG. Since x ∈ n(G),

Definition 3.4.3 implies that

g ◦ f(x) = ((g ◦ f)+ ◦ bG)(x) = (g ◦ f)+(e) = e.

This is in contradiction with g(f(x)) ̸= e. This shows the inclusion n(G) ⊆ ker(f).

By Remark 3.4.5, qG is an open surjective mapping onto the quotient G/n(G). Therefore, Claim

11 and [1, Corollary 1.5.11] imply that there exists a continuous homomorphism f− : G/n(G) → H

from G/n(G) to H such that f = f− ◦ qG holds, as desired.

Recall that a homomorphism with the trivial kernel is called a monomorphism.

Corollary 3.4.7. For every topological group G there exists a continuous monomorphism ιG :

G/n(G) → bG such that

bG = ιG ◦ qG. (3.2)

Proof. Since bG is a compact group, it is MAP. Applying Proposition 3.4.6 to H = bG and

f = bG, we can find a homomorphism ιG : G/n(G) → bG satisfying condition (3.2). It follows from

condition (3.2), Definition 3.4.3 and Definition 3.4.4 that ker(ιG) ⊆ qG(ker(bG)) = qG(n(G)) = {e}.

Therefore, qG has the trivial kernel and thus is a monomorphism.

Corollary 3.4.8. G/n(G) is MAP for a every topological group G.
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Proof. Let ιG be a continuous monomorphism from the conclusion of Corollary 3.4.7. Clearly,

ιG separates the points of G/n(G). Since bG is compact by Definition 3.4.1, G/n(G) is MAP by

Definition 1.4.2(a).

In Section 3.5 we shall see that a monomorphism ιG obtained in Corollary 3.4.7 plays a very

important role in characterizing the Bohr topology of the quotient G/n(G).

The following well-known proposition establishes the direct connection between the von Neu-

mann kernel and the notions of MAP and MinAP.

Proposition 3.4.9. A topological G group is:

(i) maximally almost periodic (MAP) if and only if n(G) = {e};

(ii) minimally almost periodic (MinAP) if and only if n(G) = G.

Proof. (i) If n(G) = {e}, then G/n(G) ≃ G is MAP by Corollary 3.4.8.

For the converse, let us assume that G is MAP. The identity mapping idG : G → G is

a continuous homomorphism from G to a MAP group G. By Proposition 3.4.6 there exists a

continuous homomorphism id−G : G/n(G) → G satisfying idG = id−G ◦ qG. From this equality we

deduce that qG is injective, and therefore {e} = ker(qG) = n(G) holds by Definition 3.4.4.

(ii) Assume that n(G) = G. Let f : G→ K be a continuous homomorphism fromG to a compact

group K. Since K is MAP, we may apply Proposition 3.4.6 to find a continuous homomorphism

f− : G/n(G) → K satisfying f = f− ◦ qG. Since ker(qG) = n(G) = G by Definition 3.4.4, the

previous equality implies that G ⊆ ker(f). We deduce that f is the trivial homomorphism. Since

the group K and the homomorphism f : G → K were arbitrary, it follows that G is MinAP by

Definition 1.4.2(b).

For the converse, assume that G is MinAP. Since bG is compact, the continuous homomorphism

bG : G→ bG is trivial. This shows G = ker(bG) = n(G) as desired.

Since n(G) = ker(bG) by Definition 3.4.3, the above proposition has an equivalent form in terms

of the universal mapping bG to the Bohr compactification bG:

Remark 3.4.10. A topological G group is:

(i) maximally almost periodic (MAP) if and only if bG is a monomorphism;
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(ii) minimally almost periodic (MinAP) if and only if bG is the trivial map.

When a topological group G is MAP, item (i) of the above remark implies that bG is a monomor-

phism. As such, G is algebraically isomorphic to the subgroup bG[G] of its Bohr compactification

bG. Therefore, one can identify G with the subgroup bG[G] of bG, thereby making possible the

following definition (see [5]):

Definition 3.4.11. Let G be a MAP group. The group topology

τ+ = {b−1
G (U) : U is open in bG}

on G is known as the Bohr topology of G, and the pair (G, τ+) is usually denoted by G+.

It easily follows from Remark 3.4.2 that the Bohr topology of a MAP group G is well defined

and the identity map idG : G→ G+ is continuous.

The following is clear from the above definition.

Remark 3.4.12. For a MAP topological group G the group G+ is isomorphic to the image bG[G]

of G under the associated mapping bG : G→ bG to its Bohr compactification bG.

3.5 Universality through categorical reflection

Throughout Section 3.4 we encountered two distinct types of universal objects for topological

groups. One of them is the Bohr compactification (Definition 3.4.1) which satisfies universality

with respect to compact groups. The other is the quotient of a topological group with respect to

its von Neumann kernel which is universal with respect to MAP groups (Proposition 3.4.6). In this

section we give the appropriate categorical interpretation of the universality of these two objects.

In order to do this, we need to recall the following folklore terminology cited from [38, Definition

9.1], with some simplifications.

Definition 3.5.1. (i) For a class C of topological groups we denote by C̄ the smallest (with

respect to inclusion) class of topological groups containing C which is closed under taking

arbitrary products and subgroups.

52



3.5. UNIVERSALITY THROUGH CATEGORICAL REFLECTION

(ii) Given a topological group G and a class C of topological groups, a topological group r(G) ∈ C̄

is called a reflection of G in C provided that there exists a continuous homomorphism r : G→

r(G) (called a reflection homomorphism) satisfying the following condition: For every H ∈ C

and each continuous homomorphism ϕ : G → H one can find a continuous homomorphism

ψ : r(G) → H such that ϕ = ψ ◦ r.

Both the existence and uniqueness of the reflection is well known:

Proposition 3.5.2 ([38, Proposition 9.2]). For every topological group G and each class C of

topological groups, the reflection r(G) of G in C exists and is unique up to a topological isomorphism.

The following folklore proposition relates the Bohr compactification of a topological group to

its precompact reflection:

Proposition 3.5.3. For every topological group G, the image bG[G] under bG is the reflection of G

in the class of precompact groups, and the reflection homomorphism coincides with the associated

map bG : G→ bG[G] ⊆ bG from G to its Bohr compactification bG.

Proof. The group bG[G] is precompact, by virtue of being a subgroup of the compact group bG.

Let f : G → H be a continuous homomorphism from G to a precompact group H. Let

K be a compact topological group containing H as a subgroup. By universality of the Bohr

compactification of G (condition (ii) of Definition 3.4.1), there exists a continuous homomorphism

f+ : bG → K from bG to K satisfying f = f+ ◦ bG. The previous equality implies that the range

of f+ is contained in H. Consider the mapping f ′ = f+ ↾bG[G]: bG[G] → H. By construction

f = f+ ◦ bG = f+ ↾bG[G] ◦bG = f ′ ◦ bG.

By condition (ii) of Definition 3.5.1, bG[G] is the reflection of G in the class of precompact groups,

with its associated reflection mapping bG : G→ bG[G].

Recall that a topological group G is complete (in the sense of Weil) if every left Cauchy net

converges in G. Basic results about completeness can be consulted in [1, Section 3.6] and [8,

Sections 6.2 and 7].
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Corollary 3.5.4. For every topological group G, the Bohr compactification of G coincides with

the Weil completion of its reflection in the class of precompact groups. The associated universal

mapping coincides with the reflection mapping.

Proof. Denote by H the reflection of G in the class of precompact groups and denote by r : G→ H

the associated reflection mapping. It suffices to prove that the Weil completion cH of H is the

Bohr compactification of G with r as its associated mapping.

Claim 12. The group cH is compact.

Proof. Since the group H is precompact, we may assume that it is a subgroup of some compact

group K. Every compact group is Weil complete [8, Lemma 7.2.6], so the Weil completion cH of H

is contained in K. Since every Weil complete subgroup of K is closed (see [8, Proposition 6.2.7]),

this shows that cH is a compact group.

Claim 13. The reflection map r : G→ H ⊆ cH satisfies all conditions of Definition 3.4.1.

Proof. Since r(G) = H is dense in its completion cH, item (i) of Definition 3.4.1 holds.

Let us check item (ii). Let f : G→ K be a continuous homomorphism to a compact group K.

Since K is precompact and H = r(G) is the precompact reflection of G, it follows from condition

(ii) of Definition 3.5.1 that there exists a continuous homomorphism f̂ : H → K satisfying f = f̂ ◦r.

Since K is compact, it is Weil complete [8, Lemma 7.2.6]. Therefore, [8, Theorem 6.2.4] allows

us to find a continuous homomorphism φ : cH → cK = K between the completions of H and K

respectively, satisfying f̂ = φ ↾H . This implies that φ ◦ r = φ ↾H ◦r = f̂ ◦ r = f . This equality

shows that r satisfies condition (ii) of Definition 3.4.1 for the group cH.

By Claims 12 and 13 we conclude that cH together with the mapping r : G → cH satisfies all

conditions of Definition 3.4.1, as desired.

In Proposition 3.4.6 we established that, for any topological group G, the quotient G/n(G)

features some universality with respect to the class of MAP topological groups. The following

proposition interprets this universality in categorical terms.
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Proposition 3.5.5. For every topological group G, its quotient group G/n(G) is the reflection of

G in the class of MAP topological groups, with the quotient map qG : G→ G/n(G) playing the role

of the reflection homomorphism.

Proof. The reflection of G in the class of MAP groups is unique up to isomorphism by Proposition

3.5.2. It then suffices to verify the conditions of Definition 3.5.1 for the group G/n(G) and the

mapping qG. The group G/n(G) is MAP by Corollary 3.4.8. Finally, Proposition 3.4.6 shows that

the map qG satisfies condition (ii) of Definition 3.5.1 with the group G/n(G), thereby acting as the

reflection map for G in the class of MAP groups.

We are now ready to state the main result of this section.

Theorem 3.5.6. For a topological group G, the subgroup bG[G] of its Bohr compactification bG is

the precompact reflection of the quotient G/n(G), with a monomorphism ιG : G/n(G) → bG from

Corollary 3.4.7 as the associated reflection homomorphism.

Proof. Since a map ιG satisfies condition (3.2), we have ιG[G/n(G)] = bG[G]. The group bG[G] is

precompact, so it now suffices to show that ιG serves as the associated reflection mapping to the

class of precompact groups. Let f : G/n(G) → H be a continuous homomorphism to a precompact

group H. Since H is precompact, it is a subgroup of some compact group K. Since f ◦ qG : G→ K

is a continuous homomorphism from G to K, by condition (ii) of Definition 3.4.1 we can find a

homomorphism (f ◦ qG)+ : bG → K satisfying f ◦ qG = (f ◦ qG)+ ◦ bG. From condition (3.2) we

have

f ◦ qG = (f ◦ qG)+ ◦ bG = (f ◦ qG)+ ◦ ιG ◦ qG.

Since qG is surjective, we obtain that

f = (f ◦ qG)+ ◦ ιG.

This shows that bG[G] together with the mapping ιG satisfies condition (ii) of Definition 3.5.1 for

the class of precompact groups. Our conclusion now follows from the uniqueness of the precompact

reflection of G (Proposition 3.5.2).
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Corollary 3.5.7. For every topological group G, the group bG is the Bohr compactification of

G/n(G) with a monomorphism ιG from Corollary 3.4.7 as the associated mapping.

Proof. Apply Theorem 3.5.6 to deduce that the group bG[G] is the precompact reflection of G/n(G)

with ιG as its associated reflection mapping. Next, apply Corollary 3.5.4 to deduce that the

Weil completion bG of bG[G] is the Bohr compactification of G/n(G) with ιG as the associated

mapping.

The next corollary describes precisely the Bohr topology of the quotient G/n(G):

Corollary 3.5.8. For every topological group G, the subgroup bG[G] of bG is topologically isomor-

phic to (G/n(G))+.

Proof. Indeed, by Corollary 3.5.7 the subgroup ιG[G/n(G)] of bG is the image of G/n(G) under

the associated mapping to its Bohr compactification. Remark 3.4.12 implies that ιG[G/n(G)] is

isomorphic to (G/n(G))+. It suffices to note condition (3.2) implies that ιG[G/n(G)] = bG[G]. This

shows that bG[G] is isomorphic to (G/n(G))+.

3.6 When is a topological group MinAP modulo a property P?

For any property P of topological groups which is invariant under surjective continuous homomor-

phisms, the following result reduces the difficulty of checking if a topological group G is MinAP

modulo P to the verification of property P for the image of G in its Bohr compactification bG.

Theorem 3.6.1. Let G be a topological group and let bG : G → bG be a canonical mapping to

its Bohr compactification. Let P be a property of topological groups invariant under surjective

continuous homomorphisms. Then G is MinAP modulo P if and only if its image bG[G] in the

Bohr compactification bG has property P.

Proof. Assume that G is MinAP modulo P. Since the homomorphism bG : G→ bG is continuous,

and the group bG is compact, the image bG[G] has property P by Definition 3.2.1.

For the converse, let us assume that the image bG[G] has property P. Let K be a compact

topological group, and assume that f : G → K is a continuous homomorphism from G to K.

By the universality of the Bohr compactification (condition (ii) of Definition 3.4.1), there exists a
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continuous homomorphism f+ : bG → K from bG to K such that the equality f = f+ ◦ bG holds.

This implies that

f [G] = f+[bG[G]].

Recall that P is an invariant of surjective continuous homomorphisms. Since bG[G] has property

P, its continuous image f+[bG[G]] also has property P. This concludes our proof.

From Corollary 3.5.8 and Theorem 3.6.1, we obtain the following

Corollary 3.6.2. Let P be a property of topological groups invariant under surjective continuous

homomorphisms. Then a topological group G is MinAP modulo P if and only if (G/n(G))+ has

property P.

When the topological group G in question is assumed to be MAP, we can obtain the following

simplification of the above corollary:

Corollary 3.6.3. Let P be a property of topological groups invariant under surjective continuous

homomorphisms. A MAP group G is MinAP modulo P if and only if G+ has property P.

Proof. Since G is MAP, we have n(G) = {e} by Proposition 3.4.9(i), so the quotient G/n(G) is

topologically isomorphic to G. We then apply Corollary 3.6.2 to deduce that G is MinAP modulo

P if and only if G+ has property P.

In case our group is not MAP, we can use a simpler version of Corollary 3.6.2 to verify the

MinAP modulo P property for some carefully selected properties P:

Corollary 3.6.4. Let G be a topological group and P be a property of topological groups invariant

under surjective continuous homomorphisms. If the quotient group G/n(G) has property P, then

the group G is MinAP modulo P.

Proof. Assume that the quotient H = G/n(G) has property P. The mapping bH : H → bH is a

continuous homomorphism from H to its Bohr compactification bH. Since H has property P and P

is invariant under surjective continuous homomorphisms, the image bH [H] has property P. Finally,

by Remark 3.4.12 the image bH [H] is topologically isomorphic to H+. Since H+ = (G/n(G))+ has

property P, we conclude that G is MinAP modulo P by Corollary 3.6.2.
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It is worth restating Theorem 3.6.1 for the concrete classes P discussed in Figure 1. The nicest

reformulation is obtained for the algebraic properties:

Corollary 3.6.5. A topological group G is MinAP modulo finite (bounded, torsion) if and only if

the quotient G/n(G) of G with respect to its von Neumann kernel n(G) is finite (bounded, torsion,

respectively).

Proof. Indeed, let P be one of the three algebraic properties: finite, bounded, or torsion. Each of the

three properties P are invariant under surjective (continuous) homomorphisms, and the topological

group (G/n(G))+ has property P if and only if the (abstract) group G/n(G) has property P. Now

the conclusion follows from Corollary 3.6.2.

Remark 3.6.6. It follows from Corollary 3.6.5 that a topological group G is MinAP modulo finite

if and only if its von Neumann kernel n(G) has finite index in G.

Corollary 3.6.7. A topological group G is MinAP modulo compact (connected) if and only if the

topological group (G/n(G))+ is compact (connected, respectively).

Proof. Both compactness and connectedness are invariant under (surjective) continuous mappings,

so the conclusion follows from Corollary 3.6.2.

We finish this section with two examples.

Example 3.6.8. The real line R is connected (so MinAP mod connected by Proposition 3.3.4(ii)),

yet it is not MinAP mod compact. This shows that arrow 3 of Figure 1 is not reversible. To check

this, we shall need to recall the folklore fact that R+ is not compact. Indeed, if R+ was a compact

group, then the identity mapping idR : R → R+ would be a continuous surjective homomorphism

between locally compact groups. Since R is a countable union of compact subsets (σ-compact),

the open mapping theorem ([8, Theorem 7.3.1]) would imply that the identity mapping idR above

is open. Therefore, R and R+ would be topologically isomorphic, and therefore R itself would be

compact, which is a contradiction.

Being locally compact, R is a MAP group by the Peter-Weyl theorem. Since R+ is not compact,

R is not MinAP mod compact by Corollary 3.6.3.

The infinite cyclic group Z behaves in a rather “extreme” manner.
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Example 3.6.9. Every group topology on the integers Z is either MAP or MinAP modulo finite.

Indeed, recall that every non-trivial subgroup of Z has finite index. This implies that if τ is a group

topology on the integers with a non-trivial von Neumann kernel, then the topological quotient

Z/n(Z, τ) is a finite group. We then apply Corollary 3.6.4 to see that (Z, τ) is a MinAP mod finite

group. If we now assume that τ is a group topology on Z with a trivial von Neumann kernel, then

(Z, τ) is now a MAP group by Proposition 3.4.9(i).

The above argument shows, in particular, that every non-MAP group topology of the integers

is MinAP modulo finite. As we shall see in the following section, any Abelian topological group

can be equipped with a MinAP modulo finite group topology by carefully using some well-known

results.

3.7 Abelian groups where MinAP modulo connected coincides with

MinAP

Let us recall the following terminology.

Definition 3.7.1 ([15]). An Abelian group is a Markov group if for every positive integer m ∈ N

the subgroup mG of G is either trivial or has cardinality c.

The Markov groups play a key role in Dikranjan and Shakhmatov’s solution [15] of Markov’s

ancient problem on Abelian connected group topologies (see and [29, 30]):

Theorem 3.7.2 ([15, Theorem 1.9, Corollary 1.10]). For an Abelian group G, the following condi-

tions are equivalent:

(i) G is a Markov group,

(ii) G admits a connected group topology.

We shall use the following straightforward lemma which can be extracted from [12, Proposition

2.2]:

Lemma 3.7.3. Let G be an Abelian group. If G satisfies the inequality r0(G) ≥ c, then G is a

Markov group.
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In Remark 3.3.3 we established that the MinAP modulo connected property coincides with

MinAP for Abelian torsion groups. This motivates us to find which algebraic restrictions on an

Abelian group happen to make this equivalence hold (see Question 3.10.2).

Remark 3.3.3 shows that torsion groups belong to the class of groups asked for in Question

3.10.2. The following strengthening of [11, Lemma 6.3] shows that we are able to add a number of

additional group types to this list, not all of which are necessarily torsion.

For our following theorem, we shall take advantage of working in the Abelian realm. It is well

known that in Abelian groups one may substantially simplify Definition 1.4.2(b) thanks to the

classical Peter-Weyl theorem:

Proposition 3.7.4 ([8, Section 9]). If G is an Abelian topological group, then

(a) G is MAP if and only if the family of continuous characters of G separates its points; and

(b) G is MinAP if and only if the only continuous character of G is trivial.

Theorem 3.7.5. If an Abelian group G satisfies the inequality r0(G) < c, then every MinAP

modulo connected group topology on G is MinAP.

Proof. We proceed by contradiction, so let us assume that G is equipped with a MinAP modulo

connected group topology which is not MinAP. By Proposition 3.7.4(b) there exists some non-

trivial continuous character χ : G → T of G. Since T is compact and G is MinAP modulo

connected, the image χ(G) ⊆ T is a connected subgroup of the circle group. Since χ is a non-trivial

character of G, the image χ(G) is a non-trivial connected subgroup of T. The circle group contains

no connected subgroups other than itself and {0}, and so we obtain that χ(G) = T. This proves

that the algebraic quotient G/ker(χ) is algebraically isomorphic to the circle group T. It follows

from (1.3) that

c = r0(T) = r0(G/ker(χ)) ≤ r0(G).

This contradicts our hypothesis of G satisfying r0(G) < c. We conclude that G is MinAP. This

shows that every MinAP modulo connected group topology on G is MinAP, as desired.

The following particular cases are worth stating for the cases where they are easier to verify.
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Corollary 3.7.6. If an Abelian group G satisfies either of the following properties, then every

MinAP modulo connected group topology on G is MinAP:

(i) G is torsion, or

(ii) There exists some positive integer m ∈ N+ such that 0 < |mG| < c.

Proof. (i) If the group is torsion, then it contains no torsion-free elements. This implies that

r0(G) = 0, and so the conclusion follows from Theorem 3.7.5.

(ii) By the contrapositive of Lemma 3.7.3, the group G satisfies the inequality r0(G) < c. The

conclusion follows from Theorem 3.7.5 as well.

Theorem 3.7.5 goes in hand with the example presented in [51] which shows that arrow 3 of

Figure 3.1 is not reversible:

Example 3.7.7 ([51, Example 6.8]). The Euclidean topology on the real line R is MinAP modulo

connected, but not minimally almost periodic.

This example shows the limitations of Theorem 3.7.5. Indeed, since R is a divisible group, the

subgroup mR = R has cardinality c for all positive integers m ∈ N+. So we may not improve

Theorem 3.7.5 by asking for bigger cardinality.

Finally, we can give a different interpretation of Corollary 3.7.6(ii) for finding counter-examples.

Indeed, item (ii) states that any topological group G which is counter-example to the reversibility

of arrow 3 in Figure 3.1 is a Markov group.

Combining this with our interpretation of Corollary 3.7.6(ii) as well as Theorem 3.7.5, we

deduce that every possible counter-example to the reversibility of arrow 3 is a group which admits

a connected group topology and with c size 0-rank.

3.8 Algebraic structure of Abelian MinAP mod connected groups

In the following theorem we describe the algebraic structure of Abelian groups which admit a

MinAP modulo connected group topology. We begin with the following necessary condition:

Theorem 3.8.1. Let G be an Abelian group G. If G admits a MinAP mod connected group topology,

then for all m ∈ N the subgroup mG = {mg : g ∈ G} is either trivial or infinite.
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Proof. If G is MinAP mod connected, Theorem 3.6.1(iii) implies that (G/n(G))+ is connected. We

have two cases, depending whether the group (G/n(G))+ is trivial or not.

Claim 14. The result holds if (G/n(G))+ is trivial.

Proof. If (G/n(G))+ is trivial, then the group G/n(G) is trivial as well. This implies that G = n(G),

and so G is minimally almost periodic. If there exists some m ∈ N such that mG is a finite group,

then mG is a compact and continuous surjective image of G (under the mapping which sends each

g ∈ G to mg). Since G is minimally almost periodic and the group mG is compact, then it must

be trivial by Definition 1.4.2(b). This shows that for each m ∈ N the group mG is either the trivial

group or infinite.

Claim 15. The result holds if (G/n(G))+ is non-trivial.

Proof. The group (G/n(G))+ is connected by Theorem 3.6.1(iii) (and therefore MinAP mod con-

nected), precompact and non-trivial. Every precompact group is MAP, and so (G/n(G))+ is not

minimally almost periodic. By the contrapositive of Theorem 3.7.5 we deduce that r0((G/n(G))+) ≥

c. However, (G/n(G))+ is algebraically isomorphic to the quotientG/n(G), and therefore r0(G/n(G)) ≥

c also holds. It follows from (1.3) that

r0(G) > r0(G/n(G)) ≥ c.

By Lemma 3.7.3 we conclude that G is a Markov group. Observe that by Definition 3.7.1 every

Markov group G satisfies that mG is either the trivial group or infinite for all m ∈ N.

Our desired conclusion now follows from Claims 14 and 15.

The necessary condition found in Theorem 3.8.1 is very similar to that of a Markov group,

where the main difference is precisely the size of the non-trivial subgroups mG. For a Markov

group, these have size continuum, while in this condition we are asking for them to be infinite.

Groups with this property were key for Dikranjan and Shakhmatov’s characterization of Abelian

groups which admit a minimally almost periodic group topology (Theorem 1.4.12).

Thus, if we combine Theorem 1.4.12 and 3.8.1, we obtain the following:
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Corollary 3.8.2. An Abelian topological group admits a MinAP modulo connected group topology

if and only if it admits a minimally almost periodic group topology.

Proof. This follows from the fact that every MinAP topology is MinAP modulo connected (arrow

3 of Figure 3.1), and Theorems 3.8.1 and 1.4.12.

To close this section, we would like to highlight condition (ii) of Theorem 1.4.12, which very

surprisingly links the classical MinAP property with that of connectedness. In our case, we obtain

that connectedness with respect to the Markov-Zariski topology is also a necessary and sufficient

condition to equip a group with a MinAP modulo connected group topology. We note that the

Markov-Zariski topology is not a group topology, and it is a quite complicated topology to work

with in general (even more so if our group happens to be non-Abelian). Details about this topology

(along with some history) can be consulted in a series of papers by Dikranjan and Shakhmatov (see

[13, 15, 11]).

3.9 Abelian groups which admit a MinAP modulo finite group

topology

In this section we shall be applying some well-known results about the theory of Abelian minimally

almost periodic groups. Our goal is to show that, in fact, every Abelian group admits a group

topology which is MinAP modulo finite. The following well-known fact will be used to show this.

