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Preface

This thesis is devoted to estimating the anisotropic interpolation error ob-
tained using a new geometric parameter. We propose a new geometric con-
dition for partitioning meshes, enabling anisotropic meshes to be used to
estimate the optimal interpolation error. Anisotropic meshes are effective in
problems in which, for example, the solution has anisotropic behaviour in
some direction of the domain. Nevertheless, constructing accurate and effi-
cient finite-element schemes to solve partial differential equations in various
domains is challenging. Estimations of interpolation error are essential in
ensuring the validity of the schemes; their accuracy sometimes depends on
geometric conditions imposed on the meshing of the domain.

As far as is known, the first suggestion of a condition for a geometric
mesh in obtaining error estimates of linear interpolation appeared in 1957 in
[83, Section 3.8]. Called Synge’s condition, it states that the maximum angle
of each triangle in a mesh is smaller than some constant < 7, see Section 2.2.
In 1968, Zlamal’s condition was proposed for ensuring the convergence of a
finite-element approximation, [90]. Later, the shape-regularity condition was
proposed that uses a ball containing an element. Many studies have imposed
the shape-regularity condition on a family of meshes [19, 22, 25, 30, 31, 75];
specifically, in the shape-regular family of triangulations, the triangles or
tetrahedra cannot become too flat. Furthermore, it is known that these
four conditions, including both Zlamal’s and the shape-regularity condition,
are equivalent; see [20, Theorem 1] and Section 2.1. Because the shape-
regularity condition has remarkable properties, this condition has remained
a standard in finite-element error analysis. For example, a nondegenerate
mesh is locally quasi-uniform in two or three dimensions. This property was
used, for instance, in the analysis of the Scott—Zhang interpolation [80].

In 1976, several authors [13, 15, 39, 51] independently extended the re-
sult of [83] for two-dimensional meshes. In particular, the well-known paper
of Babuska and Aziz [13] calls the mesh condition the mazimum-angle con-
dition. A certain family of triangulations subject to the maximum-angle
condition allows the use of anisotropic finite-element meshes. Anisotropic
meshes have different mesh sizes in different directions; imposing the shape-
regularity assumption on triangulations is no longer valid for these meshes.
If the maximum-angle condition is not valid, optimal interpolation properties
are lost [13] and, in consequence, a finite-element solution may not converge
to an exact solution. Later, in 1991, Kiizek showed that the maximal-angle
condition is equivalent to the circumscribed ball condition in two dimensions
[57]. The associated family of mesh partitions is called semiregular; see also
Sections 2.2 and 2.3. In 1992, Synge’s condition was extended to tetrahedral



elements [58]. However, the semiregular condition, which implies that sim-
plicial interpolation error estimates preserve their optimal order of general
Sobolev norms, has still not been obtained. Therefore, the main goal of this
thesis is to derive the semiregular condition for three-dimensional meshes;
see Sections 2.3 and 4.3. The key advance is to introduce a new geometric
parameter Hyp proposed in [47]; see also Section 4.1. Because this new geo-
metric parameter is used in the interpolation error analysis, the coefficients
in the error estimations are independent of the geometry of the simplices,
and so the error estimations obtained may be applied to arbitrary meshes,
including very “flat” or anisotropic simplices. Furthermore, while being suf-
ficient to obtain optimal order interpolation error estimates, this geometric
condition also appears to be simpler than Synge’s (maximum-angle) condi-
tion. The quantity f—; (see Chapter 4) is easily calculated numerically using
finite-element methods. Therefore, the new condition may be useful, for
example, in a posteriori error analyses. In a recent paper [50], the new con-
dition was shown to be satisfied if and only if the maximum-angle condition
holds. We expect the new mesh condition to become an alternative to the
maximum-angle condition.

Anisotropic interpolation theory was developed in [10, 4, 23]. In some
circumstances, the shape-regularity condition was not needed in obtaining
optimal interpolation error estimates. The idea of Apel et al. was to con-
struct a set of functionals satisfying conditions (5.5.2) in Section 5.5. Under
the maximum-angle and coordinate system conditions, anisotropic interpo-
lation error estimates were then deduced (e.g., see [4]). In contrast, Ishizaka
et al. developed new estimations of the interpolation error within a general
framework, derived the Raviart-Thomas interpolations on d-simplices, and
proposed the new parameter Hr; see [47, 49, 46]. The heart of our analysis
is to deduce a set of inequalities by a scaling argument; see Sections 5.3 and
9.4. Using these inequalities enables delicate interpolation error estimates to
be obtained. Furthermore, imposing an additional mesh condition (Condi-
tion 3.3.1) yields anisotropic error estimates; see Theorems 5.6.1, 6.2.3, 7.2.1,
8.2.3, and 9.6.1.