Fact 3.9.1. If G is a bounded Abelian group, then it is a direct sum of cyclic groups

G =
⊕

p∈π(G)

mp⊕
i=1

Z(pi)(αp,i),

where mp ∈ N for all p ∈ π(G) and π(G) is a non-empty finite set of primes. The cardinals αp,i

are known as the Ulm-Kaplansky invariants of G. Moreover, while some of them may be equal

to zero, the cardinals αp,mp are positive; these cardinals are known as the leading Ulm-Kaplansky

invariants of G.

The following is an easy corollary of this fact:
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Corollary 3.9.2. Every bounded Abelian group G admits a decomposition G = H ⊕ F , where H

is a group whose leading Ulm-Kaplansky invariants are infinite and F is a finite group.

The following result of Gabriyelyan [19] is a characterization of bounded groups which admit a

MinAP group topology:

Theorem 3.9.3. A bounded Abelian group admits a minimally almost periodic group topology if

and only if all of its leading Ulm-Kaplansky invariants are infinite.

Finally, we recall the following particular case of Dikranjan and Shakhmatov’s characterization

of Abelian groups which admit a MinAP group topology (see [11]):

Theorem 3.9.4 ([11, Theorem 3.1]). Every unbounded Abelian group admits a minimally almost

periodic group topology.

With these results in hand, we are ready to obtain the main results of this section.

Theorem 3.9.5. Every Abelian group G has a decomposition G = H ⊕ F , where H is a group

which admits a minimally almost periodic group topology and F is a finite group.

Proof. If G is unbounded, then letting H = G and F = {0} produces the desired decomposition

by Theorem 3.9.4. Suppose now that G is bounded, and let G = H ⊕ F be a decomposition from

Corollary 3.9.2. It remains only to note that H admits a minimally almost periodic group topology

by Theorem 3.9.3.

Corollary 3.9.6. Assume that P is a property of topological groups satisfied by all finite groups.

Then every Abelian group G admits a MinAP mod P group topology.

Proof. Let G = H ⊕ F be a decomposition from Theorem 3.9.5. We equip H with a minimally

almost periodic group topology, F with the discrete topology and G = H ⊕ F ∼= H × F with the

product topology.

Let f : G → K be a continuous homomorphism from G to a compact group K. Then f [H] is

the trivial subgroup of K by Definition 1.4.2(b), so f [G] = f [F ] is a finite subgroup of K. Being a

finite group, f [G] has property P by our assumption.

Applying Corollary 3.9.6 to the property P defined as “being a finite group”, we obtain the

following
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Corollary 3.9.7. Every Abelian group admits a MinAP mod finite group topology.

Form Remark 3.2.3(i) and Corollary 3.9.7 we can deduce the following

Corollary 3.9.8. Every Abelian group G admits a group topology τ such that every continuous

homomorphic image of (G, τ) in a precompact group is finite.

3.10 Open questions

The first question is related to the algebraic structure of MinAP modulo P groups:

Question 3.10.1. Can one characterize all properties P of topological groups such that every

(Abelian) topological group admits a MinAP modulo P group topology if and only if it admits a

MinAP group topology?

By Corollary 3.8.2, we have shown that P = connected is a property which satisfies the above

equivalence in the Abelian case. So a characterization of all properties P required in Question

3.10.1 must include the topological property of being connected.

Let us now recall that all finite (and therefore, compact) MinAP groups are trivial. It follows

from Remark 3.2.3(ii) that a necessary condition for a positive answer to Question 3.10.1 is that

the trivial group is the only finite group satisfying property P.

We motivated the following question in Section 3.7:

Question 3.10.2. For which (Abelian) groups do the MinAP and MinAP modulo connected

properties become equivalent?

We provide a partial answer to this question in the Abelian case in our Theorem 3.7.5. In this

result we prove that if a group has 0-rank less than the continuum c, then the above question is

affirmative. The case of Abelian groups with more than continuum 0-rank is open, as well as all

non-Abelian variants.

Question 3.10.3. Consider any of the new properties introduced in Figure 3.1. Can one show

that every (Abelian) group admits a (Hausdorff) group topology in this class?

This question was answered positiviely in the realm of Abelian groups for MinAP modulo finite,

torsion, bounded and compact in Corollary 3.9.6, as these four properties are possessed by all finite
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groups. The only property from Figure 3.1 which answers this question negatively for Abelian

groups is connectedness, as proved in Corollary 3.8.2.

Question 3.10.4. For a “reasonable” property P of topological groups, can one describe the

algebraic structure of (Abelian) groups which admit a MinAP mod P group topology?

This question is answered partially in Corollary 3.9.6. The solution we present lies in the realm

of Abelian groups, and it holds for every property P of topological groups which is satisfied by all

finite groups. As a consequence, the above question remains open (in the Abelian case) for any

property P not satisfied by all finite groups. The question is open in general in the non-Abelian

case.
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Chapter 4

SSGP group topologies on Abelian

groups of positive finite divisible rank

4.1 Introduction

The main goal of the chapter is to provide a positive answer to (a more general version of) Ques-

tion 1.5.13 given in Theorem 4.7.4. It follows from this theorem that [16, Theorem 13.2] holds

unconditionally; that is, the next theorem holds:

Theorem 4.1.1. For an abelian group G satisfying 1 ≤ rd(G) < ω, the following conditions are

equivalent:

(i) G admits an SSGP topology;

(ii) G admits an SSGP(α) topology for some ordinal α;

(iii) the quotient H = G/t(G) of G with respect to its torsion part t(G) has finite rank r0(H) and

r(H/A) = ω for some (equivalently, every) free subgroup A of H such that H/A is torsion.

A combination of Theorems 1.5.11, 1.5.12 and 4.1.1 provides to Question 1.5.10(a) for Abelian

groups. Similarly, the implication (iii)→(i) of the next corollary provides a complete solution to

Question 1.5.10(b) for Abelian groups. Both items of Question 1.5.10 remain widely open for

non-commutative groups.

Corollary 4.1.2. For an abelian group G, the following conditions are equivalent:
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(i) G admits an SSGP topology;

(ii) G admits an SSGP(α) topology for some ordinal α;

(iii) G admits an SSGP(n) topology for some integer n > 1.

Proof. The implication (i)→(iii) follows from (1.7), while the implication (iii)→(ii) follows from

Theorem 1.5.9(iv).

(ii)→(i) Let G be an abelian SSGP(α) group for some ordinal α. We consider three cases.

Case 1. rd(G) = 0. By Remark 1.2.6, G is a bounded torsion group. Since G is an SSGP(α)

group, it is minimally almost periodic by Theorem 1.5.9(iii), so G is SSGP by Theorem 1.5.7.

Case 2. 1 ≤ rd(G) < ω. In this case G admits an SSGP topology by the implication (ii)→(i) of

Theorem 4.1.1.

Case 3. rd(G) ≥ ω. In this case G admits an SSGP topology by Theorem 1.5.12.

The rest of the chapter is organized as follows. In Section 4.2 we obtain a convenient reformu-

lation of the SSGP property. This reformulation will be used later for our main proof. In Section

4.3 we prove two lemmas about the algebraic structure of a particular type of subgroups of finite

powers Qm of Q. In Section 4.4 we introduce the notion of a wide subgroup of Qm and we establish

two auxiliary lemmas about wide subgroups. The main result of this chapter is Theorem 4.7.4

which states that the direct sum G ⊕ H of a wide subgroup G of Qm and an at most countable

abelian group H admits a metric SSGP topology T .

We employ the strategy described in Section 1.6. First, we introduce a partially ordered set

(P,≤) in Section 4.5. Next, we define in (4.32) a countable family D of subsets of (P,≤). Section

4.6 collects lemmas establishing the density in (P,≤) of various sets participating in the family D .

The “technical heart” of this section is Lemma 4.6.6 which is responsible for the SSGP property of

T . In Section 4.7, we select a linearly ordered subset F of (P,≤) intersecting all members of the

family D of dense subsets of (P,≤).We produce a countable base of neighbourhoods of zero for T

is defined via elements of F.
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4.2 An auxiliary reformulation of the SSGP property

Definition 4.2.1. For a subset A of group G and k ∈ N+, we let

⟨A⟩k =

{
j∏

i=1

ai : j ≤ k, a1, . . . , aj ∈ A

}
. (4.1)

Remark 4.2.2. If A is a subset of a group G such that A = A−1, then ⟨A⟩ =
∪

k∈N+⟨A⟩k.

Using the notation from (4.1), one can get a convenient reformulation of the SSGP property.

Proposition 4.2.3. For a topological group G, the following conditions are equivalent:

(i) G has the small subgroup generating property SSGP;

(ii) G =
∪

k∈N+ W · ⟨Cyc(W )⟩k for every neighbourhood W of the identity of G;

(iii) for each g ∈ G and every neighbourhood W of the identity of G, there exist k ∈ N+ (depending

on g and W ), g0 ∈ W and g1, . . . , gk ∈ G such that g =
∏k

i=0 gi and ⟨gi⟩ ⊆ W for i ∈

{1, . . . , k}.

Proof. (i)→(ii) Suppose that G has the small subgroup generating property. Let W be a neighbour-

hood of the identity e of G. Since Cyc(W ) = (Cyc(W ))−1, we have ⟨Cyc(W )⟩ =
∪

k∈N+⟨Cyc(W )⟩k

by Remark 4.2.2. Furthermore, ⟨Cyc(W )⟩ is dense in G by Definition 1.5.5, so

G =W · ⟨Cyc(W )⟩ =W ·
∪

k∈N+

⟨Cyc(W )⟩k =
∪

k∈N+

W · ⟨Cyc(W )⟩k.

(ii)→(i) Suppose that G has the property from (ii). Fix a neighbourhood U of e in G. By

Definition 1.5.5, to check that G has the small subgroup generating property, it suffices to prove

that ⟨Cyc(U)⟩ is dense in G. This is equivalent to establishing that G = V · ⟨Cyc(U)⟩ for ev-

ery neighbourhood V of e in G. Let V be such a neighbourhood. Then W = U ∩ V is also a

neighbourhood of e in G, so we can apply (ii) to this W to obtain

G =
∪

k∈N+

W · ⟨Cyc(W )⟩k =W ·
∪

k∈N+

⟨Cyc(W )⟩k ⊆ V ·
∪

k∈N+

⟨Cyc(U)⟩k ⊆ V · ⟨Cyc(U)⟩.

The converse inclusion V · ⟨Cyc(U)⟩ ⊆ G is clear.
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(ii)↔(iii) follows from (1.2) and (4.1).

4.3 The algebraic structure of subgroups Qm
π of Qm

Definition 4.3.1. For a non-empty set π of of prime numbers, we use Qπ to denote the set of all

rational numbers q whose irreducible representation q = z/n with z ∈ Z and n ∈ N+ is such that

all prime divisors of n belong to π. For convenience, we let Q∅ = Z.

Definition 4.3.2. Given an integer s ∈ Z, we shall denote by ⌈s⌉ the subgroup sZ of Q.

A straightforward proof of the following lemma is left to the reader.

Lemma 4.3.3. Let π ⊆ P and m ∈ N+. Then:

(i) Qπ is a subgroup of Q, so Qm
π is a subgroup of Qm.

(ii) Z ⊆ Qπ, and so ⌈s⌉m ⊆ Qm
π for each s ∈ N+.

(iii) If π ⊆ π′ ⊆ P, then Qπ ⊆ Qπ′, and so Qm
π ⊆ Qm

π′.

Our next lemma clarifies the algebraic structure of subgroups Qm
π of Qm.

Lemma 4.3.4. (A) Suppose that s ∈ Z, k ∈ N+, g1, . . . , gk ∈ Qm, π0, π1, . . . , πk ∈ [P]<ω,

π0 ⊆ π1 ⊆ π2 ⊆ · · · ⊆ πk, (4.2)

and the following conditions hold for every j ∈ {1, . . . , k}:

(aj) gj ∈ Qm
πj

,

(bj) ⟨gj⟩ ∩Qm
πj−1

⊆ ⌈s⌉m.

Then:

(i) ⟨{g1, . . . , gi}⟩+Qm
π0

⊆ Qm
πi

for every i ∈ {1, . . . , k}.

(ii) ⟨{gi, . . . , gk}⟩ ∩Qm
πi−1

⊆ ⌈s⌉m for every i ∈ {1, . . . , k}.

(B) In addition to the assumptions of(A), suppose that for every j ∈ {1, . . . , k},
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(cj) lgj /∈ Qm
πj−1

for every l ∈ Z \ {0} satisfying |l| ≤ k.

Finally, assume that g ∈ Qm
π0

, J is a proper subset of {1, . . . , k}, l ∈ Z, |l| ≤ k and

lg0 ∈ ⟨{gj : j ∈ J}⟩+Qm
π0
, (4.3)

where

g0 = g −
k∑

j=1

gj . (4.4)

Then l = 0.

Proof. First, we check item (A).

(i) Let i ∈ {1, . . . , k}. Fix j ∈ {1, . . . , i}. Then πj ⊆ πi by (4.2). Applying Lemma 4.3.3 (iii), we

get Qm
πj

⊆ Qm
πi

. Since gj ∈ Qm
πj

by (aj), we obtain gj ∈ Qm
πi

. Since this holds for all j ∈ {1, . . . , i},

we conclude that {g1, . . . , gi} ⊆ Qm
πi

. Since π0 ⊆ πi by (4.2), applying Lemma 4.3.3 (iii) once

again, we obtain Qm
π0

⊆ Qm
πi

. Since Qm
πi

is a subgroup of Qm by Lemma 4.3.3 (i), this implies

⟨{g1, . . . , gi}⟩+Qm
π0

⊆ Qm
πi

.

(ii) We use induction on k.

Basis of induction. If k = 1, then the conclusion of (ii) holds by (b1).

Inductive step. Let k ≥ 2 and suppose that (ii) has already been proved for k − 1.

Let i ∈ {1, . . . , k}. Fix

h ∈ ⟨{gi, . . . , gk}⟩ ∩Qm
πi−1

. (4.5)

Then there exist x ∈ ⟨{gi, . . . , gk−1}⟩ and y ∈ ⟨gk⟩ such that h = x + y. In particular, x ∈

Qm
πk−1

by item (i), as 0 ∈ Qm
π0

. As i − 1 ≤ k − 1, we have πi−1 ⊆ πk−1 by (4.2), which implies

Qm
πi−1

⊆ Qm
πk−1

by Lemma 4.3.3 (iii). From this and (4.5), we obtain h ∈ Qm
πk−1

. Therefore,

y = h − x ∈ Qm
πk−1

− Qm
πk−1

= Qm
πk−1

, as Qm
πk−1

is a subgroup of Qm by Lemma 4.3.3(i). Now we

consider two cases.

If i < k, then i ∈ {1, . . . , k−1}, so ⟨{gi, . . . , gk−1}⟩∩Qm
πi−1

⊆ ⌈s⌉m by our inductive assumption,

which implies x ∈ ⌈s⌉m. Since y ∈ ⌈s⌉m as well, h = x+ y ∈ ⌈s⌉m + ⌈s⌉m = ⌈s⌉m.

Suppose now that i = k. Then h ∈ ⟨gk⟩ ∩Qm
πk−1

by (4.5), so h ∈ ⌈s⌉m by (bk).
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Next, we check item (B). From (4.3) and (4.4), we get

lg −
k∑

j=1

lgj ∈ ⟨{gj : j ∈ J}⟩+Qm
π0
.

Since Qm
π0

is a subgroup of Qm by Lemma 4.3.3 (i) and g ∈ Qm
π0

by our assumption, it follows that

−
k∑

j=1

lgj ∈ ⟨{gj : j ∈ J}⟩+Qm
π0
. (4.6)

Since J is a proper subset of {1, . . . , k}, we can fix i ∈ {1, . . . , k} \ J . From this and (4.6), we can

find

x ∈ ⟨{g1, . . . , gi−1}⟩ and y ∈ ⟨{gi+1, . . . , gk}⟩ (4.7)

such that

lgi ∈ x+ y +Qm
π0
. (4.8)

(If i = 1, we define ⟨{g1, . . . , gi−1}⟩ = {0}, and if i = k, we define ⟨{gi+1, . . . , gk}⟩ = {0}.) Then

y ∈ lgi − x+Qm
π0

∈ ⟨gi⟩ − ⟨{g1, . . . , gi−1}⟩+Qm
π0

= ⟨{g1, . . . , gi}⟩+Qm
π0

⊆ Qm
πi

by (A)(i) and our special definition of ⟨{g1, . . . , gi−1}⟩ in case i = 1. Recalling the second inclusion

in (4.7), we get y ∈ ⟨{gi+1, . . . , gk}⟩ ∩ Qm
πi

. If i < k, then applying (A)(ii), we conclude that

y ∈ ⌈s⌉m. Combining this with Lemma 4.3.3(ii), we get y ∈ Qm
πi−1

. If i = k, then y = 0 by

(4.7) and our special definition of ⟨{gi+1, . . . , gk}⟩ in case i = k given after (4.8). Since Qm
πi−1

is a

subgroup of Qm by Lemma 4.3.3(i), we get y ∈ Qm
πi−1

.

From the first inclusion in (4.7) and (A)(i), we get x ∈ Qm
πi−1

. Note that Qm
π0

⊆ Qm
πi−1

by (4.2),

as i ∈ {1, . . . , k}. Since Qm
πi−1

is a subgroup of Qm, from x, y ∈ Qm
πi−1

, the inclusion Qm
π0

⊆ Qm
πi−1

and (4.8), one obtains lgi ∈ Qm
πi−1

. Since l ∈ Z and |l| ≤ k, applying (ci), we get l = 0.

4.4 Wide subgroups of Qm

Our next definition gives a name to subgroups of Qm having the property from [16, Question 13.1].
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Definition 4.4.1. Let m ∈ N+. We shall call a subgroup G of Qm wide if Zm ⊆ G and G\Qm
π ̸= ∅

for every π ∈ [P]<ω.

Lemma 4.4.2. Let m ∈ N+, G be a wide subgroup of Qm, π ∈ [P]<ω, k ∈ N+ and s ∈ Z \ {0}.

Then there exists g ∈ G such that:

(i) ⟨g⟩ ∩Qm
π ⊆ ⌈s⌉m,

(ii) lg /∈ Qm
π for every l ∈ Z \ {0} satisfying |l| ≤ k.

Proof. Let ϖ be the set of all prime numbers not exceeding max{k, s}. Then π′ = π ∪ϖ ∈ [P]<ω.

Since G is wide, we can find h ∈ G \ Qm
π′ . Let h = (h1, . . . , hm), where h1, . . . , hm ∈ Q. For every

i ∈ {1, . . . ,m}, let hi = ai/bi be the irreducible fraction with ai ∈ Z and bi ∈ N+.

Since h ̸∈ Qm
π′ , we can fix t ∈ {1, . . . ,m} such that ht /∈ Qπ′ . Since at/bt is an irreducible

representation of ht ∈ Q \Qπ′ , we can fix p ∈ P \ π′ dividing bt. Since ϖ ⊆ π′ and p ∈ P \ π′, we

have p ∈ P \ϖ. Since ϖ includes all prime numbers not exceeding max{k, s}, we conclude that

p > max{k, s}. (4.9)

For every i ∈ {1, . . . ,m}, let

ni = max{n ∈ N : pn divides bi}. (4.10)

Then

ci = bi/p
ni ∈ N is not divisible by p. (4.11)

Note that

nt ≥ 1, (4.12)

as p divides bt by our choice of p. It follows from s ∈ N and (4.11) that

m0 = sc1 · · · cm ∈ N. (4.13)
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Since G is a group and h ∈ G, it follows that g = m0h ∈ G. Note that

g = (m0h1, . . . ,m0hm). (4.14)

We claim that g is the required element of G, that is, conditions (i) and (ii) are satisfied.

Fix i ∈ {1, . . . ,m}. It follows from (4.11) and (4.13) that

m0hi = sc1c2 · · · cm
ai
bi

= s

 m∏
j=1,j ̸=i

cj

 bi
pni

ai
bi

= s

 m∏
j=1,j ̸=i

cj

 ai
pni

=
sdi
pni

, (4.15)

where

di = c1 · · · ci−1aici+1 · · · cm ∈ Z. (4.16)

Claim 16. The right-hand side of (4.15) is the irreducible representation of m0hi.

Proof. If ni = 0, then pni = 1, so sdi/1 is the irreducible representation of m0hi. Suppose now that

ni ≥ 1. In this case, it suffices to check that neither s nor di is divisible by p. The first statement

follows from (4.9). Since ni ≥ 1, (4.10) implies that p divides bi. Since ai/bi is an irreducible

fraction, p does not divide ai. By (4.11), no cj is divisible by p. By (4.16), this means that p does

not divide di.

(i) By (4.14), in order to check (i), we need to show that ⟨m0hi⟩ ∩ Qπ ⊆ ⌈s⌉ for every i ∈

{1, . . . ,m}. Fix such an i. Let x ∈ ⟨m0hi⟩ ∩ Qπ. Then x = lm0hi for some l ∈ Z. Since p /∈ π,

it follows from x ∈ Qπ, Definition 4.3.1 and Claim 16 that pni must divide l, so l = pni l′ for some

l′ ∈ Z. Therefore, x = lm0hi = l′sdi by (4.15). Since l′ ∈ Z and di ∈ Z by (4.16), we conclude that

x ∈ ⌈s⌉. This implies ⟨m0hi⟩ ∩Qπ ⊆ ⌈s⌉.

(ii) By (4.14), in order to check (ii), it suffices to show that lm0ht /∈ Qm
π for every l ∈ Z \ {0}

satisfying |l| ≤ k. Fix such an l. Since |l| ≤ k < p by (4.9), p does not divide l. Recalling Claim 16

and (4.15), we conclude that lsdt/pnt is the irreducible representation of lm0ht. Since p /∈ π and

nt ≥ 1 by (4.12), from this and Definition 4.3.1, we obtain that lm0ht ̸∈ Qπ.

Lemma 4.4.3. Let m ∈ N+, G be a wide subgroup of Qm, π0 ∈ [P]<ω, k ∈ N+ and s ∈ Z \ {0}.

Then there exist an increasing sequence π0 ⊆ π1 ⊆ π2 ⊆ · · · ⊆ πk of finite subsets of P and elements
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g1, . . . , gk ∈ G such that conditions (aj), (bj), (cj) of Lemma 4.3.4 hold for every j ∈ {1, . . . , k}.

Proof. Use finite induction on k ∈ N+ based on Lemma 4.4.2.

4.5 The poset (P,≤)

From now on we shall follow the standard set-theoretic practice of using the inclusion m ∈ n for

n ∈ N as an abbreviation for “m ∈ N and m < n”.

In this section we define a (technically rather involved) poset (P,≤) which will be used to

construct a metric SSGP topology T on the direct sum G ⊕ H of a wide subgroup of Qm for

m ∈ N+ and an arbitrary at most countable abelian group H. The definition of the poset itself

does not require the group G to be wide and the countability restriction on H is not essential, so

we impose neither of these two conditions in the next definition.

Definition 4.5.1. Let H be an abelian group. For a fixed m ∈ N+, consider the direct sum

Qm ⊕H. Furthermore, let G be a subgroup of Qm containing Zm. Then the sum G+H = G⊕H

is direct.

(a) Let P be the set of all structures p = ⟨⟨πp, np, {Up
i : i ∈ np + 1}, {spi : i ∈ np + 1}⟩⟩ satisfying:

(1p) πp ∈ [P]<ω,

(2p) np ∈ N,

(3p) spi ∈ N+ for every i ∈ np + 1,

(4p) 0 ∈ Up
i ⊆ (G ∩Qm

πp) +H for every i ∈ np + 1,

(5p) −Up
i = Up

i for every i ∈ np + 1,

(6p) Up
i + ⌈spi ⌉m = Up

i for every i ∈ np + 1,

(7p) Up
i+1 + Up

i+1 ⊆ Up
i for every i ∈ np,

(8p) spi divides spi+1 for every i ∈ np.

(b) Given structures

p = ⟨⟨πp, np, {Up
i : i ∈ np + 1}, {spi : i ∈ np + 1}⟩⟩ ∈ P
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and

q = ⟨⟨πq, nq, {U q
i : i ∈ nq + 1}, {sqi : i ∈ nq + 1}⟩⟩ ∈ P,

we define q ≤ p if and only if:

(ipq) πp ⊆ πq,

(iipq) np ≤ nq,

(iiipq) U q
i ∩ (Qm

πp +H) = Up
i for every i ∈ np + 1,

(ivp
q) sqi = spi for every i ∈ np + 1.

Remark 4.5.2. Let p = ⟨⟨πp, np, {Up
i : i ∈ np + 1}, {spi : i ∈ np + 1}⟩⟩ ∈ P. Then:

(i) Up
i+1 ⊆ Up

i for every i ∈ np. Indeed, 0 ∈ Up
i+1 by (4p), so Up

i+1 = 0+Up
i+1 ⊆ Up

i+1+U
p
i+1 ⊆ Up

i

by (7p).

(ii) ⌈spi ⌉m ⊆ Up
i for every i ∈ np + 1. Indeed, Up

i + ⌈spi ⌉m = Up
i by (6p). Since 0 ∈ Up

i by (4p),

this implies ⌈spi ⌉m ⊆ Up
i .

A straightforward proof of the following lemma is left to the reader.

Lemma 4.5.3. (P,≤) is a poset.

Lemma 4.5.4. P ̸= ∅.

Proof. Define πp = ∅, np = 0, sp0 = 1, Up
0 = Zm, and

p = ⟨⟨πp, np, {Up
i : i ∈ 1}, {spi : i ∈ 1}⟩⟩ = ⟨⟨∅, 0, {Up

0 }, {s
p
0}⟩⟩.

To show that p ∈ P, we need to check the conditions (1p)–(8p) of Definition 4.5.1 (a). Conditions

(1p)–(3p) are clear, and conditions (7p) and (8p) are vacuous. Conditions (5p) and (6p) are satisfied,

as Up
0 = Zm is a subgroup of Qm and ⌈1⌉m = Zm. Finally condition (4p) is satisfied because

Up
0 = Zm ⊆ G∩Qπp ⊆ (G∩Qπp)+H by our assumption on G in Definition 4.5.1, Lemma 4.3.3(ii)

and 0 ∈ H.

Lemma 4.5.5. Given p ∈ P, g ∈ G∩Qm
πp and h ∈ H with g + h ̸= 0, one can find q ∈ P such that

q ≤ p, nq = np + 1 and g + h /∈ Unq .
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Proof. Let

• πq = πp,

• nq = np + 1,

• U q
i = Up

i and sqi = spi for every i ∈ np + 1.

It remains only to define U q
nq and sqnq .

Since
∩

k∈N+⌈kspnp⌉m = {0} and g + h ̸= 0, there exists k ∈ N+ such that g + h ̸∈ ⌈kspnp⌉m.

Define sqnq = kspnp . Since spnp ∈ N+ by (3p) and k ∈ N+, we see that sqnq ∈ N+ and

spnp divides sqnq . (4.17)

By our choice of sqnq , we have

g + h /∈ ⌈sqnq⌉m. (4.18)

Finally, we define

U q
nq = ⌈sqnq⌉m. (4.19)

Claim 17. q = ⟨⟨πq, nq, {U q
i : i ∈ nq + 1}, {sqi : i ∈ nq + 1}⟩⟩ ∈ P.

Proof. According to Definition 4.5.1 (a), we have to check that the structure q satisfies conditions

(1q)–(8q). By our construction, (1q), (2q), (3q) and (8q) hold.

Let us check conditions (4q)–(7q). Since conditions (4p)–(7p) hold and U q
i = Up

i , sqi = spi for

every i ∈ np +1, it follows that (4q)–(6q) hold for each i ∈ np +1 = nq and condition (7q) holds for

each i ∈ np. Therefore, it remains only to check the following four conditions:

(a) 0 ∈ U q
nq ⊆ (G ∩Qm

πq) +H,

(b) −U q
nq = U q

nq ,

(c) U q
nq + ⌈sqnq⌉m = U q

nq ,

(d) U q
nq + U q

nq ⊆ U q
np .

Conditions (b) and (c) are immediate from (4.19) and the fact that ⌈sqnq⌉m is a subgroup of Qm.
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Clearly, 0 ∈ ⌈sqnq⌉m ⊆ Zm ⊆ G by our assumption on G made in Definition 4.5.1. Furthermore,

⌈sqnq⌉m ⊆ Qq
πq by Lemma 4.3.3 (ii). Combining this with (4.19), we get 0 ∈ U q

nq ⊆ G ∩ Qm
πq ⊆

(G ∩Qm
πq) +H. Thus, (a) holds.

From (4.19), we get U q
nq + U q

nq = ⌈sqnq⌉m + ⌈sqnq⌉m = ⌈sqnq⌉m. Since spnp divides sqnq by (4.17),

we have the inclusion ⌈sqnq⌉m ⊆ ⌈spnp⌉m. Finally, ⌈spnp⌉m ⊆ U q
np by Remark 4.5.2 (ii). This finishes

the check of (d).

The inequality q ≤ p is clear from our construction of q and Definition 4.5.1 (b). Finally, from

(4.18) and (4.19), we get g + h /∈ Unq .

4.6 Density lemmas

Definition 4.6.1. Let (P,≤) be a poset. Recall that a set D ⊆ P is called:

(i) dense in (P,≤) provided that for every p ∈ P there exists q ∈ D such that q ≤ p;

(ii) downward-closed in (P,≤) if for every p ∈ D and q ∈ P the inequality q ≤ p implies that

q ∈ D.

The relation between these two notions is made apparent by the following straightforward

lemma.

Lemma 4.6.2. If A,B ⊆ P are dense subsets of a poset (P,≤) and A is downward-closed, then

A ∩B is dense in (P,≤).

Lemma 4.6.3. For every n ∈ N, the set An = {q ∈ P : n ≤ nq} is dense and downward-closed in

(P,≤).

Proof. Let n ∈ N and p ∈ P. If n ≤ np, then p ∈ An, so we shall assume from now on that np < n.

Then k = n− np ≥ 1.

Note that Zm ⊆ G by our assumption on G and Zm ⊆ Qm
πp by Lemma 4.3.3 (ii), so Zm ⊆ G∩Qm

πp .

This allows us to fix g ∈ G ∩Qm
πp with g ̸= 0. Let h = 0. Then g + h = g ̸= 0.

Let q0 = p. By finite induction on i ∈ {1, . . . , k}, we can use Lemma 4.5.5 to find qi ∈ P

such that qi ≤ qi−1 and nqi = nqi−1 + 1 = np + i. (Note that g and h play a “dummy role” in

this argument; their sole purpose here is to make the assumptions of Lemma 4.5.5 satisfied.) Now
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qk ≤ qk−1 ≤ · · · ≤ q1 ≤ q0 = p and nqk = np + k = n, so qk ∈ An. This shows that An is dense in

(P,≤).

Finally, given p ∈ An and q ∈ P such that q ≤ p, we have that n ≤ np ≤ nq, thus showing that

q ∈ An and therefore that An is downward-closed.

Lemma 4.6.4. For every π ∈ [P]<ω, the set Bπ = {q ∈ P : π ⊆ πq} is dense in (P,≤).

Proof. Let π ∈ [P]<ω and p ∈ P. Define

• πq = πp ∪ π,

• nq = np,

• sqi = spi for every i ∈ np + 1,

• U q
i = Up

i for every i ∈ np + 1.

A straightforward check using Definition 4.5.1 (a) shows that

q = ⟨⟨πq, nq, {U q
i : i ∈ nq + 1}, {sqi : i ∈ nq + 1}⟩⟩ ∈ P.

From our definition of q and Definition 4.5.1 (b), one easily concludes that q ≤ p. Clearly, q ∈ Bπ.

This shows that Bπ is dense in (P,≤).

Lemma 4.6.5. The set Cg+h = {q ∈ P : g + h ∈ (Qm
πq + H) \ U q

nq} is dense in (P,≤) whenever

g ∈ G, h ∈ H and g + h ̸= 0.

Proof. Fix g ∈ G and h ∈ H such that g + h ̸= 0. Let r ∈ P be arbitrary. Since g ∈ G ⊆ Qm,

there exists π ∈ [P]<ω such that g ∈ Qm
π . Since Bπ is dense in (P,≤) by Lemma 4.6.4, there exists

p ∈ Bπ such that p ≤ r. Now π ⊆ πp by definition of Bπ, so Qm
π ⊆ Qm

πp by Lemma 4.3.3 (iii). Since

g ∈ Qm
π , we also have g ∈ Qm

πp . We have checked that g ∈ G∩Qm
πp . Applying Lemma 4.5.5, we can

find q ∈ P such that q ≤ p ≤ r and g+h /∈ Unq . Since q ≤ p, we have πp ⊆ πq by (ipq), so Qm
πp ⊆ Qm

πq

by Lemma 4.3.3 (iii). Since g ∈ Qm
πp , we also have g ∈ Qm

πq . Therefore, g + h ∈ Qm
πq +H. We have

proved that g + h ∈ (Qm
πq +H) \ U q

nq , so q ∈ Cg+h. Since q ≤ r, this shows that Cg+h is dense in

(P,≤).
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Lemma 4.6.6. If G is a wide subgroup of Qm, then the set

Dg+h =

q ∈ P : g + h ∈
∪

k∈N+

U q
nq + ⟨Cyc(U q

nq)⟩k

 (4.20)

is dense in (P,≤) for all g ∈ G and h ∈ H.

Proof. Let g ∈ G, h ∈ H and p ∈ P be arbitrary. Arguing as at the beginning of the proof of

Lemma 4.6.5, we may assume, without loss of generality, that g ∈ Qm
πp . Define

k = 2n
p
+ 1. (4.21)

Applying Lemma 4.4.3 to π0 = πp and s = spnp , we can find an increasing sequence

πp = π0 ⊆ π1 ⊆ π2 ⊆ · · · ⊆ πk = πq (4.22)

of finite subsets of P and elements g1, . . . , gk ∈ G such that conditions (aj), (bj), (cj) of Lemma

4.3.4 (in which we let s = spnp) hold for every j ∈ {1, . . . , k}.

Define g0 as in (4.4). Since G is a subgroup of Qm, g ∈ Qm
π0

and (aj) holds for every j ∈

{1, . . . , k}, it follows from (4.2) and (4.4) that

{gj : j ∈ k + 1} ⊆ Qm
πq . (4.23)

Let

U q
np = Up

np ∪

{g0 + h} ∪ {−(g0 + h)} ∪
k∪

j=1

⟨gj⟩

+ ⌈spnp⌉m
 . (4.24)

By finite reverse induction, we define

U q
i = Up

i ∪ (U q
i+1 + U q

i+1 + ⌈spi ⌉
m) (4.25)

for every i = np − 1, . . . , 0.

Let nq = np and sqi = spi for every i ∈ nq + 1 = np + 1.

Claim 18. q = ⟨⟨πq, nq, {U q
i : i ∈ nq + 1}, {sqi : i ∈ nq + 1}⟩⟩ ∈ P.
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Proof. We need to check conditions (1q)–(8q).

Conditions (1q)–(3q) are trivial.

(4q) By (4p) and (4.25), 0 ∈ Up
i ⊆ U q

i for every i ∈ nq+1 = np+1. By (4p), Up
i ⊆ (G∩Qm

πp)+H

for every i ∈ nq+1 = np+1. Since G is a subgroup of Qm, from this, g1, . . . , gk ∈ G, (4.2) and (4.24),

it follows that U q
nq = U q

np ⊆ G+H. Furthermore, (4.23) and (4.24) imply that U q
nq = U q

np ⊆ Qm
πq
+H.

Since (G ∩ Qm
πq) + H is a subgroup of Qm + H, from this, (4.25) and finite reverse induction on

i = nq, nq − 1, . . . , 0, one concludes that U q
i ⊆ (G ∩Qm

πq) +H for every i ∈ nq + 1.

(5q) From (4.24) and (5p), we get −Unp = Unp . Starting with this and using (4.25), (5p) and

finite reverse induction on i = nq, nq − 1, . . . , 0, one concludes that −U q
i = U q

i for every i = nq +1.

(6q) The equation U q
np+⌈spnp⌉m = U q

np follows from (4.24) and (6p). Starting with this and using

(4.25), (6p) and finite reverse induction on i = np, np−1, . . . , 0, one concludes that U q
i +⌈spi ⌉m = U q

i

for every i ∈ np + 1. Since nq = np and sqi = spi for every i ∈ nq + 1, this establishes (6q).

(7q) follows from (4.25).

(8q) follows from (8p), as sqi = spi for every i ∈ nq + 1.

Claim 19. q ∈ Dg+h.

Proof. It follows from (4.24) and nq = np that g0+h ∈ U q
nq and g1, . . . , gk ∈ Cyc(U q

nq). Furthermore,

g = g0 +
∑k

i=1 gi by (4.4). Thus,

g + h = g0 + h+

k∑
i=1

gi ∈ U q
nq + ⟨Cyc(U q

nq)⟩k

by Definition 4.2.1, so q ∈ Dg+h by (4.20).

Our final goal is to prove the inequality q ≤ p. Before establishing this, we need to check two

auxiliary facts.

Claim 20. The inclusion

U q
i ⊆

∪Up
i + l(g0 + h) +

∑
j∈J

⟨gj⟩+ ⌈spi ⌉
m : l ∈ Z, |l| ≤ 2n

q−i, J ∈ {1, . . . , k}≤2n
q−i

 (4.26)

holds for every i ∈ np + 1. (Here |l| denotes the absolute value of l.)
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Proof. We use reverse induction on i = np, np − 1, . . . , 0. For i = np this follows from (4.24), as

nq = np.

For the inductive step, suppose that i ∈ np and we have already proved the inclusion (4.26) for

i+ 1; that is, we have shown that

U q
i+1 ⊆

∪Up
i+1 + l(g0 + h) +

∑
j∈J

⟨gj⟩+ ⌈spi+1⌉
m : l ∈ Z, |l| ≤ 2n

q−i−1, J ∈ {1, . . . , k}≤2n
q−i−1


(4.27)

holds. We are going to show that the inclusion (4.26) holds as well.

Let x ∈ U q
i . By equation (4.25), either x ∈ Up

i or x ∈ U q
i+1 + U q

i+1 + ⌈spi ⌉m. In the former case,

x = x+ 0(g0 + h) + 0 + 0 is the decomposition witnessing that x belongs to the right-hand side of

(4.26). In the latter case, x = y0 + y1 + spiw, where w ∈ Zm and yt ∈ U q
i+1 for t = 0, 1. Applying

(4.27), we can find ut ∈ Up
i+1, lt ∈ Z, Jt ∈ {1, 2, . . . , k}≤2n

q−i−1 , bt ∈
∑

j∈Jt⟨gj⟩ and zt ∈ Zm for

t = 0, 1 such that |lt| ≤ 2n
q−i−1 and yt = ut + lt(g0 + h) + bt + spi+1zt. Since x = y0 + y1 + spiw, it

follows that x = u + l(g0 + h) + b + spi+1z + spiw, where u = u0 + u1, l = l0 + l1, b = b0 + b1 and

z = z0 + z1. Since spi divides spi+1 by (8p), spi+1 = spi k0 for some k0 ∈ Z, so

x = u+ l(g0 + h) + b+ spi (k0z + w). (4.28)

Since ut ∈ Up
i+1 for t = 0, 1, u = u0 + u1 ∈ Up

i+1 + Up
i+1 ⊆ Up

i by (7p). Since lt ∈ Z and

|lt| ≤ 2n
q−i−1 for t = 0, 1, we have l = l0 + l1 ∈ Z and

|l| ≤ |l0|+ |l1| ≤ 2n
q−i−1 + 2n

q−i−1 = 2 · 2nq−i−1 = 2n
q−i.

Since Jt ∈ {1, 2, . . . , k}≤2n
q−i−1 for t = 0, 1, the set J = J0 ∪ J1 satisfies

|J | ≤ |J1|+ |J2| ≤ 2n
q−i−1 + 2n

q−i−1 = 2 · 2nq−i−1 = 2n
q−i,

so J ∈ {1, 2, . . . , k}≤2n
q−i . Since bt ∈

∑
j∈Jt⟨gj⟩ for t = 0, 1, we have b = b0 + b1 ∈

∑
j∈J⟨gj⟩. Since

zt ∈ Zm for t = 0, 1, we have z = z0 + z1 ∈ Zm. Finally, since k0 ∈ Z, we get k0z + w ∈ Zm and
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4.6. DENSITY LEMMAS

thus spi (k0z + w) ∈ ⌈spi ⌉m. Combining all this with (4.28), we conclude that

x ∈ Up
i + l(g0 + h) +

∑
j∈J

⟨gj⟩+ ⌈spi ⌉
m

with l ∈ Z, J ∈ {1, . . . , k}≤2n
q−i and |l| ≤ 2n

q−i. This finishes the proof of the inclusion (4.26).

Claim 21. U q
i ∩ (Qm

πp +H) = Up
i for every i ∈ np + 1.

Proof. It follows from (4.25) that Up
i ⊆ U q

i . Since Up
i ⊆ Qm

πp + H by (4p), this establishes the

inclusion Up
i ⊆ U q

i ∩ (Qm
πp +H).

To prove the reverse inclusion, we fix an arbitrary x ∈ U q
i ∩ (Qm

πp +H) and we are going to show

that x ∈ Up
i . Since x ∈ U q

i , we can apply Claim 20 to fix y ∈ Up
i , l ∈ Z, a finite set J ⊆ {1, 2, . . . , k},

a family {mj : j ∈ J} ⊆ Z and z ∈ Zm such that |l| ≤ 2n
q−i, |J | ≤ 2n

q−i and

x = y + l(g0 + h) +
∑
j∈J

mjgj + spi z. (4.29)

Recall that x ∈ Qm
πp +H. Furthermore, y ∈ Up

i ⊆ Qm
πp +H by (4p). Finally, spi z ∈ Zm ⊆ Qm

πp by

Lemma 4.3.3(ii). Since π0 = πp by (4.22) and Qm
π0

is a group, from (4.29) we get

l(g0 + h) +
∑
j∈J

mjgj = x− y − spi z ∈ Qm
π0

+H, (4.30)

so

lg0 ∈ −lh−
∑
j∈J

mjgj +Qm
π0

+H ∈ ⟨{gj : j ∈ J}⟩+Qm
π0

+H. (4.31)

Since {g0} ∪ {gj : j ∈ J} ⊆ Qm, Qm
π0

⊆ Qm, Qm is a group and the sum Qm + H = Qm ⊕ H is

direct, from the inclusion (4.31) we obtain the stricter inclusion lg0 ∈ ⟨{gj : j ∈ J}⟩+Qm
π0

.

As |J | ≤ 2n
q−i ≤ 2n

q
= 2n

p
< k by (4.21), J is a proper subset of {1, . . . , k}. Furthermore,

|l| ≤ 2n
q−i < k. Now all the assumptions of Lemma 4.3.4 are satisfied (with s = spnp), so from item

(B) of this lemma we conclude that l = 0. From this and (4.30), we obtain
∑

j∈J mjgj ∈ Qm
π0

+H,

so we can fix a ∈ Qm
π0

and b ∈ H satisfying
∑

j∈J mjgj = a + b. Since Qm
πq is a subgroup of Qm,
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from (4.23) we get
∑

j∈J mjgj ∈ Qm
πq . Therefore,

b = −a+
∑
j∈J

mjgj ∈ Qm
π0

+Qm
πq ⊆ Qm.

Since b ∈ H, we get b ∈ Qm ∩H. Since the sum Qm +H = Qm ⊕H is direct, we conclude that

b = 0. Thus,
∑

j∈J mjgj = a ∈ Qm
π0

. Since J ⊆ {1, . . . , k}, we get

∑
j∈J

mjgj ∈ ⟨{gj : j ∈ J}⟩ ∩Qm
π0

⊆ ⟨{g1, . . . , gk}⟩ ∩Qm
π0

⊆ ⌈spnp⌉m

by Lemma 4.3.4(A)(ii) applied with s = spnp . Combining this with (4.29), we get x ∈ y + ⌈spnp⌉m +

⌈spi ⌉m. Since i ≤ np, spi divides spnp by (8p), so ⌈spnp⌉m ⊆ ⌈spi ⌉m. This gives x ∈ y + ⌈spi ⌉m ⊆

Up
i + ⌈spi ⌉m = Up

i by (6p).

Claim 22. q ≤ p.

Proof. We need to check conditions (ipq)–(ivp
q) from Definition 4.5.1(b). Condition (ipq) follows from

(4.2). Since nq = np by our definition, (iipq) holds. Condition (iiipq) is proved in Claim 21, and (ivp
q)

holds by the definition of sqi .

The density of Dg+h in (P,≤) follows from Claims 18, 19 and 22.

4.7 Main theorem

Recall the following concepts. Let X be a set and let F be a family of non-empty subsets of X, we

say that F is a filter-base if for every pair A,B ∈ F there exists C ∈ F such that C ⊆ A ∩ B. A

filter-base F is said to be a filter if for every set F satisfying F ′ ⊆ F for some F ∈ F the inclusion

F ∈ F holds. Group topologies can be described in terms of filters and filter-bases as follows:

Theorem 4.7.1. Let G be a group and V(e) be the filter of all neighbourhoods of e in some group

topology τ for G. Then:

(a) for every U ∈ V(e) there exists V ∈ V(e) such that V · V ⊆ U ;

(b) for every U ∈ V(e) there exists V ∈ V(e) such that V −1 ⊆ U ;
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(c) for every U ∈ V(e) and a ∈ G there exists V ∈ V(e) such that aV a−1 ⊆ U .

If V is a filter(-base) on G satisfying (a),(b) and (c), then there exists a unique group topology τ

on G such that V coincides with the filter of all τ -neighbourhoods of eG in G.

The following is clear.

Remark 4.7.2. If G is an Abelian group then Theorem 4.7.1(a) implies item Theorem 4.7.1(c).

We shall also need the following folklore lemma.

Lemma 4.7.3. If D is an at most countable family of dense subsets of a non-empty poset (P,≤),

then there exists an at most countable subset F of P such that (F,≤) is a linearly ordered set and

F ∩D ̸= ∅ for every D ∈ D .

Proof. Since the family D is at most countable, we can fix an enumeration D = {Dn : n ∈ N+} of

elements of D . Since P ̸= ∅, there exists p0 ∈ P. By induction on n ∈ N+, we can choose pn ∈ Dn

such that pn ≤ pn−1; this is possible because Dn is dense in (P,≤). Now F = {pn : n ∈ N+} is the

desired subset of P.

The next theorem provides a positive answer to a more general version of [16, Question 13.1].

Theorem 4.7.4. Suppose that m ∈ N+ and G is a wide subgroup of Qm. Then for each at most

countable abelian group H, the direct sum K = G⊕H admits a metric SSGP topology.

Proof. Fix m ∈ N+ and let G be a wide subgroup of Qm. Let H be an at most countable abelian

group. We work in the direct sum Qm ⊕H and consider its subgroup K = G+H = G⊕H.

Let (P,≤) be the poset from Definition 4.5.1 which uses our m ∈ N+, G and H as its parameters.

As a subgroup of Qm, G is at most countable. Since H is at most countable as well, so is the

sum K = G+H. Therefore, the family

D = {Cx : x ∈ K \ {0}} ∪ {An ∩Dx : n ∈ N, x ∈ K} (4.32)

of subsets of P is at most countable.

Lst us check that all members of D are dense in (P,≤). By Lemma 4.6.5, each Cx for x ∈ K\{0}

is dense in (P,≤). Let n ∈ N and x ∈ K. Since An is dense and downward-closed in (P,≤) by
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Lemma 4.6.3 and Dx is dense in (P,≤) by Lemma 4.6.6, from Lemma 4.6.2 we conclude that

An ∩Dx is dense in (P,≤).

Apply Lemma 4.7.3 to find an at most countable set F ⊆ P such that (F,≤) is a linearly ordered

set and F ∩D ̸= ∅ for every D ∈ D . For every i ∈ N, define

Ui =
∪

{Up
i : p ∈ F and i ≤ np}. (4.33)

Our nearest goal is to show that the family

B = {Ui : i ∈ N} (4.34)

is a neighbourhood base at 0 of a Hausdorff group topology T on K. The verification of this will

be split into three claims.

Claim 23.
∩

n∈N Un = {0}.

Proof. Let n ∈ N be arbitrary. Since An∩D0 ∈ D by (4.32), there exists p ∈ An∩D0∩F. Therefore,

n ≤ np by the definition of An. Now 0 ∈ Up
n by the condition (4p) imposed on P. Since p ∈ F and

n ≤ np, it follows from (4.33) that Up
n ⊆ Un. This shows that 0 ∈ Un. Since n ∈ N was chosen

arbitrarily, we conclude that 0 ∈
∩

n∈N Un.

To prove the reverse inclusion
∩

n∈N Un ⊆ {0}, we choose x ∈ K \ {0} arbitrarily and show that

x /∈
∩

n∈N Un. Since Cx ∈ D by (4.32), our choice of F allows us to fix p ∈ Cx ∩ F. Then

x ∈ (Qm
πp +H) \ Up

np (4.35)

by the definition of Cx.

Assume that x ∈ Unp . Thus, by (4.33), there exists q ∈ F such that np ≤ nq and x ∈ U q
np .

Suppose that p ≤ q. Then Up
np ∩ (Qm

πq +H) = U q
np by (iiiqp). Since x ∈ U q

np , this implies x ∈ Up
np ,

in contradiction with (4.35). Similarly, assume that q ≤ p. Then U q
np ∩ (Qm

πp +H) = Up
np by (iiipq),

so x /∈ U q
np by (4.35), in contradiction with x ∈ U q

np . This contradiction shows that neither p ≤ q

nor q ≤ p holds. Since p, q ∈ F, this contradicts the fact that F is linearly ordered by ≤. This

contradiction shows that our assumption that x ∈ Unp is false, so x /∈
∩

n∈N Un.
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Claim 24. −Ui = Ui and Ui+1 + Ui+1 ⊆ Ui for every i ∈ N.

Proof. Let x ∈ Ui. By (4.33), this means that x ∈ Up
i for some p ∈ F satisfying i ≤ np. By (5p),

we know that −Up
i = Up

i , so −x ∈ Up
i . Thus, −x ∈ Ui by (4.33). This proves that −Ui ⊆ Ui. The

reverse inclusion is proved analogously.