This thesis gives three applications: the Crouzeix—Raviart approximation
for the Poisson and Stokes equations, and the dual mixed approximation for
the Poisson equation; see Chapter IV. For shape-regular mesh partitions,
the Crouzeix—Raviart finite-element error estimates for the non-homogeneous
Dirichlet Poisson and Stokes problems are known; see [21, 22, 30, 32, 41, 52,
76] and [63] for the modified Crouzeix—Raviart approximation of the Stokes
problem. Applications to anisotropic finite-element methods are found in
[4, 7, 8] for the second-order elliptic boundary-value problems, in [6, 59] for
singularly perturbed problems, in [9, 5] for anisotropic phenomena in the
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Stokes and Navier—Stokes problems, in [34, 60, 26] for anisotropic a posteri-
ori error estimates, and in [23, 68] for fourth-order elliptic boundary-value
problems.

The Crouzeix—Raviart finite-element space (Chapter 7) is nonconform-
ing in H}(2) and the Morley finite-element space, which is attractive for
fourth-order problems, is nonconforming in HZ(2) (Chapter 8), where  is a
polyhedral domain in R?, d € {2,3}. Therefore, an error between the exact
solution and the nonconforming finite-element approximation solution with
a H' or H?-broken seminorm is divided into two parts (e.g., see [21, 30]).
One is the interpolation error that measures how well the exact solution is
approximated by the Crouzeix—Raviart (or Morley) finite-element functions;
the other is a consistency error. For the former, the Crouzeix—Raviart inter-
polation error estimates (Theorem 7.3.1) or the Morley interpolation error
estimates (Theorem 8.3.1) are used. For the latter, the standard scaling ar-
gument and the trace theorem are often used to obtain the error estimates.
However, the situation is different without the shape-regularity condition. In
this way, we could not derive the correct order for anisotropic meshes. To
overcome this difficulty, we use the relation between the first-order Crouzeix—
Raviart and the lowest-order Raviart-Thomas finite-element spaces (Lemma
11.6.1) as well as the lowest-order Raviart-Thomas interpolation error es-
timates for the anisotropic meshes (Theorem 9.7.3). This technique subse-
quently obtained the error estimates for the H' or H2-broken seminorm of
the anisotropic meshes for the second or fourth-order elliptic boundary value
problems.

We present an error estimate for the first-order Raviart—Thomas finite-
element approximation of the Poisson problem based on the dual mixed for-
mulation (Chapter 12). The critical point is to show the discrete inf-sup
condition (Lemma 12.3.2). To this end, we use the stability estimate of
the Raviart—Thomas interpolation (Lemma 9.7.2) while imposing the new
geometric condition (Condition 4.3.1).

In Chapter 13, we present the equivalence of the enriched piecewise-
linear Crouzeix—Raviart finite-element method introduced by [45] and the
first-order Raviart—Thomas finite-element method. In two dimensions, the
work [12] represents pioneering research. Furthermore, Marini [69] found
an expression relating the Raviart—-Thomas and the Crouzeix—Raviart finite-
element methods; specifically,

/

0
5’,?T|T = VﬂhCR - TT(ZE - .QfT) on T,

s
a7 = 10.uSk + é > la — 2l
=1
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where T denotes a mesh element, z; (i = 1,2,3) the vertices of triangle T
zr the barycentre of T such that zp := i(x1 + 22 + x3), (647, uf") and
u$'" denote respectively the Raviart-Thomas and Crouzeix—Raviart finite-
element solutions with a given external piecewise-constant function f%, and
st = ﬁ Jpus®dx. A proof in [45] was given recently stating that the
enriched piecewise-linear Crouzeix—Raviart finite-element method is identical
to the first-order Raviart-"Thomas finite-element method for both the Poisson
and Stokes problems in any number of dimensions. In the present paper, we
extend Marini’s results to three dimensions (Lemma 13.2.2).

In Chapter 14, we consider the Crouzeix—Raviart approximate problem
for the Stokes equation. In particular, we introduce a well-balanced scheme
(which is also called a pressure robust scheme) proposed in [63] and in [5]
under the maximum-angle condition (Section 14.5). A well-balanced scheme
can be desirable even if a body force is not curl-free, but has a relatively large
curl-free component ([32, Remark 53.22]). The stability of the well-balanced
scheme holds under the boundedness of the quantity f—; on each element,
e.g., under the new geometric condition (Condition 4.3.1). Therefore, this
new parameter may be useful when creating mesh sequences satisfying the a
priori estimate.