Finally, consider x, y ∈ Ui+1. By (4.33), there exist p, q ∈ F such that x ∈ Up
i+1, y ∈ U q

i+1,

i+1 ≤ np and i+1 ≤ nq. Since ≤ is a linear order on F, we may assume, without loss of generality,

that q ≤ p. Since i + 1 ≤ np, (iiipq) implies x ∈ Up
i+1 ⊆ U q

i+1. Therefore, x, y ∈ U q
i+1. Since

i+1 ≤ nq, we have x+ y ∈ U q
i+1 +U q

i+1 ⊆ U q
i by (7q). Then x+ y ∈ Ui by (4.33). This shows that

Ui+1 + Ui+1 ⊆ Ui, as desired.

Claim 25. The family B as in (4.34) is a neighbourhood base at 0 of some Hausdorff group topology

T on K.

Proof. It easily follows from Claims 23 and 24 that Um ⊆ Un whenever n,m ∈ N and n ≤ m.

Combined with (4.34), this implies that B is a filter base. By (4.34) and Claim 24, B has the

following two properties.

• For every U ∈ B there exists V ∈ B such that V + V ⊆ U ; and

• For every U ∈ B there exists V ∈ B such that −V ⊆ U .

By Theorem 4.7.1 and Remark 4.7.2

T = {O ⊆ K : ∀ a ∈ O ∃ U ∈ B (a+ U ⊆ O)}

is a topology on K making it into a topological group such that the family B is a neighbourhood

base at 0 comprised of T -neighbourhoods of 0. It follows from Claim 23, Theorem 4.7.1 and

Remark 4.7.2 that T is Hausdorff group topology for K.

Claim 26. The topological group (K,T ) has the small subgroup generating property.

Proof. We are going to check that (K,T ) has the property (ii) from Proposition 4.2.3 (applied to

G = K).

Let W be a neighbourhood of 0 in (K,T ). By Claim 25, there exists i ∈ N such that Ui ⊆W .
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Take an arbitrary x ∈ K. Since Ai ∩ Dx ∈ D by (4.32), there exists q ∈ F ∩ Ai ∩ Dx. Since

q ∈ Dx, we can use (4.20) to find k ∈ N such that

x ∈ U q
nq + ⟨Cyc(U q

nq)⟩k. (4.36)

Since q ∈ Ai, we have i ≤ nq, so U q
nq ⊆ U q

i by Remark 4.5.2 (i). Since q ∈ F, from (4.33) we get

U q
i ⊆ Ui, so U q

nq ⊆ Ui ⊆W , which implies that Cyc(U q
nq) ⊆ Cyc(W ). Therefore,

U q
nq + ⟨Cyc(U q

nq)⟩k ⊆W + ⟨Cyc(W )⟩k. (4.37)

Combining (4.36) and (4.37), we conclude that x ∈
∪

k∈N+ W + ⟨Cyc(W )⟩k. Since this holds for

every x ∈ K, we get K ⊆
∪

k∈N+ W + ⟨Cyc(W )⟩k. The converse inclusion is clear.

Since (K,T ) is Hausdorff and has a countable base at 0 by Claim 25, it is metrizable.
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Chapter 5

SSGP topologies on free groups of

infinite rank

5.1 Introduction

The main goal of this chapter is to prove the following two theorems announced by Shakhmatov

and the author in [40]:

Theorem 5.1.1. The free group F (X) over a countably infinite set X admits a metric DW group

topology.

Theorem 5.1.2. Every free group with infinitely many generators admits an DW group topology.

The proofs of these two theorems are postponed until Sections 5.8 and 5.9, respectively.

In view of the first implication in (1.6), Theorem 5.1.2 provides an answer (in a stronger form)

to Question 1.5.10(a) for free groups of infinite rank.

Even a weaker version of Theorem 5.1.2 seems worthwhile stating explicitly.

Corollary 5.1.3. Free group of infinite rank admit a minimally almost periodic group topology.

Question 1.5.10(a) remains open for most other non-Abelian groups. To our knowledge, the

only other result in the non-commutative case is the following. If a set X has at least two elements,

then its symmetric group S(X) does not admit an SSGP group topology [16, Example 5.4(c)].
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Remark 5.1.4. Shortly before the arrival of galley proofs in the published version of these results,

Dmitri Shakhmatov asked Vladimir Pestov about the novelty of Corollary 5.1.3. While this result

does not seem to have appeared in published form, Vladimir Pestov informed Dmitri Shakhmatov

that he can prove a stronger version of Corollary 5.1.3 in which minimally almost periodic is replaced

with extremely amenable. Since extremely amenable groups need not have the SSGP property 1,

the strengthening of Corollary 5.1.3 due to Vladimir Pestov implies neither Theorem 5.1.1 nor

Theorem 5.1.2.

This chapter is organized as follows. Basic facts about free groups are recalled in Section 5.2. In

Section 5.3 we introduce a notion of a finite neighbourhood system on a free group; this is basically

a finite initial segment of a countable family of future neighbourhoods in some group topology on

this group. In Section 5.4, a notion of an extension of a finite neighbourhood system is defined; this

is a finite neighbourhood system on a bigger free group whose traces of new neighbourhoods to the

smaller free group coincide with the original neighborhoods. In Section 5.5, we devise a technique

for extending a finite neighbourhood system to a finite neighbourhood system on a bigger group.and

a fixed set which can be viewed as a base for such an extension. Section 5.6 contains three auxiliary

lemmas, the main of which is Lemma 5.6.3 responsible for the SSGP property of the topology

under construction. In Section 5.7, we introduce a partially ordered set which is used in the proof

of Theorem 5.1.1 (the countable case); the proof itself is carried out in Section 5.8. Theorem 5.1.2

(the general case) is proved in Section 5.9. Its proof simply provides a reduction of general case to

the countable case. Finally, open questions are listed in Section 5.10.

In the proof of Theorem 5.1.1, we use a partially ordered set to produce a topology on the free

group with a countably infinite set of generators. This technique was used by the Shakhmatov and

the author recently in [39] and [42] (see Chapter 4 for the latter).

Theorems 5.1.1 and 5.1.2 were announced previously by Shakhmatov and the author in [40].

5.2 The free group F (X) over a set X

Definition 5.2.1. Let X be a set.
1Indeed, it follows from [23, Theorem 1.1] that the group Z of integer numbers admits an extremely amenable

group topology, yet it does not admit any SSGP group topology by [4, Corollary 3.14].
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(i) Let W0 = {∅}. For n ∈ N+, let

Wn = {xε11 . . . xεnn : xi ∈ X, εi ∈ {−1, 1} for all i = 1, . . . , n}.

(ii) For w = xε11 . . . xεnn ∈Wn(X) and v = yδ11 . . . yδmm ∈Wm(X), we let w = v if and only if n = m

and xi = yi, εi = δi for all i = 1, . . . , n.

(iii) Elements of the set

W (X) =
∪
n∈N

Wn(X)

are called words in alphabet X. According to (ii), this union consists of pairwise disjoint sets,

so for every word w ∈ W (X), there exists a unique n ∈ N such that w ∈ Wn(X); this n is

called the length of w and denoted by l(w).

(iv) Given a word w = xε11 . . . xεnn ∈ Wn(X), a sub-word of w is a word w′ = xεkk . . . xεll for some

k, l ∈ N such that 1 ≤ k ≤ l ≤ n. The word w′ is said to be an initial sub-word of w when

k = 1 and a final sub-word of w when l = n.

The empty word ∅ will be denoted also by e. Clearly, we have that l(e) = 0.

Definition 5.2.2. Let X be a set.

(i) For v = xε11 . . . xεnn ∈ Wn(X) and w = yδ11 . . . yδmm ∈ Wm(X), the word xε11 . . . xεnn y
δ1
1 . . . yδmm ∈

Wn+m(X) is called the (result of) concatenation of v and w; we denote this word by v ∗ w.

We also let e ∗ w = w ∗ e = w for every word w ∈W (X).

(ii) For w = xε11 . . . xεnn ∈Wn(X), the word w−1 = x−εn
n . . . x−ε1

1 ∈Wn(X) is called the inverse of

w. We also let e−1 = e.

The set W (X) equipped with the binary operation ∗ is a semigroup with the identity e.

The proof of the following lemma is straightforward.

Lemma 5.2.3. For every initial sub-word w′ of a word w ∈ W (X), there exists a unique final

sub-word w′′ of w such that w = w′ ∗w′′. Conversely, for every final sub-word w′′ of w, there exists

an initial sub-word w′ of w such that w = w′ ∗ w′′.
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Definition 5.2.4. Let X be a set. A word w = xε11 . . . xεnn ∈W (X) is irreducible provided that, for

every i = 1, . . . , n− 1, either xi ̸= xi+1 or εi = εi+1. Observe that the empty word e is considered

irreducible too. We shall denote by F (X) the set of all irreducible words w ∈W (X).

Lemma 5.2.5. For every pair of irreducible words v, w ∈ F (X), there exist unique v′, v′′, w′, w′′ ∈

W (X) such that v = v′ ∗ v′′, w = w′ ∗ w′′, v′′ and w′ are inverses of each other and v′ ∗ w′′ is an

irreducible word.

Proof. Let v′′ be the final sub-word of v of maximal length l(v′′) such that its inverse w′ = (v′′)−1

is an initial sub-word of w. Use Lemma 5.2.3 to find a unique initial sub-word v′ of v and a unique

final sub-word w′′ of w such that v = v′ ∗ v′′ and w = w′ ∗ w′′. Finally, note that the word v′ ∗ w′′

is irreducible by the maximality of v′′ and Definition 5.2.4.

For a set X, we define a binary operation · on the set F (X) as follows.

Definition 5.2.6. For a set X and v, w ∈ F (X), we define v · w = v′ ∗ w′′, where v′, v′′, w′, w′′ ∈

W (X) are the unique words as in the conclusion of Lemma 5.2.5.

The following fact is well-known.

Fact 5.2.7. The · operation on F (X) is associative.

From this fact, Lemma 5.2.5 and observing that e behaves as an identity element, we obtain

that F (X) equipped with the operation · is a group:

Lemma 5.2.8. For every set X, the set F (X) equipped with the binary operation · is a group with

the identity e. The inverse of an element w ∈ F (X) in F (X) coincides with the (irreducible) word

w−1 defined in item (ii) of Definition 5.2.2.

Definition 5.2.9. The group F (X) from Lemma 5.2.8 is called the free group over X.

Let us observe the following fundamental property of the free group:

Lemma 5.2.10. Let X be a set and G be any group. Every mapping f : X → G has an extension

to a unique homomorphism f̂ : F (X) → G such that f̂ ↾X= f . (Here we identify each x ∈ X with

the word x1 ∈ F (X).)
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Proof. Let X, f and G be as in the hypotheses. Let φ :W (X) → G be the map defined by φ(e) = e

and φ(xε11 , . . . , x
εn
n ) = f(x1)

ε1 · · · f(xn)εn whenever n ∈ N+, x1, . . . , xn ∈ X and ε1, . . . , εn ∈

{1,−1}. Clearly, φ is a semigroup homomorphism from (W (X), ∗) to G. We claim that f̂ =

φ ↾F (X): (F (X), ·) → G is the desired group homomorphism. (Recall that F (X) is a subset of

W (X) by Definition 5.2.4.)

To show that f̂ is a homomorphism, it suffices to fix v, w ∈ F (X) and verify the equality

f̂(v · w) = f̂(v)f̂(w). We use notations from Definition 5.2.6. Since v′′ and w′ are inverses of each

other by Lemma 5.2.5, from our definition of φ, Definition 5.2.2(ii) and the fact that G is a group,

we obtain that φ(v′′ ∗ w′) = e. Since v, w ∈ F (X) and φ is a semigroup homomorphism, we have

f̂(v)f̂(w) = φ(v)φ(w) = φ(v∗w) = φ(v′∗v′′∗w′∗w′′) = φ(v′)φ(v′′∗w′)φ(w′′) = φ(v′)φ(w′′) = φ(v′∗w′′).

Since v′ ∗ w′′ ∈ F (X) by Lemma 5.2.5, we get φ(v′ ∗ w′′) = f̂(v′ ∗ w′′). Finally, since v · w =

v′ ∗ w′′ by Definition 5.2.6, the equality f̂(v′ ∗ w′′) = f̂(v · w) trivially holds. We have proved that

f̂(v)f̂(w) = f̂(v · w).

Clearly, f̂(X) = f̂(x1) = φ(x1) = f(x)1 = f(x) for every x ∈ X, so f̂ ↾X= f . The uniqueness

of f̂ is straightforward.

Lemma 5.2.10 shows that the group (F (X), ·) coincides with the categorically defined G -free

group FG (X) over X in the variety G of all groups.

Definition 5.2.11. Let X be a set. For a word w = xε11 . . . xεnn ∈W (X) \ {e},

lett(w) = {x1, . . . , xn}

denotes the set of all letters xi appearing in w. We also let lett(e) = lett(∅) = ∅.

For an arbitrary variety V of groups, the notion of the support suppV (w) of an element w of

a free group FV (X) in the variety V was introduced in the text after [14, Lemma 7.1]. One can

easily see that the set lett(w) from the above definition coincides with the support suppV (w) of the

word w ∈ F (X) in the variety G of all groups.

We finish this section with two lemmas which shall be needed in the future.
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Lemma 5.2.12. (i) lett(v · w) ⊆ lett(v) ∪ lett(w) for all v, w ∈ F (X).

(ii) lett(a1 · a2 · · · · am) ⊆
∪m

l=1 lett(al) whenever m ∈ N+ and a1, a2, . . . , am ∈ F (X).

Proof. (i) Let v′, v′′, w′, w′′ ∈ F (X) be as in Definition 5.2.6. Then v · w = v′ ∗ w′′, which implies

lett(v · w) = lett(v′ ∗ w′′) = lett(v′) ∪ lett(w′′) by Definition 5.2.11. Since v′ is a sub-word of v, we

have lett(v′) ⊆ lett(v) by Definitions 5.2.1(iv) and 5.2.11. Similarly, since w′′ is a sub-word of w,

we have lett(w′′) ⊆ lett(w). This proves item (i).

Item (ii) is proved by induction making use of item (i).

Lemma 5.2.13. Suppose that x1, x2, . . . , xs ∈ X, ε1, ε2, . . . , εs ∈ {−1, 1}, g0 = xε11 x
ε2
2 . . . xεss ∈

F (X), j = 1, . . . , s and xj ̸= xp for p = 1, . . . , s with j ̸= p. Then xj ∈ lett(h) for every

h ∈ ⟨g0⟩ \ {e}.

Proof. Fix h ∈ ⟨g0⟩. Then h = gq0 for some integer q. Consider the map f : X → F (X) satisfying

f(xj) = xj and f(x) = e for x ∈ X \ {xj}. (5.1)

Let f̂ : F (X) → F (X) be the homomorphism such that f̂ ↾X= f . Since f̂ is a homomorphism

extending f and (5.1) holds, we have f̂(h) = f̂(gq0) = xqj .

Suppose that xj ̸∈ lett(h). Then lett(h) ⊆ X \ {xj}, and so f̂(h) = e by (5.1). This shows that

xqj = e, which implies q = 0. Thus, h = gq0 = e.

5.3 Finite neighbourhood systems

Definition 5.3.1. Let X be a set. Given any set A ⊆ F (X), we define A−1 = {a−1 : a ∈ A}, and

Ā = A ∪A−1 ∪ {e}.

Definition 5.3.2. Let X be a set. A finite neighbourhood system of F (X) is a finite sequence

U = {Ui : i ≤ n} (where n ∈ N+) satisfying the following conditions:

(1U ) Ui ⊆ F (X) for every i ≤ n,

(2U ) U−1
i = Ui for every i ≤ n,

(3U )
∪

x∈X̄ x · Ui+1 · Ui+1 · x−1 ⊆ Ui for every i < n,
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(4U ) e ∈ Un.

Remark 5.3.3. If X is a set and U = {Ui : i ≤ n} is a finite neighbourhood system for F (X), then

e ∈ Ui for every i ≤ n. This statement is proved by finite reverse induction on i = n, n− 1, . . . , 0.

For i = n, the statement holds by (4U ). Suppose now that i < n and we have already proved that

e ∈ Ui+1. Since e ∈ X̄ by Definition 5.3.1, e = e · e · e · e ∈
∪

x∈X̄ x · Ui+1 · Ui+1 · x−1 ⊆ Ui by (3U ).

Definition 5.3.4. Let U = {Ui : i ≤ n} be a finite sequence of subsets of F (X) for some set X.

(i) Let B ⊆ F (X). Define

Vn = Un ∪B. (5.2)

By finite reverse induction on i = n− 1, n− 2, . . . , 0, define

Vi = Ui ∪
∪
x∈X̄

x · Vi+1 · Vi+1 · x−1. (5.3)

We shall call the sequence V = {Vi : i ≤ n} the B-enrichment of the sequence U in F (X).

(ii) For a set C ⊆ F (X), we shall call the
(∪

c∈C⟨c⟩
)
-enrichment of U in F (X) the cyclic C-

enrichment of U in F (X).

Lemma 5.3.5. Let X be a set and U = {Ui : i ≤ n} be a finite sequence such that:

(a) Ui ⊆ F (X) for all i ≤ n,

(b) U−1
i = Ui for every i ≤ n,

(c) e ∈ Un.

Furthermore, let B ⊆ F (X) be a set satisfying

(d) B−1 = B.

Then the B-enrichment of U in F (X) is a finite neighbourhood system for F (X).

Proof. Let V = {Vi : i ≤ n} be the B-enrichment of the sequence U in F (X). It suffices to check

conditions (1V )–(4V ) of Definition 5.3.2.
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(1V ) Since Un and B are subsets of F (X) by our assumption, Vn ⊆ F (X) by (5.2). Note that

X̄ ⊆ F (X). Applying finite reverse induction on i = n − 1, n − 2, . . . , 0, one concludes from this,

(5.3) and
∪

i≤n Ui ⊆ F (X) that Vi ⊆ F (X) for all i ≤ n.

(2V ) We shall prove by finite reverse induction on i = n, n − 1, . . . , 0 that V −1
i = Vi. First,

note that V −1
n = U−1

n ∪ B−1 = Un ∪ B = Vn by (5.2), (b) and (d). Assume now that i < n and

the equation V −1
i+1 = Vi+1 has already been proved. It easily follows from this inductive assumption

that

∪
x∈X̄

x · Vi+1 · Vi+1 · x−1

−1

=
∪
x∈X̄

x · V −1
i+1 · V

−1
i+1 · x

−1 =
∪
x∈X̄

x · Vi+1 · Vi+1 · x−1. (5.4)

Since U−1
i = Ui by (b), from (5.3) and (5.4) we conclude that V −1

i = Vi.

(3V ) is straightforward from (5.3).

(4V ) is straightforward from (c) and (5.2).

Remark 5.3.6. Every finite neighbourhood system U = {Ui : i ≤ n} for F (X) satisfies the

assumptions of Lemma 5.3.5. Indeed, item (a) follows from (1U ), item (b) follows from (2U ), and

item (c) follows from (4U ).

Corollary 5.3.7. For every symmetric subset B of F (X) and each finite neighbourhood system

U = {Ui : i ≤ n} for F (X), the B-enrichment of U in F (X) is a finite neighbourhood system for

F (X).

Proof. By Remark 5.3.6, U satisfies items (a)–(c) of Lemma 5.3.5. Item (d) of this lemma holds

because B is symmetric by our assumption. Now the conclusion of our corollary follows from the

conclusion of Lemma 5.3.5.

Definition 5.3.8. Let X and Y be sets such that X ⊆ Y . For a finite neighbourhood system U

for F (X), we shall denote by UY the cyclic (Y \X)-enrichment of U in F (Y ).

Corollary 5.3.9. Let X and Y be sets such that X ⊆ Y . For each finite neighbourhood system U

for F (X), its cyclic (Y \X)-enrichment UY is a finite neighbourhood system for F (Y ).

Proof. Since F (X) ⊆ F (Y ), it follows from Remark 5.3.6 that U satisfies items (a)–(c) of Lemma

5.3.5 (with X replaced by Y ). Since B =
∪

y∈Y \X⟨y⟩ is a symmetric subset of F (Y ), item (d) of
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Lemma 5.3.5 is satisfied as well. Applying this lemma, we conclude that the B-enrichment of U in

F (Y ) is a finite neighbourhood system for F (Y ). It remains only to note that this B-enrichment

coincides with UY by Definitions 5.3.4(ii) and 5.3.8.

5.4 Extension of finite neighbourhood systems

Definition 5.4.1. Given two sets X and Y , we shall say that a finite neighbourhood system

V = {Vi : i ≤ m} for F (Y ) is an extension of a finite neighbourhood system U = {Ui : i ≤ n} for

F (X) if and only if the following conditions are satisfied:

(iUV ) X ⊆ Y , so F (X) ⊆ F (Y ),

(iiUV ) n ≤ m,

(iiiUV ) Vi ∩ F (X) = Ui for every i ≤ n.

A straightforward proof of the next lemma is left to the reader.

Lemma 5.4.2. Let X be a set, and let U = {Ui : i ≤ n} be a finite neighbourhood system for

F (X). Let m ∈ N and m > n. Define Vi = Ui for i ≤ n and Vi = {e} for n < i ≤ m. Then

V = {Vi : i ≤ m} is a finite neighbourhood system for F (X) extending U .

Lemma 5.4.3. Let X be a set and U be a finite neighbourhood system for F (X). Then for every

set Y containing X and each set C ⊆ ⟨Y \X⟩, the cyclic C-enrichment V of U extends it.

Proof. Let U = {Ui : i ≤ n} be a finite neighbourhood system for F (X) and let V = {Vi : i ≤ n}

be its cyclic C-enrichment in F (X). By Definition 5.3.4, we have

Vn = Un ∪
∪
c∈C

⟨c⟩ (5.5)

and

Vi = Ui ∪
∪
y∈Ȳ

y · Vi+1 · Vi+1 · y−1 (5.6)

for i = 0, . . . , n− 1.
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Let pX : Y → F (X) be the map which sends each y ∈ Y \X to e and coincides with the identity

map on X, and let πX : F (Y ) → F (X) be the homomorphism which extends pX . Then

πX ↾F (X)= idF (X) and πX [⟨Y \X⟩] = {e}, (5.7)

where idF (X) denotes the identity map of F (X). Since Ui ⊆ F (X) by (1U ), the first equation in

(5.7) implies that

πX(Ui) = Ui for every i = 0, 1, . . . , n. (5.8)

Claim 27. πX [Vi] ⊆ Ui for every i ≤ n.

Proof. We shall prove our claim by reverse induction on i = n, n− 1, . . . , 0.

Since πX is a homomorphism and C ⊆ ⟨Y \X⟩, from (5.5), (5.7), (5.8) and (4U ), we get

πX [Vn] = πX

[
Un ∪

∪
c∈C

⟨c⟩

]
= πX [Un] ∪ {e} = Un ∪ {e} = Un.

Suppose that i < n and the inclusion πX [Vi+1] ⊆ Ui+1 has already been proved. We shall show

that πX [Vi] ⊆ Ui.

Let y ∈ Ȳ and v1, v2 ∈ Vi+1 be arbitrary. By inductive hypothesis we have that πX(vk) ∈

πX [Vi+1] ⊆ Ui+1 for k = 1, 2. Note that πX(y) ∈ X̄ by the definition of the homomorphism πX and

Definition 5.3.1. Therefore,

πX(y · v1 · v2 · y−1) = πX(y) · πX(v1) · πX(v2) · πX(y)−1 ∈
∪
x∈X̄

x · Ui+1 · Ui+1 · x−1 ⊆ Ui

by (3U ). This shows that

πX

∪
y∈Ȳ

y · Vi+1 · Vi+1 · y−1

 ⊆ Ui. (5.9)

Since πX is a homomorphism, combining (5.6), (5.8), (5.9), we obtain

πX [Vi] = πX

Ui ∪
∪
y∈Ȳ

y · Vi+1 · Vi+1 · y−1

 = πX [Ui]∪πX

∪
y∈Ȳ

y · Vi+1 · Vi+1 · y−1

 ⊆ Ui∪Ui = Ui.

This finishes the inductive step.
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Claim 28. Vi ∩ F (X) = Ui for every i ≤ n.

Proof. The inclusion Ui ⊆ Vi ∩ F (X) follows from (5.5), (5.6) and (1U ). To show the inverse

inclusion Vi ∩ F (X) ⊆ Ui, let h ∈ Vi ∩ F (X) be arbitrary. Then h = πX(h) ∈ πX [Vi] ⊆ Ui by the

first equation in (5.7) and Claim 27.

Since n ≤ n and X ⊆ Y , conditions (iUV ) and (iiUV ) of Definition 5.4.1 are satisfied. Condition

(iiiUV ) holds by the previous claim. Since all conditions from Definition 5.4.1 are met, V extends

U .

Corollary 5.4.4. If X and Y are sets such that X ⊆ Y , then for every finite neighbourhood system

U for F (X), its cyclic (Y \X)-enrichment UY extends U .

5.5 Canonical representations for elements of neighbourhoods of

B-enrichments

Definition 5.5.1. Assume that U = {Ui : i ≤ n} is a finite sequence of subsets of F (X), B ⊆

F (X) and V = {Vi : i ≤ n} is the B-enrichment of U in F (X). By finite reverse induction on

i = n, n− 1, . . . , 0, we shall define a (not necessarily unique) canonical representation

h = a1 · a2 · · · · · am (for a suitable m ∈ N+) (5.10)

of every element h ∈ Vi as follows.

Basis of induction. For h ∈ Vn, we let h = a1 be a canonical representation of h.

Inductive step. Suppose that i is an integer satisfying 0 ≤ i < n and we have already defined

a canonical representation of every element h ∈ Vi+1. We fix h ∈ Vi and define its canonical

representation as in (5.10) according to the rules outlined below. By (5.3), at least one (perhaps

both) of the following cases hold.

Case 1. h ∈ Ui. In this case, we let h = a1 be the canonical representation of h.

Case 2. h = x · u · v · x−1 for suitable x ∈ X̄ and u, v ∈ Vi+1. Suppose also that

u = b1 · b2 · · · · · bm1 and v = c1 · c2 · · · · · cm2 , (5.11)
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are some canonical representations of u and v, respectively. (These canonical representations were

already defined, as u, v ∈ Vi+1.) Then we call

h = x · b1 · b2 · · · · · bm1 · c1 · c2 · · · · · cm2 · x−1 (5.12)

a canonical representation of h.

Lemma 5.5.2. Let X be a set and U = {Ui : i ≤ n} be a finite sequence satisfying items (a), (b)

and (c) of Lemma 5.3.5. Assume that B′ ⊆ B ⊆ F (X) and B′ is symmetric. Let V ′ = {V ′
i : i ≤ n}

and V = {Vi : i ≤ n} be the B′-enrichment and the B-enrichment of U in F (X), respectively.

Suppose that

(B \B′) ∩

(
X̄ ∪

n∪
i=1

V ′
i

)
⊆ {e}. (5.13)

Let η : F (X) → F (X) be the map defined by

η(g) =


e if g ∈ B \B′

g otherwise.
(5.14)

If i ≤ n and h = a1 · a2 · · · · · am is a canonical representation of some element h ∈ Vi, then

h′ = η(a1) · η(a2) · · · · · η(am) is a canonical representation of h′ ∈ V ′
i .

Proof. We shall prove this lemma by finite reverse induction on i = n, n− 1, . . . , 0.

First, we shall prove the statement of our lemma for i = n. By Definition 5.3.4(i), we have

V ′
n = Un ∪B′ and Vn = Un ∪B. (5.15)

Fix h ∈ Vn. By Definition 5.5.1, h = a1 is a canonical representation of h.

If a1 ∈ B \ B′, then η(a1) = e ∈ Un ⊆ V ′
n by (5.14), (c) and (5.15). Thus, h′ = η(a1) is a

canonical representation of the element h′ = e ∈ V ′
n by Definition 5.5.1.

Suppose now that a1 ̸∈ B \ B′. Then η(a1) = a1 by (5.14), so h = a1 = η(a1) = h′. Since

h ∈ Vn, (5.15) implies that either h ∈ Un or h ∈ B. In the former case, h′ = h ∈ Un ⊆ V ′
n by (5.15).

In the latter case, from a1 = h ∈ B and a1 ̸∈ B \ B′, we conclude that a1 ∈ B′. Since B′ ⊆ V ′
n by

(5.15), it follows that h′ = a1 ∈ V ′
n. Thus, h′ = η(a1) is a canonical representation of the element
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h′ ∈ V ′
n by Definition 5.5.1.

Suppose that i < n and the statement of our lemma has already been proved for i+ 1. Fix an

arbitrary h ∈ Vi. We consider two cases as in the inductive step of Definition 5.5.1.

Case 1. h ∈ Ui. In this case h = a1 is a canonical representation of h by Case 1 of Definition

5.5.1. Since Ui ⊆ V ′
i , we have h = a1 ∈ V ′

i .

If a1 ∈ B \ B′, then a1 = e by (5.13) and η(a1) = e by (5.14). In particular, h′ = η(a1) = e =

a1 = h. Since h ∈ Ui, we conclude that h′ = η(a1) is a canonical representation of h′ ∈ V ′
i by Case

1 of the inductive step of Definition 5.5.1.

Suppose now that a1 ̸∈ B \ B′. Then η(a1) = a1 by (5.14), so h′ = η(a1) = a1 = h ∈ Ui ⊆ V ′
i .

Therefore, h′ = η(a1) is a canonical representation of h′ ∈ V ′
i by Case 1 of the inductive step of

Definition 5.5.1.

Case 2. h = x · u · v · x−1 for some x ∈ X̄ and u, v ∈ Vi+1. Consider arbitrary canonical

representations of u and v as in (5.11), so that (5.12) becomes a canonical representation of h.

The following claim holds by our inductive assumption.

Claim 29. u′ = η(b1)·η(b2)·· · ··η(bm1) and v′ = η(c1)·η(c2)·· · ··η(cm2) are canonical representations

of elements u′ ∈ V ′
i+1 and v′ ∈ V ′

i+1, respectively.

Claim 30. h∗ = x · u′ · v′ · x−1 ∈ V ′
i .

Proof. Note that V ′ is a finite neighbourhood system for F (X) by the assumptions of our lemma

and Lemma 5.3.5. In particular, condition (3V ′) of Definition 5.3.2 holds, so x ·V ′
i+1 ·V ′

i+1 ·x−1 ⊆ V ′
i ,

as x ∈ X̄. Since u′, v′ ∈ V ′
i+1 by Claim 29, we have h∗ = x · u′ · v′ · x−1 ∈ x · V ′

i+1 · V ′
i+1 · x−1, which

implies that h∗ ∈ V ′
i .

Claim 31. h∗ = x·η(b1)·η(b2)·· · ··η(bm1)·η(c1)·η(c2)·· · ··η(cm2)·x−1 is a canonical representation

of h∗ ∈ V ′
i .

Proof. This follows from Claims 29, 30 and Case 2 of the inductive step of Definition 5.5.1.

Claim 32. η(x) = x and η(x−1) = x−1.
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Proof. Indeed, if x ̸∈ B \ B′, then η(x) = x by (5.14). If x ∈ B \ B′, then x = e by (5.13), so

η(x) = η(e) = e = x by (5.14). Similarly, if x−1 ̸∈ B \ B′, then η(x−1) = x−1 by (5.14). If

x−1 ∈ B \B′, then x−1 = e by (5.13), so η(x−1) = η(e) = e = x−1 by (5.14).

Since (5.12) is a canonical representation of h that is now being considered, in order to finish

the inductive step, it suffices to show that

h′ = η(x) · η(b1) · η(b2) · · · · · η(bm1) · η(c1) · η(c2) · · · · · η(cm2) · η(x−1) (5.16)

is a canonical representation of h′ ∈ V ′
i . This follows from Claims 31, 32 and (5.16), as h′ = h∗ ∈ V ′

i .

The inductive step is now complete.

Lemma 5.5.3. Let X and Y be sets such that X ̸= ∅ and X ⊆ Y . Let U = {Ui : i ≤ n} be a

finite neighbourhood system for F (X) and let V = {Vi : i ≤ n} be its cyclic (Y \X)-enrichment in

F (Y ). Then
m∑
l=1

|lett(al)| ≤ |X| · 4n−i (5.17)

whenever i ≤ n and h = a1 · a2 · · · · · am is a canonical representation of h ∈ Vi as in Definition

5.5.1.

Proof. We shall prove the statement of our lemma by finite reverse induction on i = n, n−1, . . . , 0.

First, we shall prove the statement of our lemma for i = n. By Definition 5.3.4, we have

Vn = Un ∪
∪

y∈Y \X

⟨y⟩. (5.18)

Fix h ∈ Vn. By Definition 5.5.1, h = a1 is the unique canonical representation of h, so in order to

check (5.17), it suffices to show that |lett(h)| ≤ |X|. By (5.18), we need to consider two cases. If

h ∈ Un, then lett(h) ⊆ X, as Un ⊆ F (X) by (1U ), so |lett(h)| ≤ |X|. If h ∈ ⟨y⟩ for some y ∈ Y ,

then |lett(h)| ≤ 1 ≤ |X| holds, as X is non-empty.

Suppose that i < n and the statement of our lemma has already been proved for i + 1. We

shall prove the statement of our lemma for i. Fix h ∈ Vi and consider an arbitrary canonical

representation h = a1 · a1 · · · · · am of h. By Definition 5.5.1, we need to consider two cases.
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If h ∈ Ui, then m = 1 by Case 1 of the inductive step of Definition 5.5.1. Since Ui ⊆ F (X) by

(1U ), we have lett(a1) = lett(h) ⊆ X, which implies |lett(a1)| ≤ |X| ≤ |X| · 4n−i because i < n.

Suppose now that there exist x ∈ X̄, u, v ∈ Vi+1 and their canonical representations as in (5.11)

such that m = m1 +m2 + 2, a1 = x, am = x−1, a1+s = bs for 1 ≤ s ≤ m1, and am1+1+t = ct for

1 ≤ t ≤ m2. Therefore,

m∑
l=1

|lett(al)| = |lett(x)|+
m1∑
l=1

|lett(bl)|+
m2∑
l=1

|lett(cl)|+ |lett(x−1)|. (5.19)

By inductive hypothesis,

m1∑
l=1

|lett(bl)| ≤ |X| · 4n−(i+1) and
m2∑
l=1

|lett(cl)| ≤ |X| · 4n−(i+1). (5.20)

Since X is non-empty and i+ 1 ≤ n, we have

|lett(x)|+ |lett(x−1)| = 2 ≤ 2|X| · 4n−(i+1). (5.21)

Combining (5.19), (5.20) and (5.21), we conclude that

m∑
l=1

|lett(al)| ≤ 4|X| · 4n−(i+1) = |X| · 4n−i.

This finishes the inductive step.

5.6 Three auxiliary lemmas

Lemma 5.6.1. Let X be a set. Suppose that n, s ∈ N+, x1, x2, . . . , xs ∈ X, ε1, ε2, . . . , εs ∈ {−1, 1},

g0 = xε11 x
ε2
2 . . . xεss ∈ F (X), (5.22)

j ∈ {1, . . . , s}, v1, . . . , vn, w1, . . . , wn+1 ∈ F (X) and

h∗ = w1 · v1 · w2 · v2 · · · · · wn · vn · wn+1 (5.23)
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satisfy the following conditions:

(i) xj ̸= xp for all p = 1, . . . , s with j ̸= p;

(ii) xj ̸∈ lett(wi) for all i = 1, . . . , n+ 1;

(iii) xj ̸∈ lett(h∗);

(iv) for each i = 1, . . . , n, either vi = g0 or vi = g−1
0 .

Then h∗ = w∗, where

w∗ = w1 · e · w2 · · · · · wn · e · wn+1 (5.24)

is the word obtained from h∗ by replacing all vi in it with e.

Proof. We use the principle of minimal counter-example. Suppose that the conclusion of our lemma

fails. Among all counter-examples to our lemma, we choose a counter-example h∗ for which the

number n is the smallest. The goal is to derive a contradiction from this assumption.

It follows from (5.22), (i) and (iv) that the variable xj appears exactly once in each vi for

i = 1, . . . , n. It follows from (ii) that the variable xj does not appear in any of w1, . . . , wn+1. Since

xj ̸∈ lett(h∗) by (iii), all appearances of the terms xj and x−1
j in (5.23) cancel out as a result of

computation in F (X) on the right-hand side of (5.23). Therefore, there exist i = 1, . . . , n− 1 and

δ ∈ {−1, 1} such that the unique term xδj in vi cancels in (5.23) with the unique term x−δ
j in vi+1.

From (5.22), (i) and (iv) one easily concludes that the words vi and vi+1 are inverses of each other

and vi · wi+1 · vi+1 = e. Therefore, wi+1 = v−1
i · v−1

i+1 = (vi+1 · vi)−1 = e−1 = e, and so

w = wi · wi+2 = wi · e · wi+2 = wi · vi · wi+1 · vi+1 · wi+2. (5.25)

Claim 33. The product

h′ = w1 · v1 · · · · · wi−1 · vi−1 · w · vi+2 · wi+3 · · · · · wn · vn · wn+1 (5.26)

satisfies conditions (i)–(iv) of our lemma, after an obvious re-labelling of its elements.

Proof. Indeed, conditions (i) and (iv) are not affected by the change from h∗ to h′.
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Since lett(w) ⊆ lett(wi) ∪ lett(wi+2) by the first equation in (5.25) and Lemma 5.2.12(i), from

item (ii) we conclude that xj ̸∈ lett(w). This shows that the representation of h′ in (5.26) satisfies

item (ii) of our lemma.

It remains only to check condition (iii). From (5.23), (5.25) and (5.26), we obtain that

h∗ = h′. (5.27)

Since xj ̸∈ lett(h∗) by (iii), from (5.27) we conclude that xj ̸∈ lett(h′).

Since h′ is “shorter” than the minimal counter-example h∗ to Lemma 5.6.1, from Claim 33 we

conclude that

h′ = w′, (5.28)

where

w′ = w1 · e · · · · · wi−1 · e · w · e · wi+3 · · · · · wn · e · wn+1 (5.29)

is the word obtained from h′ by replacing all vi in it with e.

From (5.24), (5.25) and (5.29), we get w∗ = w′. Combining this with (5.27) and (5.28), we

deduce that h∗ = w∗. However, this contradicts the assumption that h∗ is a counter-example to

our lemma.

Lemma 5.6.2. Let X be a set. Suppose that m, s ∈ N+, x1, x2, . . . , xs ∈ X, ε1, ε2, . . . , εs ∈ {−1, 1},

g0 = xε11 x
ε2
2 . . . xεss ∈ F (X), (5.30)

j ∈ {1, . . . , s}, a1, a2, . . . , am ∈ F (X) and

L = {l = 1, . . . ,m : xj ∈ lett(al)} (5.31)

satisfy the following conditions:

(a) xj ̸= xp for all p = 1, . . . , s with j ̸= p;

(b) xj ̸∈ lett(a1 · a2 · · · · · am);
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(c) al ∈ ⟨g0⟩ \ {e} for each l ∈ L.

Let η : F (X) → F (X) be the map which sends each element of the cyclic group ⟨g0⟩ to e and does

not move elements of its complement F (X) \ ⟨g0⟩. Then

a1 · a2 · · · · · am = η(a1) · η(a2) · · · · · η(am). (5.32)

Proof. Suppose first that L = ∅. Then xj ̸∈ lett(a1) ∪ lett(a2) ∪ · · · ∪ lett(am) by (5.31). On the

other hand, xj ∈ lett(h) for every h ∈ ⟨g0⟩ \ {e} by Lemma 5.2.13. Therefore, al ̸∈ ⟨g0⟩ \ {e} for

every l = 1, . . . ,m. By our definition of η, this means that η(al) = al for all l = 1, . . . ,m. Thus,

(5.32) holds in this case. In the rest of the proof we assume that L ̸= ∅.

Claim 34. L = {l = 1, . . . ,m : al ∈ ⟨g0⟩ \ {e}}.

Proof. The inclusion L ⊆ {l = 1, . . . ,m : al ∈ ⟨g0⟩ \ {e}} follows from (c). To prove the inverse

inclusion, suppose that l ∈ {1, . . . ,m} and al ∈ ⟨g0⟩ \ {e}. Then xj ∈ lett(al) by Lemma 5.2.13.

Therefore l ∈ L by (5.31).

For every l ∈ L, use item (c) to fix a non-zero integer ql such that al = gql0 and define δl =

ql/|ql| ∈ {−1, 1}. It is clear that

al = gδl0 · e · gδl0 · e · · · · · e · gδl0 , (5.33)

where the term gδl0 appears |ql|-many times in (5.33). Note that η(e) = e. Since gql0 , g
δl
0 ∈ ⟨g0⟩, we

have η(gql0 ) = η(gδl0 ) = e, and so

η(al) = η(gql0 ) = e = η(gδl0 ) · η(e) · η(g
δl
0 ) · η(e) · · · · · η(e) · η(g

δl
0 ). (5.34)

Let b1 · b2 · · · · · bt be the formal expression obtained from the product a1 ·a2 · · · ·am by replacing

in it every element al for l ∈ L with the formal expression on the right-hand side of (5.33). Clearly,

a1 · a2 · · · · · am = b1 · b2 · · · · · bt. (5.35)
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Since (5.34) holds for every l ∈ L, we obtain

η(a1) · η(a2) · · · · · η(am) = η(b1) · η(b2) · · · · · η(bt). (5.36)

It follows from our definition of br’s that

br ∈ {e, g0, g−1
0 } ∪ {al : l ∈ {1, . . . ,m} \ L} for every r = 1, . . . , t. (5.37)

Since L ̸= ∅, we can select l ∈ L. Then al has the form as in (5.33), and so gδl0 appears as one

of br’s. This shows that the set

M = {r = 1, . . . , t : either br = g0 or br = g−1
0 } (5.38)

is non-empty, so we can fix an enumeration M = {ri : i ≤ n} of M such that r1 < r2 < · · · < rn.

For i = 1, . . . , n, define vi = bri .

If r1 = 1, then we let w1 = e; otherwise, we let w1 = b1 · · · · · br1−1. Similarly, if rn = t, then we

let wn+1 = e; otherwise, we let wn+1 = brn+1 · · · · ·bt. For i = 2, . . . , n, we let wi = bri−1+1 · · · · ·bri−1.

Claim 35. xj ̸∈ lett(wi) for all i = 1, . . . , n+ 1.

Proof. Let i = 1, . . . , n+ 1 be arbitrary. Combining our definition of wi with (5.37) and (5.38), we

conclude that wi is a finite product of elements of the set {e} ∪ {al : l ∈ {1, . . . ,m} \ L}. Since

lett(e) = ∅ and xj ̸∈ lett(al) for l ∈ {1, . . . ,m} \ L by (5.31), applying Lemma 5.2.12(ii) we obtain

that xj ̸∈ lett(wi).

It follows from our definition of vi and wi that

b1 · b2 · · · · bt = w1 · v1 · w2 · v2 · · · · · wn · vn · wn+1. (5.39)

Let h∗ be the element defined in (5.23). Note that

a1 · a2 · · · · · am = h∗ (5.40)
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by (5.23), (5.35) and (5.39).

Claim 36. h∗ satisfies conditions (i)–(iv) of Lemma 5.6.1.

Proof. Condition (i) of Lemma 5.6.1 coincides with condition (a) of our lemma.

Item (ii) holds by Claim 35.

(iii) Note that xj ̸∈ lett(h∗) by (5.40) and (b).

(iv) If i = 1, . . . , n, then ri ∈ M and vi = bri by our construction, so (5.38) implies that either

vi = g0 or vi = g−1
0 .

By the previous claim, we can apply Lemma 5.6.1 to conclude that

h∗ = w1 · e · w2 · · · · · wn · e · wn+1. (5.41)

Claim 37. η(br) = e for r ∈M and η(br) = br for r ∈ {1, . . . , t} \M .

Proof. If r ∈M then br ∈ {g0, g−1
0 } ⊆ ⟨g0⟩ by (5.38), so η(br) = e by our definition of η.

Suppose now that r ∈ {1, . . . , t} \M . Then br ̸∈ {g0, g−1
0 } by (5.38). From this and (5.37), we

get br ∈ {e} ∪ {al : l ∈ {1, . . . ,m} \ L}. If br = e, then η(br) = η(e) = e = br. Assume now that

br = al for some l ∈ {1, . . . ,m} \ L. Then br = al ̸∈ ⟨g0⟩ \ {e} by Claim 34, which yields η(br) = br

by our definition of η.

Claim 37 and our definition of wr’s implies that

w1 · e · w2 · . . . · wn · e · wn+1 = η(b1) · η(b2) · . . . · η(bt). (5.42)

Now (5.32) follows from (5.40), (5.41), (5.42) and (5.36) (in this order).

Lemma 5.6.3. Assume that X is a non-empty finite set, g ∈ F (X), U = {Ui : i ≤ n} is a

finite neighbourhood system for F (X) and Y is a finite set containing X satisfying the inequality

|Y \ X| > |X| · 4n. Then there exists a finite neighbourhood system V = {Vi : i ≤ n} for F (Y )

extending U such that g ∈ ⟨Cyc(Vn)⟩.
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Proof. Let |Y \X| = k. By the assumption of our lemma, we have

k > |X| · 4n. (5.43)

Fix faithful enumeration Y \X = {y1, . . . , yk} of the set Y \X and define

g0 = (y1y2 · · · yk) · g. (5.44)

Note that the product in (5.44) does not undergo any cancellations, as lett(g) ⊆ X and the set

{y1, . . . , yk} = Y \ X is disjoint from X. For the same reason, for every non-zero integer p, the

power gp0 of g0 does not undergo any cancellations as well. Therefore,

{y1, y2, . . . , yk} ⊆ lett(gp0) for every non-zero integer p. (5.45)

Since X ⊆ Y , we have F (X) ⊆ F (Y ). Therefore, the finite sequence U satisfies conditions

(a)–(c) of Lemma 5.3.5, where in condition (a) one has to replace X by Y . Define

B′ =
∪

y∈Y \X

⟨y⟩ and B = B′ ∪ ⟨g0⟩. (5.46)

Clearly, B′ ⊆ B ⊆ F (Y ) and B′ is symmetric.

Claim 38. The B′-enrichment V ′ = {V ′
i : i ≤ n} of U in F (Y ) is a finite neighbourhood system

for F (Y ) extending U .

Proof. From the first equation in (5.46), Definition 5.3.4(ii) and definition of V ′, it follows that V ′

coincides with the cyclic (Y \ X)-enrichment UY of U . Now the conclusion of our claim follows

from Corollaries 5.3.9 and 5.4.4.

Claim 39. The B-enrichment V = {Vi : i ≤ n} of U in F (Y ) is a finite neighbourhood system

for F (Y ).

Proof. It follows from (5.46) that B−1 = B. Now the conclusion of our claim follows from Lemma

5.3.5 (in which one has to replace X by Y ).
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Claim 40. g ∈ ⟨Cyc(Vn)⟩.

Proof. Since Y \X = {y1, . . . , yk}, from (5.46) we conclude that ⟨y−1
i ⟩ = ⟨yi⟩ ⊆ B for all i = 1, . . . , k.

Similarly, ⟨g0⟩ ⊆ B by (5.46). Since V is theB-enrichment of U in F (Y ), we conclude from equation

(5.2) of Definition 5.3.4 that B ⊆ Vn. This implies that y−1
1 , . . . , y−1

k , g0 ∈ Cyc(Vn). From this and

(5.44), we get g = y−1
k · y−1

k−1 · · · · · y
−1
1 · g0 ∈ ⟨Cyc(Vn)⟩.

Claim 41. The map η : F (X) → F (X) defined in Lemma 5.6.2 coincides with the map η defined

in Lemma 5.5.2.

Proof. From (5.46) we get B \ B′ = ⟨g0⟩ \ {e}. The conclusion of our claim follows from this

observation and our definitions of both maps.

In the rest of the proof we shall denote both of the maps from the above claim by η.

Claim 42. (B \B′) ∩
(
Ȳ ∪

∪n
i=1 V

′
i

)
= ∅.

Proof. Suppose that h ∈ (B \B′) ∩
(
Ȳ ∪

∪n
i=1 V

′
i

)
. From h ∈ B \B′ and (5.46), we conclude that

h ∈ ⟨g0⟩ \ {e}, so h = gp0 for some non-zero integer p. Then |lett(h)| ≥ |Y \X| = k by (5.45). Note

that h ̸∈ Ȳ , as |lett(y)| ≤ 1 < k for every y ∈ Ȳ . Since h ∈ Ȳ ∪
∪n

i=1 V
′
i , it follows that h ∈ V ′

i

for some i ≤ n. Since V ′ is the B′-enrichment of U in F (Y ), the element h ∈ V ′
i has a canonical

representation

h = a1 · a2 · · · · · am. (5.47)

Then lett(h) ⊆
∪m

l=1 lett(al) by (5.47) and Lemma 5.2.12(ii). Furthermore,

|lett(h)| ≤

∣∣∣∣∣
m∪
l=1

lett(al)

∣∣∣∣∣ ≤
m∑
l=1

|lett(al)| ≤ |X| · 4n−i ≤ |X| · 4n < k

by Lemma 5.5.3 and (5.43), in contradiction with |lett(h)| ≥ k.

Claim 43. Suppose h ∈ Vi ∩ F (X) has a canonical representation (5.47). Then

h′ = η(a1) · η(a2) · · · · · η(am) (5.48)

is a canonical representation of h′ ∈ V ′
i satisfying the inequality |

∪m
l=1 lett(η(al))| < k.
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Proof. Let h ∈ Vi ∩ F (X) be arbitrary. From Claim 42, we conclude that (5.13) holds (with X

replaced by Y ). Therefore, all the assumptions of Lemma 5.5.2 are satisfied (with X replaced by

Y in this lemma). This implies that h′ = η(a1) · η(a2) · · · · · η(am) is a canonical representation of

h′ ∈ V ′
i . Finally, ∣∣∣∣∣

m∪
l=1

lett(η(al))

∣∣∣∣∣ ≤ |X| · 4n−i ≤ |X| · 4n < k

by Lemma 5.5.3 and (5.43).

Claim 44. If h ∈ Vi ∩ F (X) has a canonical representation (5.47) and al ̸= η(al) for some l =

1, . . . ,m, then al ∈ ⟨g0⟩ \ {e}.

Proof. Suppose that al ̸= η(al) for some l = 1, . . . ,m. By (5.14), this implies that al ̸= e and

furthermore al ∈ B \B′. Finally, B \B′ ⊆ ⟨g0⟩ by (5.46). This establishes that al ∈ ⟨g0⟩ \ {e}.

Claim 45. If h ∈ Vi ∩ F (X) has a canonical representation (5.47), then elements g0, a1, . . . , am ∈

F (Y ) satisfy all assumptions of Lemma 5.6.2, with Y substituted for X in its statement.