This thesis is organised into five parts. The first introduces the nota-
tion used in this thesis and reviews the mathematical tools required to apply
finite-element methods. The second presents the new geometric parameter
and introduces the geometric conditions for mesh partitions used in the error
analysis of the finite-element methods. The third derives the interpolation
error estimates, which are used on the anisotropic meshes. The fourth dis-
cusses the nonconforming approximation and the dual mixed formulation
of Poisson problems on anisotropic meshes. The fifth is a compilation of
appendices.

Hiroki Ishizaka

Matsuyama, Japan
December 2021
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Chapter 1

Preliminalies

1.1 General Convention

Throughout this thesis, ¢ denotes a constant independent of h (defined later)
unless specified otherwise. Those values may change in each context.

1.2 Basic Notation

d The space dimension, d € {2,3}

R¢ d-dimensional real Euclidean space

Ny Ny :=NuU{0}

R, The set of positive real numbers

|D| := meas(D) | Lebesgue measure of D C R?

vlp Restriction of the function v to the set D
dim(V) Dimension of the vector space V'

O;i Kronecker delta: d;; =1 if ¢« = j and 0 otherwise
(x1,...,29)7 Cartesian coordinates in R?

1.3 Vectors and Matrices

(v1,...,v49)T | Cartesian components of the vector v in R?
d
x-y Euclidean scalar product in R%: z -y := Z i
i=1
|| & Euclidean norm in R?: |z|g := (z - x)'/?
Rm>m Vector space m X n matrices with real-valued entries
A, B Matrices



A;; or [A];; | Entry of A in the ith and the jth column

AT Transpose of the matrix A
d
Tr(A) Trace of A: For A € R™*" Tr(A) := ZA“
i=1
det(.A) Determinant of A
diag(A) Diagonal of A:
For A € Rmxrz, dlag(.A)Zj = 51']'./41']', 1< Z,] < d
Ax Matrix-vector product:

d
For A € R™" and z € R", (Ax); := ZAz‘j%‘ for 1 <i<d

j=1
A:B Double contraction:
For A€ R™" and BE R™" A:B:=Y > A;B;
i=1 j=1
) dxd — |Az|g
| A|l2 Operator norm of A: For A € R*? || A|lz := sup
0#£zER? Eap>
|| Al max Max norm of A: For A € R || Al| oy := max | A
A2V
O(d) O(d) consists of all orthogonal matrices of determinant +1
In this thesis, we use the following facts.
For A € R™*™ it holds that
[Allmax < [lAll2 < vmn [ Allmax, (1.3.1)
e.g., see [38, p. 56]. For A, B € R™ ™ it holds that
[ AB]l2 < [|All2[| Bl|2- (1.3.2)

If AT A is a positive definite matrix in R?*?, the spectral norm of the matrix
AT A is the largest eigenvalue of AT A; i.e.,

1/2

||A||2 = (AmaX(AT'A» = Umax(A)v (1'3'3)

where Apax(A) and oy, (A) are respectively the largest eigenvalues and sin-
gular values of A.

If A € O(d), because AT = A7! and
|Az|% = (Az)" (Az) = 2T AT Az = 2" A7 Az = 2|3,

it holds that

Al = sup KATIE_ gy By
0#£zER? Eap> 0£zeR? 2| e

4



1.4 Function Spaces

In this thesis, we mainly use notations in [31, 37].

1.4.1 Lipschitz sets and domains

Definition 1.4.1 (Domains). Let D be a domain of R?, that is, D is open,
bounded, and connected. Remark that the conditions include ”bounded”.

Definition 1.4.2 (Lipschitz set and domain). A open set D in R? is said to
be Lipschitz if for any x € D, there exists a neighbourhood V, of x in R,
a rotation R, : R — R? and two real numbers ¢; >0 and ¢y >0 (c1 and ¢
may depend on x) such that the following holds true:

() Vo =2+ R.(Be, X I.,) with B, :== Bra-1(0,¢1), I, := (—ca, c2),

(IT) There exists a Lipschitz function ¢, : B., — R such that ¢(0) = 0,
H@HLO@(BCI) < Ly, and

DNV, =2+ Ry ({(y,ya) € Bey X I,) ya<wa(y)}),  (L41a)
oD N ‘/x =+ Rx ({(y/a yd) € B01 X Ic2] Ya = @x(y/)}) : (141b)

We say that D is a Lipschitz domain if it is a domain and a Lipschitz set.