Proof. Since g0 ∈ F (Y ), there exist s ∈ N+, x1, . . . , xs ∈ Y and ε1, . . . , εn ∈ {−1, 1} such that

(5.30) holds with Y substituted for X in it; in particular, the word in (5.30) is irreducible. Since

|
∪m

l=1 lett(η(al))| < k by Claim 43, we can use (5.44) to choose some variable yj ∈ {y1, . . . , yk} such

that yj ̸∈ lett(η(al)) for all l = 1, . . .m. Let

L = {l = 1, . . . ,m : yj ∈ lett(al)} (5.49)

and

M = {l = 1, . . . ,m : al ̸= η(al)}. (5.50)

Let l ∈ M . Then al ̸= η(al), so al ∈ ⟨g0⟩ \ {e} by Claim 44. Therefore, yj ∈ lett(al) by (5.45),

which implies l ∈ L by (5.49). This proves that M ⊆ L. To show the reverse inclusion, let us

suppose that l ∈ L. Then yj ∈ lett(al) by (5.49). Since yj ̸∈ lett(η(al)) by our choice of al, this

implies that al ̸= η(al); that is, l ∈M . This shows that L ⊆M . From these two inclusions we get

L =M .
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Recall that g ∈ F (X) and Y \X = {y1, . . . , yk} is a faithful enumeration of Y \X. Combining

this with (5.30) and (5.44), we conclude that k ≤ s and

xp = yp, εp = 1 for all p = 1, . . . , k. (5.51)

In particular, xj = yj .

We are now ready to check the assumptions (a)–(c) of Lemma 5.6.2 with X replaced by Y in

it.

(a) Let p ∈ {1, . . . , s} and j ̸= p. If p ≤ k, then xp = yp ̸= yj = xj by (5.51) and the faithfulness

of the enumeration Y \X = {y1, . . . , yk}. Suppose now that p > k. Then xp ∈ lett(g) ⊆ X, while

xj = yj ∈ Y \X, which yields xj ̸= xp.

(b) Recall that h ∈ Vi ∩ F (X) by hypothesis, so lett(h) ⊆ X. Since yj ∈ Y \ X, we have

yj ̸∈ lett(h). It remains only to note that h = a1 · a2 · · · · · am.

(c) Given al with l ∈ L, we have al ̸= η(al), as L =M . Now al ∈ ⟨g0⟩ \ {e} by Claim 44.

Claim 46. Vi ∩ F (X) ⊆ Ui for every i ≤ n.

Proof. Let h ∈ Vi∩F (X) be an arbitrary element, and let (5.47) be one of its canonical representa-

tions. Claim 45 allows us to make use of Lemma 5.6.2 to show that h = η(a1)·η(a2)·· · ··η(am). From

Claim 43 and (5.48), we can conclude that h = h′, where h′ = η(a1) · η(a2) · · · · · η(am) is the canon-

ical representation of h′ ∈ V ′
i . In particular, the equality h = h′ shows that h = h′ ∈ V ′

i ∩ F (X).

Since V ′ extends U by Claim 38, V ′
i ∩ F (X) = Ui by (iiiUV ′). This shows that h ∈ Ui.

Claim 47. The finite neighbourhood system V for F (Y ) extends U .

Proof. Since n ≤ n and X ⊆ Y , conditions(iUV ) and (iiUV ) of Definition 5.4.1 are both satisfied.

Let i ≤ n be arbitrary. Since V is the B-enrichment of U in F (Y ), we have Ui ⊆ Vi by equation

(5.3) of Definition 5.3.4. Since U is a finite neighbourhood system for F (X), we have Ui ⊆ F (X)

by item (1U ) of Definition 5.3.2. This shows that Ui ⊆ Vi ∩ F (X). The inverse inclusion holds by

Claim 46. Thus, Vi ∩F (X) = Ui. Since this equation holds for an arbitrary i ≤ n, condition (iiiUV )

also holds.

The conclusion of our lemma follows from Claims 39, 40 and 47.
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5.7 The partially ordered set and density lemmas

As usual, the symbol [X]<ω denotes the set of all finite subsets of a set X.

Definition 5.7.1. Let X be an infinite set.

(a) We denote by P the set of all triples p = ⟨⟨Xp, np,U p⟩⟩ satisfying the following conditions:

(1p) Xp ∈ [X]<ω,

(2p) np ∈ N,

(3p) U p = {Up
i : i ≤ np} is a finite neighbourhood system for F (Xp).

(b) Given triples p = ⟨⟨Xp, np,U p⟩⟩ ∈ P and q = ⟨⟨Xq, nq,U q, ⟩⟩ ∈ P, we define q ≤ p if and only

if U q is an extension of U p in the sense of Definition 5.4.1.

The following lemma easily follows from item (b) of Definition 5.7.1.

Lemma 5.7.2. The pair (P,≤) is a partially ordered set.

Lemma 5.7.3. There exists p ∈ P such that Xp ̸= ∅. In particular, P ̸= ∅.

Proof. Fix x ∈ X and let Xp = {x}. Furthermore, let np = 0, Up
0 = {e} and U p = {Up

i : i ≤ 0}.

Then p = ⟨⟨Xp, np,U p⟩⟩ clearly satisfies conditions (1p)–(3p), so p ∈ P by Definition 5.7.1(a).

In what follows, we shall need the concept of partial order density and downward-closedness

(see Definition 4.6.1 and Lemma 4.6.2)

Lemma 5.7.4. (i) For every n ∈ N, the set An = {q ∈ P : n ≤ nq} is dense and downward-closed

in (P,≤).

(ii) For every S ∈ [X]<ω, the set BS = {q ∈ P : S ⊆ Xq} is dense in (P,≤).

(iii) For every g ∈ F (X) \ {e}, the set Cg = {q ∈ P : g ∈ F (Xq) \ U q
nq} is dense in (P,≤).

(iv) For every g ∈ F (X), the set Dg = {q ∈ P : g ∈ ⟨Cyc(U q
nq)⟩} is dense in (P,≤).

Proof. (i) Fix n ∈ N. To prove that An is dense in (P,≤), we consider an arbitrary p ∈ P. If

n ≤ np, the inclusion p ∈ An holds trivially. For this reason, we can assume that np < n. By
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Lemma 5.4.2, there exists a finite neighbourhood system V = {Vi : i ≤ n} for F (Xp) extending

U p. If we define Xq = Xp, nq = n and U q = V , then q = ⟨⟨Xq, nq,U q⟩⟩ ∈ P. Since U q extends

U p, we have q ≤ p by Definition 5.7.1(b). Finally, n = nq implies q ∈ An by the definition of An,

thereby showing that An is dense in (P,≤).

To check that An is downward-closed, consider p ∈ An and q ∈ P which satisfy q ≤ p. Since U q

extends U p by Definition 5.7.1(b), the inequality np ≤ nq holds by item (iiU p

U q ) of Definition 5.4.1.

Since p ∈ An, we also have n ≤ np. By transitivity, this implies that n ≤ nq, and therefore q ∈ An

by definition of An. This shows that An is downward-closed.

(ii) Let S ∈ [X]<ω and p ∈ P be arbitrary. Then Xp ∈ [X]<ω by (1p), so Xq = Xp ∪ S ∈ [X]<ω

holds as well. Let nq = np. Since U p is a finite neighbourhood system for F (Xp) by (3p), the cyclic

(S \Xp)-enrichment U q of U p is a finite neighbourhood system for F (Xq) by Corollary 5.3.9. We

have shown that q = ⟨⟨Xq, nq,U q⟩⟩ ∈ P. Since U q is an extension for U p by Corollary 5.4.4, we

have q ≤ p by Definition 5.7.1(b). Finally S ⊆ Xq by definition of Xq, so q ∈ BS by definition of

BS . This shows that BS is dense in (P,≤).

(iii) Let g ∈ F (X)\{e} and p ∈ P be arbitrary. Since g is generated by the symbols in X, there

exists some finite set Xg ⊆ X such that g ∈ F (Xg). Since the set BXg is dense in P by (ii), we

may assume without loss of generality that p ∈ BXg . Since p ∈ BXg , this implies that Xg ⊆ Xp,

so g ∈ F (Xp), as F (Xg) ⊆ F (Xp). By by Lemma 5.4.2, there exists a finite neighbourhood system

U q = {U q
i : i ≤ np + 1} on Xp which extends U p such that g ̸∈ U q

np+1 = {e}. If we define

nq = np + 1 and Xq = Xp, then q = ⟨⟨Xq, nq,U q⟩⟩ ∈ P. Since U q extends U p, we have q ≤ p by

Definition 5.7.1(b).

(iv) Let g ∈ F (X) and p ∈ P. Arguing as in the proof (iii), we may find a finite subset Xg of X

such that g ∈ F (Xg). By (ii), without loss of generality, we may assume that p ∈ BXg . Since the

set Xp ⊆ X is finite, we can fix a set Xq ⊆ X containing Xp such that |Xq \Xp| = k > |Xp| · 4np .

By Lemma 5.6.3, there exists a finite neighbourhood system U q = {U q
i : i ≤ np} on Xq extending

U p such that g ∈ ⟨Cyc(U q
n)⟩. If we define nq = np, then we have that q = ⟨⟨Xq, nq,U q⟩⟩ ∈ P.

Since U q extends U p, we have q ≤ p by Definition 5.7.1(b). Since the condition g ∈ ⟨Cyc(U q
n)⟩ is

satisfied, we have q ∈ Dg.
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5.8 Proof of Theorem 5.1.1

For this section we shall make use of Lemma 4.7.3.

Let X be a countably infinite set. Since X algebraically generates the free group F (X), the

latter is at most countable.

Let (P,≤) be the poset from Definition 5.7.1 which uses the set X as its parameter. Clearly,

the family

D = {Cg : g ∈ F (X) \ {e}} ∪ {An ∩Dg : n ∈ N, g ∈ F (X)} ∪ {BS : S ∈ [X]<ω} (5.52)

of subsets of P is at most countable.

Let us check that all members of D are dense in (P,≤). By Lemma 5.7.4(iii), each Cg for

g ∈ F (X) \ {e} is dense in (P,≤). Let n ∈ N and g ∈ F (X) be arbitrary. Since An is dense and

downward-closed in (P,≤) by Lemma 5.7.4(i), and Dg is dense in (P,≤) by Lemma 5.7.4(iv), by

Lemma 4.6.2 we can conclude that An∩Dg is dense in (P,≤). Finally, the density in (P,≤) of each

BS for S ∈ [X]<ω follows from Lemma 5.7.4(ii).

Since we have shown that all members of D are dense in P, we can apply Lemma 4.7.3 to find

a countable set F ⊆ P such that (F,≤) is a linearly ordered set and F ∩D ̸= ∅ for every D ∈ D .

For every n ∈ N, define

Un =
∪

{Up
n : p ∈ F and n ≤ np}. (5.53)

Our nearest goal is to show that the family

B = {Un : n ∈ N} (5.54)

is a neighbourhood base at e of a Hausdorff group topology T on the free group F (X). The

verification of this will be split into a sequence of claims.

Claim 48. The equality
∩

n∈N Un = {e} holds.

Proof. Let us show that e ∈
∩

n∈N Un. Take an arbitrary n ∈ N. Since An ∈ D by (5.52), the choice

of F ⊆ P allows us to find some p ∈ An ∩ F. Then n ≤ np by the definition of An. Since p ∈ P,

the family U p = {Up
i : i ≤ np} is a finite neighbourhood system for F (Xp) by condition (3p) of
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Definition 5.7.1(a). Therefore, we can apply Remark 5.3.3 to conclude that e ∈ Up
n. Since p ∈ F

and n ≤ np, we have Up
n ⊆ Un by (5.53). Thus, e ∈ Un. Since n ∈ N was arbitrary, we conclude

that e ∈
∩

n∈N Un.

Suppose that there exists some g ∈
∩

n∈N Un with g ̸= e. Then Cg ∈ D by (5.52). The choice

of F allows us to find some p ∈ Cg ∩ F. By the definition of Cg, this automatically implies that

g ∈ F (Xp) \ Up
np . (5.55)

Since g ∈
∩

n∈N Un, the inclusion g ∈ Unp holds. By (5.53), this implies the existence of q ∈ F such

that n ≤ nq and g ∈ U q
np . Since F is linearly ordered, either q ≤ p or p ≤ q. We shall show that

both of these two conditions lead to a contradiction.

If q ≤ p holds, then U q is an extension of U p by Definition 5.7.1(b), so conditions (iU p

U q ) and

(iiiU p

U q ) of Definition 5.4.1 imply that F (Xp) ⊆ F (Xq) and U q
np ∩ F (Xp) = Up

np . Since g belongs to

the set on the left-hand side of the last equation, we get g ∈ Up
np . This is a direct contradiction to

(5.55), so this case cannot hold.

Suppose that p ≤ q holds. Then this time U p is an extension of U q by Definition 5.7.1(b),

so nq ≤ np by condition (iiU q

U p) of Definition 5.4.1. Since np ≤ nq also holds, we have np = nq.

Conditions (iU q

U p) and (iiiU q

U p) of Definition 5.4.1 imply that F (Xq) ⊆ F (Xp) and Up
np∩F (Xq) = U q

np .

Since g ∈ U q
np , the last equation implies that g ∈ Up

np . Once more, this contradicts (5.55), so this

case cannot hold either.

The obtained contradiction finishes the proof of our claim.

Claim 49. U−1
n = Un and Un+1 · Un+1 ⊆ Un for every n ∈ N.

Proof. Fix n ∈ N.

Consider an arbitrary p ∈ F satisfying n ≤ np. Then Up
n = (Up

n)−1 by condition (2U ) of

Definition 5.3.2. If we apply this to (5.53), we obtain that Un = U−1
n .

For the second inclusion, consider some arbitrary g1, g2 ∈ Un+1. By (5.53), there exist p1, p2 ∈ F

such that n + 1 ≤ npj and gj ∈ U
pj
n+1 for j = 1, 2. Since F is linearly ordered, without loss of

generality, we may assume that p1 ≤ p2. Then U p1 extends U p2 by Definition 5.7.1(b). Now

conditions (iU p2

U p1 ) and (iiiU p2

U p1 ) of Definition 5.4.1 imply F (Xp2) ⊆ F (Xp1) and Up1
n+1 ∩ F (Xp2) =
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Up2
n+1. From the last equation, we obtain g2 ∈ Up1

n+1. The inclusion g1 ∈ Up1
n+1 holds by the choice

of p1.

Note that U p1 is a finite neighbourhood system for F (Xp1) by condition (3p1) of Definition

5.7.1(a). Since e ∈ Xp1 , from condition (3U p1 ) of Definition 5.3.2 we obtain that

g1 · g2 ∈ Up1
n+1 · U

p1
n+1 = e · Up1

n+1 · U
p1
n+1 · e

−1 ⊆
∪

x∈Xp1

x · Up1
n+1 · U

p1
n+1 · x

−1 ⊆ Up1
n . (5.56)

Since p1 ∈ F and n < n + 1 ≤ np1 , we have Up1
n ⊆ Un by (5.53). From this inclusion and

(5.56), we obtain g1 · g2 ∈ Un. Since g1, g2 ∈ Un+1 were arbitrary, this establishes the inclusion

Un+1 · Un+1 ⊆ Un.

Claim 50. For every n ∈ N and each y ∈ X̄, the inclusion y · Un+1 · y−1 ⊆ Un holds.

Proof. Let n ∈ N and y ∈ X̄ be arbitrary. It follows from Definition 5.3.1 that y = xε for some

x ∈ X and ε ∈ {−1, 1}. Since B{x} ∈ D , there exists p ∈ B{x} ∩ F by the choice of F. Let

h ∈ Un+1. By (5.53), there exists some q ∈ F such that n+1 ≤ nq and h ∈ U q
n+1. Since F is linearly

ordered, there exists some r ∈ F such that r ≤ p and r ≤ q. Then U r extends both U p and U q

by Definition 5.7.1(b). Since U r extends U q, by condition (iiiU q

U r) of Definition 5.4.1, the equality

U r
n+1 ∩ F (Xq) = U q

n+1 holds, implying that h ∈ U r
n+1. Similarly, by condition (iiU q

U r) of Definition

5.4.1, we have n+1 ≤ nq ≤ nr. Since U r is a finite neighbourhood system for F (Xr) by condition

(3r) of Definition 5.7.1(a), we have e ∈ U r
n+1 by Remark 5.3.3. Since p ∈ B{x}, we have x ∈ Xp by

definition of B{x}. Since U r extends U p, we have Xp ⊆ Xr by condition (iU p

U r ) of Definition 5.4.1.

Therefore, x ∈ Xr, and so y = xε ∈ Xr by Definition 5.3.1. Since U r is a finite neighbourhood

system for F (Xr), by applying condition (3U r) of Definition 5.3.2, we get that

y · h · y−1 = y · h · e · y−1 ⊆ y · U r
n+1 · U r

n+1 · y−1 ⊆
∪

z∈Xp1

z · U r
n+1 · U r

n+1 · z−1 ⊆ U r
n. (5.57)

Since r ∈ F and n ≤ nr, we have U r
n ⊆ Un by (5.53). Combining this with (5.57), we conclude that

y·h·y−1 ∈ Un. Since h ∈ Un+1 was chosen arbitrarily, this proves the inclusion y·Un+1·y−1 ⊆ Un.

Claim 51. For every n ∈ N and each g ∈ F (X), there exists k ∈ N such that g · Uk · g−1 ⊆ Un.
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Proof. Let n ∈ N and g ∈ F (X) be arbitrary. Then g = y1 · y2 · · · · · ym for some y1, y2, . . . , ym ∈ X̄.

Note that

ym · Un+m · y−1
m ⊆ Un+m−1

by Claim 50. Applying this claim once again, we get

ym−1 · (ym · Un+m · y−1
m ) · y−1

m−1 ⊆ ym−1 · Un+m−1 · y−1
m−1 ⊆ Un+m−2.

By inductively applying Claim 50 finitely many times, we obtain the inclusion

g · Un+m · g−1 = y1 · · · · · ym · Un+m · y−1
m · · · · · y−1

1 ⊆ Un.

Therefore, it suffices to let k = n+m.

Claim 52. The family B as in (5.54) is a neighbourhood base at e of some Hausdorff group topology

T on F (X).

Proof. It easily follows from Claims 48 and 49 that

Um ⊆ Un whenever n,m ∈ N and n ≤ m. (5.58)

Combined with (5.54), this implies that B is a filter base. By (5.54), Claim 49 and Claim 51, B

has the following three properties.

• For every U ∈ B, there exists V ∈ B such that V · V ⊆ U ;

• For every U ∈ B, there exists V ∈ B such that V −1 ⊆ U ;

• For every U ∈ B and each g ∈ F (X), there exists V ∈ B such that g · V · g−1 ⊆ U .

By [8, Theorem 3.1.5], the family

T = {O ⊆ F (X) : ∀ g ∈ O ∃ U ∈ B (gU ⊆ O)}

is a topology on the free group F (X) making it into a topological group such that the family B is
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a neighbourhood base at e comprised of T -neighborhoods of e. It follows from Claim 48, Theorem

4.7.1 and Remark 4.7.2 that T is a Hausdorff group topology for F (X).

Claim 53. The topological group (F (X),T ) has the DW property.

Proof. We are going to check that the topological group (F (X),T ) satisfies Definition 1.5.2.

Let W be a neighbourhood of e in (F (X),T ). By Claim 52, there exists n ∈ N such that

Un ⊆W .

Fix g ∈ F (X) \ {e} and recall that An ∩ Dg ∈ D . By the choice of F, there exists some

q ∈ An ∩Dg ∩ F. Since q ∈ An, the inequality n ≤ nq holds by definition of An, and therefore

U q
nq ⊆ U q

n ⊆ Un ⊆W (5.59)

by (5.53) and (5.58). From (5.59) we obtain that ⟨Cyc(U q
nq)⟩ ⊆ ⟨Cyc(W )⟩. Finally, from q ∈ Dg

and our definition of Dg, we get g ∈ ⟨Cyc(U q
nq)⟩. Therefore, g ∈ ⟨Cyc(W )⟩. Since this holds for

every g ∈ F (X), we have proved that F (X) ⊆ ⟨Cyc(W )⟩. Since the converse inclusion clearly

holds, we get F (X) = ⟨Cyc(W )⟩.

Since the last equality holds for every neighbourhood W of e in (F (X),T ), we conclude that

(F (X),T ), has the DW property.

Since (F (X),T ) is Hausdorff and has a countable base at e by Claim 52, it is metrizable. This

concludes the proof of Theorem 5.1.1.

5.9 Proof of Theorem 5.1.2

Fix an infinite cardinal κ. We are going to show that the free group with κ many generators admits

an DW group topology.

Let H be the free group with a countably infinite set of generators equipped with the metric

DW group topology constructed in Theorem 5.1.1. Let B be a countable local base of H at its

identity eH consisting of open neighbourhoods of eH .

Define E = [κ × N]<ω \ {∅}. Since κ is infinite, |E| = κ and |[E]<ω| = κ. Since H and B are

countable, we can fix a listing {(Eα, hα, Bα) : α < κ} of triples (Eα, hα, Bα), where Eα ∈ [E]<ω \{∅},

hα ∈ HEα and Bα ∈ B for every α < κ, having the following property:
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(⋄) If E ∈ [E]<ω \ {∅}, h ∈ HE and B ∈ B, then (Eγ , hγ , Bγ) = (E , h, B) for some γ < κ.

For every E ∈ E fix an injection θE : E → H such that θE(E) is an independent subset of H.

(It suffices to send E injectively into a subset of the infinite set of generators of H.)

By transfinite induction on α < κ, we shall define xα,n ∈ HE for every n ∈ N satisfying two

properties:

(iα) If E ∈ E and (α, n) ∈ E for some n ∈ N, then xα,n(E) = θE(α, n)

(iiα) There exist n0, k ∈ N such that xα,n0+i ∈ Cyc(Wα) for i = 0, . . . , k and hα(E) =
∏k

i=0 xα,n0+i(E)

for every E ∈ Eα, where Wα = BEα
α ×HE\Eα .

Suppose that α < κ is an ordinal and xβ,n ∈ HE were already defined for all β < α and n ∈ N in

such a way that properties (iβ) and (iiβ) hold. We shall define xα,n ∈ HE for every n ∈ N satisfying

(iα) and (iiα).

Recall that Eα ∈ [E]<ω \ {∅}, so Eα is a (non-empty) finite subset of E = [κ × N]<ω \ {∅}.

Therefore,
∪

Eα is a finite subset of κ× N, so we can fix n0 ∈ N such that

(α, n) ̸∈
∪

Eα whenever n ∈ N and n ≥ n0. (5.60)

Let Eα = {E1, . . . , El} be a faithfully indexed enumeration, where Ej ∈ E for every j = 1, . . . , l.

Let j = 1, . . . , l be arbitrary. Since hα ∈ HEα , we have hα(Ej) ∈ H. Since Bα ∈ B, it is

an open neighbourhood of eH in H. Since H is DW, we have H = ⟨Cyc(Bα)⟩ by Definition

1.5.2. Since hα(Ej) ∈ H, this allows us to choose kj ∈ N+ and gj,0, . . . , gj,kj ∈ Cyc(Bα) such that

hα(Ej) =
∏kj

i=0 gj,i.

Define k = max{kj : j = 1, . . . , l}.

Let j = 1, . . . , l be arbitrary. For every integer i satisfying kj < i ≤ k, define gj,i = eH . Then

gj,0, . . . , gj,k ∈ Cyc(Bα) and hα(Ej) =
k∏

i=0

gj,i. (5.61)
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For n ∈ N satisfying n0 ≤ n ≤ n0 + k, define xα,n ∈ HE by

xα,n(E) =


gj,n−n0 if E = Ej for some j = 1, . . . , l

θE(α, n) if (α, n) ∈ E

e otherwise

for E ∈ E. (5.62)

It should be noted that the first and the second line of (5.62) do not contradict each other. Indeed,

if E = Ej for some j = 1, . . . , l, then E ∈ Eα. Since n ≥ n0, we have (α, n) ̸∈ E by (5.60).

For n ∈ N satisfying either n < n0 or n > n0 + k, define xα,n ∈ HE by

xα,n(E) =


θE(α, n) if (α, n) ∈ E

e otherwise
for E ∈ E. (5.63)

Condition (iα) is satisfied by (5.62) and (5.63).

Let us check the condition (iiα). Let E ∈ Eα be arbitrary. Then E = Ej for a unique j = 1, . . . , l.

It follows from (5.62) that xα,n0+i(E) = gj,i for all i = 0, . . . , k, so from (5.61) we get

hα(E) = hα(Ej) =
k∏

i=0

gj,i =
k∏

i=1

xα,n0+i.

and

xα,n0+i(E) ∈ Cyc(Bα) for i = 0, . . . , k (5.64)

Since Wα = BEα
α ×HE\Eα and (5.64) holds for every E ∈ Eα, we conclude that xα,n0+i ∈ Cyc(Wα)

for every i = 0, . . . , k. This finishes the check of condition (iiα).

The inductive construction is complete.

Claim 54. X = {xα,n : α < κ, n ∈ N} is an independent subset of HE.

Proof. By [10, Lemma 2.3], it suffices to show that every non-empty finite subset Y of X is inde-

pendent in HE. Fix a non-empty finite set E ⊆ κ × N such that Y = {xα,n : (α, n) ∈ E}. Note

that E ∈ E by our definition of E. Let πE : HE → H be the projection on E’th coordinate.

Let η : E → Y be a surjective map defined by η(α, n) = xα,n for (α, n) ∈ E. If (α, n) ∈ E, then

πE(η(α, n)) = πE(xα,n) = xα,n(E) = θE(α, n) by (iα). This shows that πE ↾Y ◦η = θE . Since θE
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is an injection, so is η. Since η is also surjective, η is a bijection between E and Y , so it has the

inverse map η−1 : Y → E. Now πE ↾Y ◦η = θE implies πE ↾Y = θE ◦ η−1. Since both η−1 and θE

are injections, so is πE ↾Y . Finally, it follows from our choice of θE that πE ↾Y (Y ) = θE ◦η−1(Y ) =

θE(η
−1(Y )) = θE(E) is an independent subset of H. It follows from [10, Lemma 2.4] that Y is an

independent subset of HE.

Our goal is to show that the subgroup G = ⟨X⟩ of HE generated by X is DW; see Claim 57

below. To achieve this, we fix arbitrarily an open neighbourhood U of the identity e of HE and

an element g ∈ G. Since G is a subgroup of HE, by Definition 1.5.2, it suffices to check that

g ∈ ⟨Cyc(U ∩G)⟩. Since g ∈ G = ⟨X⟩, we can find l ∈ N such that

g =
l∏

i=1

xεiαi,ni
(5.65)

where αi ∈ κ, ni ∈ N and εi ∈ {−1, 1} for every i = 1, . . . , l. Let

Let

E1 = {(αi, ni) : i = 1, . . . , l}.

Since U is open in HE, there exists a non-empty finite subset E2 of E and B ∈ B such that

BE2 ×HE\E2 ⊆ U . Let E = E1 ∪ E2. Clearly E ∈ [E]<ω \ {∅} and h = g ↾E∈ HE . By (⋄), we can

find an ordinal α < κ such that (E , h, B) = (Eα, hα, Bα). Let n0, k ∈ N, xα,n0 , xα,n0+1, . . . , xα,n0+k

and Wα be as in condition (iiα).

Claim 55. g1 =
∏k

i=0 xα,n0+i ∈ ⟨Cyc(U ∩G)⟩ and g1 ↾E= g ↾E .

Proof. Since E2 ⊆ E = Eα and Bα = B, we have

Wα = BEα
α ×HE\Eα = BE ×HE\E ⊆ BE2 ×HE\E2 ⊆ U ; (5.66)

in particular, Cyc(Wα) ⊆ Cyc(U) by (1.2). Combining this with (iiα), we conclude that xα,n0+i ∈

Cyc(U) for i = 0, . . . , k. Since xα,n0+i ∈ X ⊆ G, we have xα,n0+i ∈ Cyc(U ∩ G) for i = 0, . . . , k.

Therefore, g1 ∈ ⟨Cyc(U ∩G)⟩ by our definition of g1.

Let E ∈ E be arbitrary. It follows from E ∈ E, g ↾E= h = hα and (iiα) that
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g(E) = g ↾E (E) = h(E) = hα(E) =
k∏

i=0

xα,n0+i(E) = g1(E).

This implies the equality g1 ↾E= g ↾E .

Claim 56. g2 = g · g−1
1 ∈ Cyc(U ∩G).

Proof. If E ∈ E , then g2(E) = g(E) · (g1(E))−1 = g(E) · g(E)−1 = eH by definition of g2 and the

second statement of Claim 55. Thus, g2 ∈ {eH}E ×HE\E . Note that {eH}E ×HE\E ⊆ BE ×HE\E ⊆

U by (5.66). Since {eH}E ×HE\E is a subgroup of HE , the stricter inclusion {eH}E ×HE\E ⊆ Cyc(U)

holds as well. This argument shows that g2 ∈ Cyc(U).

Note that g1 ∈ ⟨Cyc(U ∩G)⟩ ⊆ G by Claim 55 and the fact that G is a group. Since g ∈ G, we

obtain g2 = g · g−1
1 ∈ G. Combining this with g2 ∈ Cyc(U), we get g2 ∈ Cyc(U ∩G).

It follows from Claims 55 and 56 that g = g2 · g1 ∈ Cyc(U ∩G) · ⟨Cyc(U ∩G)⟩ ⊆ ⟨Cyc(U ∩G)⟩.

Since this inclusion holds for an arbitrary g ∈ G, we conclude that G ⊆ ⟨Cyc(U ∩G)⟩. The converse

inclusion ⟨Cyc(U ∩G)⟩ ⊆ G trivially holds. We have proved that G = ⟨Cyc(U ∩G)⟩. Since this

equation holds for an arbitrary open neighbourhood U of e in HE and G is a subgroup of HE, from

Definition 1.5.2 we obtain the following.

Claim 57. The subgroup G = ⟨X⟩ of HE generated by X is DW.

It follows from Claim 54 that G is a free group with generating set X. Since κ is an infinite

cardinal, |X| = |κ× N| = κ. By Claim 57, the subspace topology G inherits from HE is DW.

5.10 Open questions

The free group with one generator is isomorphic to the group Z of integer numbers, so it does not

admit an SSGP group topology by [4, Corollary 3.14], and therefore it also cannot have an DW

group topology either. In view of this remark, Theorem 5.1.2 motivates the following question.

Question 5.10.1. Let n ∈ N with n ≥ 2. Can the free group with n generators admit either an

DW or an SSGP group topology?

Comparison of Theorems 5.1.1 and 5.1.2 suggests the following question:
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Question 5.10.2. Can the DW group topology in Theorem 5.1.2 be chosen to be metric?

In fact, a more general questions seems quite intriguing.

Question 5.10.3. If a group G admits an SSGP group topology, must G also admit a metric SSGP

group topology? What if G is abelian?

The DW version of this question also makes sense.

Question 5.10.4. If a group G admits an DW group topology, must G also admit a metric DW

group topology? What if G is abelian?

The following problem may be considered as a “heir” of Question 1.5.10(a):

Problem 5.10.5. Describe the algebraic structure of (abelian) groups which admit an DW group

topology.

Shakhmatov and the author made some progress on this problem in [45].

124



Chapter 6

On algebraic structure of groups with

a property of Dierolf and Warken

6.1 Introduction

In this chapter, we investigate the class of groups which carry property DW (please see Section

1.5.2 for the historical overview of this property). During our investigation, we also obtain some

information about their algebraic structure. To the best of the knowledge of Shakhmatov and the

author, the results presented here mark a humble first attempt at a close investigation of Dierolf and

Warken’s original unmodified property DW. As we shall see in Section 6.3, the class of topological

groups defined by this property does not coincide with the class of SSGP groups, so it becomes of

importance to understand just how different these two classes may be.

This chapter is organized as follows: in Section 6.2 we cover algebraic preliminaries and def-

initions which will be needed throughout this chapter, in particular, we also cover some folklore

facts for minimally almost periodic groups. Each higlighted concept also comes with a literature

recommendation for the interested reader. In Section 6.3 we give a necessary condition for torsion

Abelian groups to admit an DW group topology, in particular, we are able to show some elemen-

tary examples to distinguish this class from the SSGP class. In the intermediate Section 6.4 we

show that the so called maximal 0-rank subgroups of an Abelian group inherit a precompact group

topology if they happen to be finitely generated; in particular, this allows us to deduce that a
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topological group quotient by one of such subgroups cannot be trivial. In Section 6.5 we utilize the

main result of Section 6.4 to obtain a necessary condition on groups of finite free rank to have an

DW group topology; as a consequence, we are able to show that Qn (where n is a positive integer)

contains no non-trivial DW subgroups. In the latter Section 6.6 we dedicate some time to show

some basic topological properties of the DW class; in particular, we cover some loose ends in the

topic of subgroup inheritance. In the self-contained Appendices A.1 and A.2 we cover some purely

algebraic results that are utilized in Section 6.5; to be precise, we utilize the notion of finitely

generated (or Prüfer) rank to obtain an upper bound for the p-rank in group quotients where ALL

p-ranks are finite.

6.2 Preliminary lemmas

Definition 6.2.1. Let G be a group. We say that a subgroup H of G is essential in G if and only

if for every g ∈ G \ {e} we have that ⟨g⟩ ∩H ̸= {e} holds.

For convenience, we shall be utilizing the following terminology as seen in [16][Section 3]:

Definition 6.2.2. Let G be an Abelian group. A subgroup H of G is called a maximal 0-rank

subgroup of G provided that the algebraic quotient G/H is a torsion group.

Proposition 6.2.3. Let G be a non-torsion Abelian group. The following are equivalent for a

subgroup H of G:

(i) H is a maximal 0-rank subgroup of G,

(ii) H contains a maximal independent subset of G,

(iii) For every non-torsion g ∈ G the inequality ⟨g⟩ ∩H ̸= {e} holds.

We invite the reader to compare item (iii) of Proposition 6.2.3 with Definition 6.2.1. Indeed,

one can easily see that a maximal 0-rank subgroup of a group G is essential if and only if the group

G is torsion-free. In essence, one can think of maximal 0-rank subgroups as subgroups which are

almost essential.

The following lemma is well known. We include its easy proof only for the convenience of the

reader.
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Lemma 6.2.4. A precompact minimally almost periodic group is trivial.

Proof. Let G be a precompact minimally almost periodic group. Since G is precompact, its com-

pletion K is a compact group. Let ι : G → K be the natural inclusion monomorphism. Since

ι is continuous and G is minimally almost periodic, the image ι(G) must be trivial. Since ι is a

monomorphism, G itself must be trivial as well.

6.3 The DW property in torsion groups

In this section we shall be focusing on the behavior of the DW property in torsion groups. The next

results shows that the implications in (1.6) all become reversible in the realm of bounded groups.

We begin as follows:

Proposition 6.3.1. Every SSGP topological group of bounded order satisfies the DW property.

Proof. Suppose n ∈ N is the exponent of G and let U ⊆ G be any open neighbourhood of the

identity of G. Choose another open neighbourhood V of e such that V n ⊆ U and let x ∈ V be

arbitrary. Clearly the inclusion

⟨x⟩ = {xm : m = 1, . . . , n} ⊆ V n ⊆ U

holds. Since the previous inclusion implies that x ∈ Cyc(U), we have shown that V ⊆ Cyc(U) holds.

Naturally, the inclusion Cyc(U) ⊆ ⟨Cyc(U)⟩ also holds. Since the subgroup ⟨Cyc(U)⟩ contains the

non-empty open set V , it is a clopen subset of G. Since it is also dense in G by the SSGP property

in Definition 1.5.5, ⟨Cyc(U)⟩ must coincide with G.

By combining Proposition 6.3.1 with Theorem 1.5.7 we obtain the following:

Corollary 6.3.2. Every Abelian minimally almost periodic topological group of bounded order

satisfies the DW property.

As a consequence, the implications shown in (1.6) become reversible in the realm of Abelian

groups of bounded order. As we had highlighted before in Remark 1.2.6, an Abelian group has null

divisible rank if and only if it is a bounded group. We can then modify Theorem 1.4.11 to re-state

it in the following form:
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Theorem 6.3.3. A non-trivial Abelian group G of bounded order admits an DW group topology if

and only if all leading Ulm-Kaplanski invariants of G are infinite.

With the case of bounded groups out of the way, we can now begin to study the general case of

torsion groups. The following lemma begins to show the algebraic structure of torsion groups that

can admit an DW group topology.

Lemma 6.3.4. If an Abelian torsion group admits an DW group topology, then all of its non-zero

p-ranks are infinite.

Proof. For all prime numbers p ∈ P let us denote by Gp the p-component of G. In order to proceed

by contradiction, let us suppose that G admits an DW group topology and that the non-trivial

component Gp (for some fixed p ∈ P) has finite rank. Since Gp has finite rank, we can fix E ⊆ Gp

to be its finite essential subgroup of rank rp(G). For convenience, let us denote G = Gp ⊕H where

H =
⊕

q∈P\{p}

Gq.

Define E∗ = E \ {e} and consider V any open neighbourhood of e in G. Since E is finite, the set

U = V \ E∗ is also an open neighbourhood of e in G.

Claim 58. The inclusion ⟨Cyc(U)⟩ ⊆ H holds.

Proof. Let g + h ∈ Cyc(U) be arbitrary and suppose that g ̸= e. By the definition of G and its

p-components, we may find integers n,m ∈ N be natural numbers such that n is a power of p, p

does not divide m, and the equalities ng = e and mh = e are satisfied. By the choice of m we have

that mh = e holds, implying that

mg = mg +mh = m(g + h) ∈ Cyc(U), (6.1)

as g + h ∈ Cyc(U). Now, since n and m are relatively prime and g ̸= e, we have that mg ̸= e. By

hypothesis, E is an essential subgroup of G, and thus we have that ⟨mg⟩∩E ̸= {e}; this implies that

U ∩ E ̸= {e} which contradicts the definition of U . We then have that g = e and so Cyc(U) ⊆ H.

Since H is a group we have that ⟨Cyc(U)⟩ ⊆ H, and the assertion is proved.
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By the previous claim we have that ⟨Cyc(U)⟩ ⊆ H ⊊ Gp ⊕H = G, and so G does not have the

DW property.

Theorem 6.3.5. If an Abelian torsion group G admits an DW group topology, then every non-

trivial p-component Gp of G is either bounded with all its leading Ulm-Kaplansky invariants infinite,

or it is of infinite divisible rank.

Proof. We begin with the following claim:

Claim 59. For every prime p ∈ P the cardinal r(nGp) is either infinite or null for all n ∈ N.

Proof. First, let us observe that Lemma 6.3.4 implies that for every torsion Abelian group H

and every prime p ∈ P, if H admits an DW group topology then the rank of its p-components,

r(Hp) = rp(H), are either infinite or null. Since G admits an DW group topology, Proposition

6.6.2(i) implies that for every n ∈ N the group nG also admits an DW group topology. By

combining these two results we obtain that for every n ∈ N the cardinal r(nGp) is either infinite or

null, as desired.

Recall that for any group H the inequality r(H) < |H| holds, so we can use Claim 59 to deduce

that for every prime p ∈ P and n ∈ N, either |nGp| ≥ ω or nGp = {0} holds. Let p be a prime

p ∈ P, if the p-component Gp is bounded, then the previous observation and [11][Proposition 2.5]

imply that all leading Ulm-Kaplansky invariants of Gp are infinite.

On the other hand, if the p-component Gp is unbounded, then r(nGp) is non-zero for every

positive integer n ∈ N. By using Claim 59 we obtain that r(nGp) is infinite for all positive integers

n ∈ N. This shows that Gp has infinite divisible rank by definition.

Example 6.3.6. Let P ⊆ P be an infinite set of primes. The following groups admit an SSGP

group topology but do not admit an DW group topology:

(i) G1 =
⊕

p∈P Z(p) a direct sum of Z(p) groups.

(ii) G2 =
⊕

p∈P Z(p∞) a direct sum of p-Prüfer groups.

Since the set P is countably infinite, the inequalities rd(G1) ≥ ω and rd(G2) ≥ ω can easily

be verified from Definition 1.2.4 for both groups. By Theorem 1.5.12, both G1 and G2 admit an
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SSGP group topology. If we fix some prime q ∈ P it suffices to observe that neither of the groups

Z(p) and Z(p∞) satisfy the necessary conditions from Theorem 6.3.3. This shows that neither G1

nor G2 can admit an DW group topology.

These two examples show that DW groups form a proper subclass of SSGP groups, and therefore

the first implication in (1.6) is not reversible. As previously discussed in Section 1.5.5, the notion

of divisible rank played a key role in the characterization of Abelian SSGP groups. In the case of

groups with the DW property however, it is quite likely that a different approach will be needed.

6.4 Precompactness in maximal 0-rank subgroups of DW groups

In this section we shall be focusing on maximal 0-rank subgroups and the properties they inherit.

As we shall see, if a maximal 0-rank subgroup also happens to be finitely generated, then this

subgroup will inherit a precompact subgroup topology. As a result, this shall give us some more

insight when we study Abelian groups with finite free rank. Before we begin, we shall be needing

the following lemma for certain vector spaces.

Lemma 6.4.1. Let n ∈ N and consider V = Qn as a vector space over Q. If {x1, . . . , xn} ⊆ Zn is

a linearly independent subset of V , there exists a finite subset F ⊆ Zn such that

n⊕
j=1

⟨xi⟩+ F = Zn, (6.2)

where ⟨xi⟩ is the smallest subgroup generated by xi with integer coefficients for all i = 1, . . . , n.

Proof. Define

B =

{
n∑

i=1

αixi : αi ∈ (−1, 1) ∩Q

}
. (6.3)

Claim 60. Qn =
⊕n

j=1⟨xi⟩+B.

Proof. Let v ∈ Qn be arbitrary. Since {x1, . . . , xn} is a basis for V , for every i = 1, . . . , n there

exists βi ∈ Q such that v =
∑n

j=1 βixi. Finally, for every i = 1, . . . , n there exist zi ∈ Z and

ri ∈ (−1, 1) such that βi = zi + ri. This implies that

v =
n∑

j=1

zixi +
n∑

j=1

rixi ∈
n⊕

j=1

⟨xi⟩+B. (6.4)
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This proves that Qn ⊆
⊕n

j=1⟨xi⟩+B. The converse inclusion clearly holds, showing the equality.

It is clear from (6.3) that B is a bounded set in Qn, and therefore the set F = B ∩ Zn is finite.

Let v ∈ Zn be arbitrary. By the previous claim, there exists v1 ∈
⊕n

j=1⟨xi⟩ and v2 ∈ B such

that v = v1 + v2. Since Zn is a subgroup of Qn, we have that v2 = v − v1 ∈ Zn. This implies that

v2 ∈ B ∩ Zn = F , proving that Zn ⊆
⊕n

j=1⟨xi⟩+ F . The converse inclusion clearly holds, showing

the equality in (6.2).

Lemma 6.4.2. Let G be an abelian DW group and suppose that E ⊆ G is a maximal 0-rank

subgroup of G. For every neighbourhood U of 0 in G and each finite sequence g1, . . . , gk ∈ G, there

exists m ∈ N+ such that mgj ∈ ⟨Cyc(U ∩ E)⟩ for all j = 1, . . . , k.

Proof. We check the following elemental claim.

Claim 61. If g1, . . . , gk ∈ G is a sequence such that mjgj ∈ Cyc(U ∩ E) for some m1, . . .mj ∈ Z

then there exists m ∈ N+ such that mgj ∈ Cyc(U ∩ E) for all j = 1, . . . , k.

Proof. Let g1, . . . , gk ∈ G be a sequence as above. By hypothesis, we can consider a finite sequence

m1, . . . ,mk ∈ N+ such that for every i = 1, . . . , k we have that the inclusion

mjgj ∈ Cyc(U ∩ E)

holds. Let us then take

m = m1 · · · · ·mk ∈ N+.

Let j = 1, . . . , k be arbitrary, observe that since mjgj ∈ E and E is a subgroup of G, the inclusion

mgj = (m/mj)mjgj ∈ E

holds. Finally, since gj ∈ Cyc(U) holds, this implies that mgj ∈ Cyc(U) by (1.2). With this we

have proved that the inclusion

mgj ∈ Cyc(U ∩ E)

holds for every j = 1, . . . , k.
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It now suffices to verify the hypotheses of our previous claim. Let us fix a sequence g1, . . . , gk ∈ G

and take U to be some neighbourhood of 0. Since G is DW, for every i = 1, . . . , k we can get a

sequence hi,1, . . . , hi,ni ∈ Cyc(U) such that

gi =

ni∑
j=1

hi,j . (6.5)

We now utilize our hypothesis over E with Proposition 6.2.3(iii). Observe that if some hi,j happens

to be a torsion element of G, we can find some ni,j ∈ N+ such that ni,jhi,j = 0 ∈ Cyc(U) ∩ E. In

the case where hi,j is a torsion free element, we simply take ni,j such that 0 ̸= ni,jhi,j ∈ Cyc(U)∩E.

In either case, we can always take some ni,j ∈ N+ such that

ni,jhi,j ∈ Cyc(U) ∩ E = Cyc(U ∩ E)

holds for every j = 1, . . . , ni. From this, the sequences {hi,j : i = 1, . . . , k and j = 1, . . . , ni} ⊆ G

and {ni,j : i = 1, . . . , k and j = 1, . . . , ni} ⊆ N+ satisfy the hypotheses of our claim. This implies

the existence of some m ∈ N+ such that

mhi,j ∈ Cyc(U ∩ E) (6.6)

for all i = 1, . . . , k and j = 1, . . . , ni. If we combine this with Equation 6.5, we get that

mgi =

ni∑
j=1

mhi,j ∈ ⟨Cyc(U ∩ E)⟩.

From this, our proof has been completed.

Theorem 6.4.3. Suppose that an Abelian DW group G contains a free maximal 0-rank subgroup

E of finite rank. The following hold:

(i) E is precompact in the subgroup topology inheried from G;

(ii) E is not dense in G.

Since E is free and of finite rank, it is isomorphic to a power of the group of integers, Zn, where

n is the rank of E. For this reason (and for convenience), let us assume that Zn is precisely this
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subgroup E.

Proof. We begin with the following claim.

Claim 62. For every neighbourhood U of 0, the set Cyc(U ∩ Zn) generates Qn as a vector space

over Q.

Proof. Let U be any neighbourhood of 0.

For every i = 1, . . . , n we denote by ei ∈ Zn the basic canonical vector of Qn of the i-th

coordinate. By our hypothesis over Zn, Lemma 6.4.2 implies that we can find m ∈ N+ such that

mei ∈ ⟨Cyc(U ∩ Zn)⟩ for all i = 1, . . . , n.

Since m ̸= 0, the system {me1, . . . ,men} is a linearly independent set of size n in Qn, and

therefore a basis for Qn as a vector space over Q. Since {me1, . . . ,men} ⊆ ⟨Cyc(U ∩ Zn)⟩ and the

latter is a subset of the vector subspace of Qn spanned by Cyc(U ∩Zn), this shows that Cyc(U ∩Zn)

is a generating set for Qn as a vector space over Q.

(i) First, we shall prove that Zn inherits a precompact topology as a subgroup of G. For this,

it suffices to check that for every neighbourhood V of 0, there exists a finite set F ⊆ Zn such that

Zn = V + F . Let U be a neighbourhood of 0 in G such that Un = {
∑n

j=1 xj : xj ∈ U} ⊆ V

holds. By our previous claim, Cyc(U ∩ Zn) is a generating set for Qn. Therefore, we can find a

subset {x1, . . . , xn} ⊆ Cyc(U ∩ Zn) which is a basis for Qn as a vector space over Q. Since the set

{x1, . . . , xn} satisfies the hypotheses of Lemma 6.4.1, there exists a finite set F ⊆ Zn such that

Zn =
n⊕

j=1

⟨xj⟩+ F ⊆ Un + F ⊆ V + F. (6.7)

This proves that Zn inherits a precompact group topology from G.

(ii) Suppose Zn happens to be dense in G. Observe that Zn is precompact, and therefore G

as well, as they both have the same (compact) completion. Since G is DW, we have that G must

be the trivial group by Lemma 6.2.4. This gives a contradiction, as G contains the non-trivial

subgroup Zn.
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Corollary 6.4.4. Suppose that an Abelian DW group G contains a finitely generated subgroup E

which is of maximal 0-rank . The following hold:

(i) E is precompact in the subgroup topology inherited from G; and

(ii) E is dense in G if and only if G is the trivial group.

Proof. Since E is finitely generated, we can apply the fundamental representation theorem of finitely

generated groups. From this, we obtain that the isomorphism

E ≃ Zn ⊕
m⊕
j=i

Z(pkjj ) (6.8)

holds for some primes p1, . . . pm ∈ P and non-negative integers n,m, k1, . . . , km ∈ N. From this, we

can assume without loss of generality that Zn is a subgroup of E.

Claim 63. Zn is a maximal 0-rank subgroup of G.

Proof. To prove this, it is enough to show that Proposition 6.2.3(iii) holds. Indeed, if we take a

non-torsion g ∈ G, we know there exists some n ∈ N+ such that ng ∈ E since E is of maximal

0-rank . By Equation 6.8 we have that ng = z + h where z ∈ Zn and h is a torsion element of E.

Since h is a torsion element of E, there exists some m ∈ N+ such that mh = 0. We then have that

0 ̸= (mn)g = mz +mh = mz ∈ Zn.

This shows that there exists l ∈ N+ such that 0 ̸= lg ∈ Zn ∩ ⟨g⟩ holds. Since we began with an

arbitrary non-torsion g ∈ G, we can conclude the proof of this claim.

(i) Since Zn is of maximal 0-rank then we arrive to the conditions of Theorem 6.4.3. From this,

we obtain that Zn is precompact. Finally, the torsion part t(E) is a finite group (as evidenced by

Equation 6.8), therefore the direct sum Zn ⊕ t(E) = E is also a precompact group.

(ii) Suppose that E happens to be dense in G. Since E is precompact by (i), G itself must be a

precompact group by virtue of having the same completion as E. By Lemma 6.2.4, we have that

G must be the trivial group.

Conversely, if G is the trivial group, then every subgroup of G coincides with G itself and is

therefore dense. This concludes our proof.
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We close this section with the following question:

Question 6.4.5. Suppose that an abelian SSGP group G contains a maximal 0-rank subgroup E.

Must E be precompact in the inherited subspace topology? What if E happens to be essential in

G?

6.5 A necessary condition of the existence of an DW group topol-

ogy on groups of finite free rank

Theorem 6.5.1. Let G be an Abelian group of finite free rank. If G admits an DW group topology,

then either one of the following holds:

(i) If r0(G) = 0 then every non-trivial p-component of G admits an DW group topology.

(ii) If 0 < r0(G) then there exists p ∈ P such that the p-component of G has infinite divisible

rank.

Proof. The first case coincides with G being a torsion group, which has been covered in Theorem

6.3.4. We proceed to solve the second case by contradiction. For this reason, let us consider G to

have finite p-ranks and a non-zero free rank n for some n ∈ N+. Since G has free rank n, we can

fix some maximal independent subset I ⊆ G of size n and comprised of torsion free elements of

G. Clearly, the subgroup H = ⟨I⟩ generated by I is a maximal 0-rank subgroup of G. Since H is

finitely generated, it satisfies the hypotheses of Corollary 6.4.4. Therefore, by item (ii) of Corollary

6.4.4 we have that H cannot be dense in G. Since H is not dense in G, the topological quotient

K = G/clG(H) is a non-trivial group, we shall proceed as follows.

Claim 64. The quotient K is a torsion group.

Proof. Indeed, since H contains a maximal independent subset of torsion-free elements of G, and

H ⊆ clG(H), then Proposition 6.2.3 (ii) implies that clG(H) is also a maximal 0-rank subgroup of

G. By Definition 6.2.2 the quotient group K is torsion.

Claim 65. For every p ∈ P the p-rank of K is finite.
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Proof. Let p ∈ P be an arbitrary prime, since K is a quotient group of G, the inequality

rp(K) ≤ r0(G) + rp(G)

holds by Corollary A.2.2. Since the ranks r0(G) and rp(G) are finite by hypothesis, the previous

inequality shows that rp(K) is finite.

Claim 66. K does not admit an DW group topology.

Proof. Since K is a non-trivial torsion group, there exists some p0 ∈ P such that its p0-rank rp0(K)

is non-zero. If K admits an DW group topology, then by case 1 of this theorem the cardinal rp0(K)

must be infinite in contradiction to our previous claim. We have then shown that K does not admit

an DW group topology.

Finally, since G was equipped with an DW group topology, its topological quotient K would

inherit the DW property, which contradicts the above claim. We can conclude that G itself cannot

admit an DW group topology.

Corollary 6.5.2. If an unbounded Abelian topological group G admits an DW group topology, then

G is of infinite divisible rank.

Proof. Observe that if G is unbounded then for every n ∈ N the cardinal r(nG) is non-zero. It

then remains to prove that r(nG) is infinite for all n ∈ N, so let us assume the contrary. Since

the group nG is a continuous homomorphic image of G, nG also admits an DW group topology by

our hypothesis and Proposition 6.6.2(i). By our assumption, r(nG) is finite, and therefore, nG is a

group of finite rank. This implies that

r(nG) = r0(nG) +
∑
p∈P

rp(nG) < ω

holds. Clearly, this implies that nG has finite free rank and finite p-ranks, and therefore nG does

not admit an DW group topology by Theorem 6.5.1.

As particular cases, we have the following:

Corollary 6.5.3. The following holds:
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(i) Every divisible group with finite free rank and finite p-ranks does not admit an DW group

topology.

(ii) For every n ∈ N the group Qn does not admit an DW group topology.

While (ii) is a particular case from (i), we highlight it for the following reason: previously,

Comfort and Gould [4],[25] had shown that Q itself (and its finite powers) would admit an SSGP

topology. Finally, let us recall that wide subgroups of Qn played a big role in the characterization

of Abelian SSGP groups (see Definition 4.4.1 and Chapter 4)

In particular, we can state the following version of Theorems 4.7.4 and 4.1.1 as follows:

Theorem 6.5.4. Let n ∈ N+. A subgroup G ⊆ Qn admits an SSGP group topology if and only if

G is a wide subgroup of Qn.

Since all wide subgroups of Qn satisfy the hypotheses of Theorem 6.5.1, we can combine these

results to obtain the following:

Corollary 6.5.5. For every n ∈ N+ the following hold:

(i) The only subgroup of Qn which admits an DW group topology is the trivial group.

(ii) Every wide subgroup of Qn admits an SSGP group topology but not an DW one.

6.6 Topological operations of DW groups

In this final section we shall be covering some basic topological properties of the DW class. We

highlight that Theorem 6.6.1 and Example 6.6.6 are more involved than usual standard proofs. In

the former case, this example highlights that it is not enough to contain a dense DW subgroup to

belong to the SSGP class.

Theorem 6.6.1. Let {Gi : i ∈ I} be a family of topological groups all of which have the DW

property. Consider G =
∏

i∈I Gi and let H ⊆ G be a subgroup of G such that the direct sum

G+ =
⊕

i∈I Gi satisfies G+ ⊆ H. Then H has the DW property.

Proof. It suffices to prove that for every open neighbourhood U of the identity eG the equality

H = ⟨Cyc(U ∩H)⟩ holds. Let U be a open neighbourhood of the identity eG and let h ∈ H be
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arbitrary. Since U is open, we can find a finite set J ⊆ I and open sets Uj ⊆ Gj for j ∈ J such that

V =
∏
j∈J

Uj ×
∏

i∈I\J

Gi ⊆ U (6.9)

For every j ∈ J let πj : G → Gj denote the projection from G to Gj . Let j ∈ J be arbitrary and

observe that πj(h) ∈ Gj . Since πj [U ] = Uj ⊆ Gj is an open neighbourhood of eGj and Gj is DW,

there exists nj ∈ N and xj1, . . . , x
j
nj ∈ Cyc(Uj) such that

πj(h) =

nj∏
i=1

xji . (6.10)

For every j ∈ J and i = 1, . . . , nj let x̂ji ∈ G be the mapping such that:

πk(x̂
j
i ) =


xji if k = j; and

eGk
otherwise.

(6.11)

By our definition of x̂ji and Equation 6.9 we have that

x̂ji ∈ Cyc(V ∩G+) ⊆ Cyc(U) (6.12)

for every j ∈ J and i = 1, . . . , nj . Using that G+ ⊆ H and H is a subgroup of G, define hr ∈ H as

hr = h · (
∏
j∈J

nj∏
i=1

x̂ji )
−1 (6.13)

By Equations 6.10 and 6.11 for every j ∈ J we have that πj(hr) = eGj and so hr ∈ Cyc(V ∩H) by

Equation 6.9. It is clear then that

h = hr ·
∏
j∈J

nj∏
i=1

x̂ji (6.14)

by construction. From this, we have proven that h ∈ ⟨Cyc(V ∩H)⟩ ⊆ ⟨Cyc(U ∩H)⟩ and so

H = ⟨Cyc(U ∩H)⟩, showing that H has the DW property.

The next proposition is an analogue of the correspondent results for the class of SSGP groups
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due to Gould [25, Theorem 3.2.1 and 3.2.2]

Proposition 6.6.2. The following statements hold in the class of DW groups.

(i) The DW class is closed under continuous surjective homomorphisms,

(ii) The DW class is closed under topological products,

(iii) The DW class is closed under direct sums; and

(iv) The DW class is closed under topological quotients.

Proof. (i) Let G be an DW group. Suppose H is a topological group and f : G→ H is a continuous

surjective homomorphism. We shall prove that H has the DW property. Let U ⊆ H be an open

neighbourhood of eH in H, by continuity of f the inverse image V = f−1[U ] ⊆ G is an open

neighbourhood of eG in G.

Let h ∈ H be arbitrary, since f is surjective let g ∈ G such that f(g) = h. Since G is DW and

V is an open neighbourhood of eG, there exist x1 . . . xn ∈ Cyc(V ) such that g =
∏n

j=1 xj . Since f

is an homomorphism, we have that

f(g) = f(

n∏
j=1

xj) =

n∏
j=1

f(xj). (6.15)

Finally, since f also maps subgroups of G to subgroups of H then for every j = 1, . . . , n we have

that f(xj) ∈ Cyc(f [V ]) = Cyc(U). Therefore f(g) = h ∈ ⟨Cyc(U)⟩, proving that the inclusion

H ⊆ ⟨Cyc(U)⟩ holds. Since the converse inclusion clearly holds, we conclude then that H has the

DW property by definition.

(ii) If {Gi : i ∈ I} is a family of indexed DW groups for some index set I then by Theorem

6.6.1 the product G =
∏

i∈I Gi has the DW property.

(iii) Similar to (ii) by Theorem 6.6.1 the sum G+ =
⊕

i∈I Gi has the DW property.

(iv) Follows directly from (i).

For the topic of inheritance, it is important to remember that minimally almost periodic groups

cannot contain proper open subgroups [25, Observation 2.2.3]. From the get-go, we can see that

our choice of additional properties for subgroups is a little restricted. As we shall see in this section,
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the topic of inheritance is rather bleak for DW groups, as even closed or dense subgroups fail to

inehrit the property. To show this, we shall make use of the Hartman-Mycielski construction.

We pay attention to the following result by Dikranjan and the second listed author [16]:

Lemma 6.6.3 ([16] Lemma 8.2). Let G =
⊕

n∈NCn where each Cn is a cyclic subgroup of order

an ∈ N+ ∪ ∞. If infinitely many an = ∞ or limnan = ∞, then there exists a monomorphism

φ : G → HM(T) such that the subgroup φ(G) of HM(T) is dense in HM(T) and has the SSGP

property.

Finally, we remind the reader of the following:

Fact 6.6.4. Suppose G =
⊕

p∈PGp is a torsion group decomposed into its p-components. If H ≤ G

is any subgroup of G and H =
⊕

p∈PHp is its decomposition into p-components, then for every

p ∈ P we have that Hp ≤ Gp. In particular, any subgroup of G is a direct sum of subgroups of G.

With these tools in mind, we can show that the DW property may not be inherited to subgroups

in general:

Example 6.6.5. Let G =
⊕

p∈P Z(p) as in Example 6.3.6.

(i) G is naturally embedded as a closed subgroup of HM(G). By Fact 1.5.1 we have that HM(G)

is DW. However, G itself does not admit an DW group topology, so it is not always inherited

to closed subgroups.

(ii) Since G satisfies the hypotheses of Lemma 6.6.3, there exists an embedding φ : G→ HM(T)

such that φ(G) is dense in HM(T) and it has the SSGP property. By Fact 1.5.1 we have that

HM(T) has the DW property. However, since G does not admit an DW topology then the

DW property is not always inherited to dense subgroups.

(iii) Let H ⊆ G be any non-trivial subgroup. By Fact 6.6.4, for every p ∈ P there exists a subgroup

Hp ≤ Z(p) such that H =
⊕

p∈PHp. If H is finite, then it is compact group and therefore

cannot have an DW group topology. If H is infinite then by Theorem 6.3.4 we have that H

does not admit an DW topology. With this we can conclude that G contains no non-trivial

DW subgroups.
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Finally there is one more possibility to explore. It is a well-known result that if a topological

group has a dense SSGP subgroup, then it itself has the SSGP property. This, sadly, is not the

case for DW groups as we shall see in the following example.

First, recall that a function called an n-step function if there exist a collection of exactly n

disjoint intervals where the function attains a constant value. Finally, if we are given some function

in HM(T), then by its support we mean the subset of I where it attains a non-zero value.

Example 6.6.6. There exists a non-DW Abelian torsion topological group with the SSGP property

which contains dense DW subgroup.

Proof. Consider HM(T) and let X be the set of all 2-step functions on their support with rational

end-points, but which also take values in
∪

p∈P\{2} T[p]; where T[p] = {t ∈ T : pt = 0}. Consider

the subgroup H = ⟨X⟩ of HM(T) generated by X and let f be the constant function on [0, 1] which

takes the unique non-zero value in T[2]. By construction, H can be seen to be a dense subgroup of

HM(T), and that ⟨f⟩ ∩H = ⟨e⟩ holds.

We shall make use of the following claim in what follows.

Claim 67. Let ϵ > 0 and U be an arbitrary neighbourhood of identity of G. Furthermore, suppose

J = [a, b) is some interval with rational end-points such that b− a < ϵ. If we define

B(J) = {f ∈ HM(T) : f is constant on J and f(t) = 0 for t ∈ [0, 1) \ J}

then B(J) is a subgroup of X and B(J) ⊆ O(U, ϵ).

Proof. B(J) can easily be seen to a subgroup of HM(G) as we are utilizing the coordinate-wise

operation. Additionally, B(J) is a subset of X by virtue of every constant function on J also being

a 2-step function on J . Let us then verify that the inclusion B(J) ⊆ O(U, ϵ) holds. Given f ∈ B(J)

we have that for all t ∈ [0, 1) \ J the equality f(t) = e ∈ U holds. This implies that

µ({t ∈ I : f(t) ̸∈ U}) ≤ b− a < ϵ.

This shows that f ∈ O(U, ϵ) by Equation 1.5. Since f ∈ B(J) was arbitrary, we have shown that

B(J) ⊆ O(U, ϵ) holds, as desired.
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Claim 68. H has the DW property.

Proof. Observe that it suffices to show that X ⊆ ⟨Cyc(O(U, ϵ) ∩X)⟩ holds for every neighbourhood

of identity U of G and every ϵ > 0 . Indeed, the previous would imply that

H = ⟨X⟩ ⊆ ⟨Cyc(O(U, ϵ) ∩X)⟩ ⊆ ⟨Cyc(O(U, ϵ) ∩H)⟩,

which implies that H inherits an DW group topology from HM(T). Let us then fix some function

f ∈ X, a neighbourhood of identity U of G, and some ϵ > 0. Denote by J the support of the

function f . Since f is a two-step function in its support, there exist two disjoint subintervals J1

and J2 of J such that the restriction of f to Ji is constant for i = 1, 2 and J = J1 ∪ J2.

For i = 1, 2 let us define the function fi ∈ GI which satisfies that fi ↾Ji= f ↾Ji and fi(t) = e

for every t ∈ [0, 1) \ Ji. By definition we have that fj ∈ B(Ji) ⊆ B(J) for j = 1, 2. Since

B(J) ⊆ O(U, ϵ) and it is a subgroup of HM(T) by the previous claim, we have that fj ∈ Cyc(O(U, ϵ)

for j = 1, 2. Since fj is constant in its support, we also have that fj ∈ X for j = 1, 2. This

implies that fj ∈ Cyc(O(U, ϵ) ∩ X) for j = 1, 2. Finally, it is easily seen that f = f1 · f2 by our

construction, implying that f ∈ ⟨Cyc(O(U, ϵ) ∩X)⟩. Since f ∈ X was arbitrary, we conclude that

X ⊆ ⟨Cyc(O(U, ϵ) ∩X)⟩. This shows that H has an DW group topology.

Consider the subgroup G = ⟨{f} ∪H⟩ = ⟨f⟩ ⊕H of HM(T). Observe that H is also dense in

G since it was already dense in HM(T), so G is a group that has a dense DW subgroup. Finally,

observe that G is a torsion group with finite 2-rank equal to one, which is witnessed by its direct

summand ⟨f⟩. By Theorem 6.3.4, the group G cannot admit an DW group topology.
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Appendix A

Reference of results on algebraic ranks

A.1 Special rank, p-groups, and a bound for the rank of their

quotients

The goal of this section is to prove that the p-rank of a quotient group of an Abelian p-group of

finite p-rank does not exceed the p-rank of the original group; see Lemma A.1.5. Even though this

fact seems to be a part of folklore in group theory, we were unable to find any reference for it. The

following notion will play a key role in the proof of Lemma A.1.5.

Definition A.1.1. For an Abelian group G, we use rfg(G) to denote the smallest natural number

r such that every finitely generated subgroup H of G can be generated by at most r many of its

elements, if such r exists; otherwise, we let rfg(G) = ω. We shall call rfg(G) the finitely generated

rank of G.

In the literature, the cardinal rfg(G) is called also the Prüfer rank or special rank of G.

The following lemma relates ranks from Definitions 1.2.1(iv) and A.1.1.

Lemma A.1.2. rfg(G) ≤ r(G) for every Abelian group G.

Proof. The inequality obviously holds if r(G) is infinite, as rfg(G) ≤ ω by definition.

Suppose now that r(G) is finite and let r = r(G).

Take H to be an arbitrary finitely generated subgroup of G. Since G is Abelian, so is H. By
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the Frobenius-Stickelberger representation theorem, the isomorphism

H ≃ Zn ⊕
m⊕
j=i

Z(pkjj ) (A.1)

holds for some primes p1, . . . pm ∈ P and positive integers n, k1, . . . , km ∈ N+. It easily follows

from (A.1) that r(H) = n + m and H is generated by (n + m)-many elements of H. Since

n+m = r(H) ≤ r(G) = r by Fact 1.2.2, it follows that H can be generated by at most r-many of

its elements. Since this holds for an arbitrary finitely generated subgroup H of G, this means that

rfg(G) ≤ r by Definition A.1.1.

The equality in Lemma A.1.2 need not hold even for torsion Abelian groups. Indeed, for different

primes p1, . . . , pk, the torsion group G = Z(p1 · · · pk) satisfies rfg(G) = 1 and r(G) = k.

The next result shows that the inequality in Lemma A.1.2 does become the equality for Abelian

p-groups whose finitely generated rank is finite.

Lemma A.1.3. Let p be a prime number and G be an Abelian p-group such that rfg(G) is finite.

Then rfg(G) = r(G) = rp(G).

Proof. Since G is a p-group, rq(G) = 0 for all q ∈ (P ∪ {0}) \ {p}, which implies r(G) = rp(G) by

Definition 1.2.1(iv). By Lemma A.1.2, it remains only to establish the inequality rp(G) ≤ rfg(G).

Let S = {g ∈ G : pg = 0} be the socle of G. Clearly, rp(S) = rp(G). By our assumption,

rfg(G) = r ∈ N. Suppose that rp(S) > r. It follows from Definition 1.2.1(ii) that we can choose a

p-independent subset X of S such that |X| = r+1. Now ⟨X⟩ is a finitely generated subgroup of G

which cannot be generated by at most r-many of its elements. 1 This means that rfg(G) ≥ r + 1

holds, in contradiction with r = rfg(G). This contradiction shows that rp(G) = rp(S) ≤ r =

rfg(G).

It is well-known that the rank of an Abelian group can increase when passing to its quotient

group. Indeed, r(Q) = 1, yet r(Q/Z) = ω. This problem does not happen for finitely generated

rank.
1Indeed, every element of S has order p. Since X is an independent subset of S, this implies that |⟨X⟩| = p|X| =

pr+1. On the other hand, if Y is a subset of ⟨X⟩ ⊆ S such that |Y | ≤ r, then |⟨Y ⟩| ≤ pr < pr+1 = |⟨X⟩|, so ⟨Y ⟩ must
be a proper subgroup of ⟨X⟩, which implies that Y does not generate ⟨X⟩.

144



A.1. SPECIAL RANK IN QUOTIENTS

Lemma A.1.4. If H is a quotient group of an Abelian group G, then rfg(H) ≤ rfg(G).

Proof. If rfg(G) = ω, then rfg(H) ≤ ω = rfg(G) by Definition A.1.1. From now on we can assume

that rfg(G) = n ∈ N.

Let f : G → H be a quotient homomorphism. and A be a finitely generated subgroup of H.

Finally, fix Y to be a finite set of generators of A. Since f is a surjection, we can find a finite set

X such that f(X) = Y . Since the subgroup ⟨X⟩ of G is obviously finitely generated, there exists a

set Z ⊆ G such that |Z| ≤ rfg(G) = n and ⟨Z⟩ = ⟨X⟩. Since f is a homomorphism, we have that

f(Z) ⊆ ⟨f(Z)⟩ = f(⟨Z⟩) = f(⟨X⟩) = ⟨f(X)⟩ = ⟨Y ⟩ = A.

Since |f(Z)| ≤ |Z| ≤ n, we conclude that A can be generated by at most n-many elements of A.

Since this holds for an arbitrary finitely generated subgroup A of H, we have rfg(H) ≤ n = rfg(G)

by Definition A.1.1.

If we observe the behavior of p-ranks, then the following problem persists in arbitrary groups:

Let p be a fixed a prime number. Clearly rp(Q) = 0, yet rp(Q/Z) = 1 occurs. Our next result

shows that this phenomenon does not happen in the class of Abelian p-groups.

Lemma A.1.5. Let G be an Abelian p-group of finite p-rank. Then rp(H) ≤ rp(G) for every

quotient group H of G.

Proof. Suppose that rp(G) = n ∈ N. Then rfg(G) ≤ n by Lemma A.1.2.

Let H be a quotient group of G. Then rfg(H) ≤ rfg(G) ≤ n by Lemma A.1.4. Being the

quotient group of an Abelian p-group G, H itself is an Abelian p-group. Now rp(H) = rfg(H) by

Lemma A.1.3. Thus, rp(H) ≤ n = rp(G).

Corollary A.1.6. The inequality r(H) ≤ r(G) holds for every quotient group H of an Abelian

p-group G.
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A.2 An upper bound for the p-ranks of quotients of groups with

finite ranks

Lemma A.2.1. Let G be a divisible group with finite free rank and finite p-ranks. If H is a quotient

subgroup of G then for every p ∈ P the inequality rp(H) ≤ r0(G) + rp(G) holds.

Proof. Since G is divisible, the isomorphism

G ≃ Qr0(G) ⊕
⊕
p∈P

Z(p∞)rp(G) (A.2)

holds where r0(G) and rp(G) are used to denote the free rank of G and the p-rank of G for a prime

p ∈ P respectively. Suppose that H is a quotient group of G, and that ϕ : G → H is its natural

quotient mapping.

Since H is a quotient of a divisible group, it must also be a divisible group. By utilizing Equation

A.2 for H, we can see that Hp, the p-component of H, is a direct summand of H. This implies

that the projection mapping πp : H → Hp is a surjective homomorphism. This implies that the

composition πp ◦ ϕ : G→ Hp is a surjective homomorphism.

Claim 69. Let q ∈ P be a prime distinct from p. For every element gq ∈ Gq of the q-component

of G we have that πp ◦ ϕ(gq) = 0.

Proof. Since gq ∈ Gq, there exists some n ∈ N+ such that qn is the order of gq, or gq is the trivial

element. Since the latter implies our desired conclusion, let us suppose that the former holds. We

would then have that

e = πp ◦ ϕ((gq)q
n
) = [πp ◦ ϕ(gq)]q

n
.

Since πp ◦ ϕ(gq) is an element of a p-group, its order is a power of the prime p or it is trivial. If

the former holds, then by combining this with the previous equation, we would have that p must

divide qn. Since p and q are relatively prime, then this case is not possible. We can then conclude

that πp ◦ ϕ(gq) = 0 as desired.

Claim 70. The equality

πp ◦ ϕ[Qr0(G) ⊕ Z(p∞)rp(G)] = Hp
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holds.

Proof. Take some h ∈ Hp, since the mapping πp ◦ ϕ : G→ Hp is surjective there exists some g ∈ G

such that πp ◦ ϕ(g) = h. By Equation A.2, we can find a finite subset of primes P ⊆ P such that

q ∈ P and

g = g0 +
∑
q∈P

gq

where g0 is torsion-free (or neutral) and gq ∈ Gq is an element of the q-component of G. By our

previous claim the equalities

h = πp ◦ ϕ(g) = πp ◦ ϕ(g0) +
∑
q∈P

πp ◦ f(gq) = πp ◦ ϕ(g0) + πp ◦ ϕ(gq)

hold. This implies that h = πp ◦ ϕ(go + gq) and therefore h ∈ πp ◦ ϕ[Qr0(G) ⊕ Z(p∞)rp(G)]. Since

h ∈ Hp was arbitrary, we have shown that the inclusion

Hp ⊆ πp ◦ ϕ[Qr0(G) ⊕ Z(p∞)rp(G)]

holds. The reverse inclusion clearly holds by the definition of πp ◦ ϕ.

Claim 71. For every prime p ∈ P the p-component Hp of H is a quotient group of Qr0(G) ⊕

Z(p∞)rp(G)

Proof. By our previous claim we have that the restriction of πp ◦ ϕ to the subgroup Qr0(G) ⊕

Z(p∞)rp(G) is a surjective homomorphism, implying our claim.

By Lemma A.1.4 we have that

rfg(Hp) ≤ rfg(Qr0(G) ⊕ Z(p∞)rp(G)) ≤ r0(G) + rp(G).

Since Hp is an Abelian p-group then by Lemmas A.1.2 and A.1.3 we have that rfg(Hp) = rp(Hp) =

rp(H). Implying that

rp(H) ≤ r0(G) + rp(G)

as desired.
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Corollary A.2.2. Let G be an Abelian group with finite free rank and finite p-ranks. Then

rp(H) ≤ r0(G) + rp(G) for every quotient group H of G.

Proof. Suppose K is a subgroup of G and that H = G/K is the quotient of G by K. Since G is

naturally embeddable as a subgroup of its divisible hull DG we can assume without loss of generality

that K ≤ G ≤ DG where DG is the divisible hull of G. By the third isomorphism theorem, the

quotient group H is a subgroup of DG/K. Since DG is the divisible hull of G then r0(DG) = r0(G)

and rp(DG) = rp(G) for every prime p ∈ P. This implies that DG is a divisible group of finite free

rank and finite p-ranks. By our previous Lemma and Fact 1.2.2, we have that

rp(H) ≤ rp(DG/K) ≤ r0(DG) + rp(DG) = r0(G) + rp(G)

holds as desired.
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