1.4.2 Sobolev Spaces

Let D be an open set in R
The symbol C°(D) denotes the space of continuous functions defined in

D and
CY(D) = {p € C'(D); 8% € C°(D) V|a| < (}.
We also introduce the spaces

C'(D) := {¢ € C*(D); 0“p are bounded and uniformly continuous on D
0 < Vial <4},
Cc“'(D) = {pe C*(D); 0“p are Lipschitz-continuous in D, 0 < V|a| < £}.

The spaces C/(D) and C%*(D) are Banach spaces with norms

lollep) = max sup|o®p(x)]
0%p(x) — 0%0(y)]
1P = (Y T max sup :
lellees @) = lielle:m) 0<|o|<lzyeD aty [~ yle



We denote by C5°(D) the space composed of the functions from D to R
that are C*° and whose support in D is compact. The members of Ci°(D)

are called test functions.
1 1 1

1 1
Let p’ be conjugate of p with —+ — = 1. Let p* be such that — = — ——,
. p P pr p d
and p* = +oo if p =d.
Let a:= (ay,...,a4)" € Nd be a multi-index. For the multi-index «, let

d

o\ [0 \™ el
= 0Y = — o = = —— ith = .
=0 <(‘3a:1) (8xd> G g Wi ol =) e

i=1
Let ¢ be a nonnegative integer and p € R with 1 < p < oo. We define the
Sobolev space

W(D) = {p € LP(D); 9*¢ € L*(D), 0 < |a| < (},

equipped with the norms
1/p

lellwery == | D 0%l | 1< p<oo,
0<|er|<l

[ollwese(py ;= max (ess.sup|8°‘go(x)|>.

0<|al<t zeD

We use the semi-norms
1/p

elweroy = | D 10%5an) if 1 < p<oo,
|a|=£

@l weoe(py 1= max (ess.sup |80‘g0(x)|> .
|or|=¢ zeD

If p = 2, we use the notation
HYD):=W*%*(D), L*D):=HD).
The space H*(D) is a Hilbert space equipped with the scalar product
(% @D)HZ(D) = Z (5a90a 8a¢)L2(D),
laf<e

where (.,.) := (.,.)r2(p) denotes the L*-inner product, which leads to the
norm and semi-norm
1/2 1/2

ol ey = Z ||5a90||%2(p) o elae oy = Z ||5a90||%2(p) )

oo <2 |o|=¢



where we also use || - || := || - || z2(py. Furthermore, we define

WtP(D)

Wy (D) := C*(D) :

that is, WiP(D) is the closure of C3°(D) for the norm || - lwee(py-
The dual space of W4 (D) is defined L(W*P(D);R) and denoted by
W (D). The space W (D)’ is a Banach space with norm

X\U
IXllweepy == sup Il Vx € W (DY
vEWEP(D) HUHWM(D)

The symbol W%P(D)? denotes R?-valued functions whose components are
in W(D). For any v = (vy,...,vq)T € W (D)4, the norm is defined by

1/p
[vllwer(pye = (ZH%HW ) :

1.4.3 Fractional-order Spaces
Let s € (0,1) and p € [1,00]. We define

W*P(D) := {¢ € LP(D); |glwss(p) < o0},

| 1/p
p(z
|<10|WS’P(D) = (/ / ylsp-i-d d dg) ;  D<Q,

|o|weee (D) = ess.sup M
z,yeD |I—y|E

where

Setting s > 1, we define
W*P(D) :={p € W™P(D); 0% € W7"(D), Va |af = mj},

where m := |s] and ¢ := s — m. We denote H*(D) := W#?(D).

1.5 Finite-Element-Methods-Related Symbols

1.5.1 Symbols



PF Vector space of polynomials in the variables x1, ..., x4 of
global degree at most k € Ny

N(:k) NU@R .= dim(P*) = (dz k)

RT* The Raviart—Thomas polynomial space of order k£ € Ny as
RT* := (P*)4 4+ 2P* for any = € R?

NED NED .= dim RT*

T, T°, T, T\, K | Closed simplices in R?
PE(T), RT*(T) | P*(T) (or RT*(T)) is spanned by the restriction to T
of polynomials in P* (or RT*)

1.5.2 Meshes

Throughout this thesis, let 2 C R? d € {2,3}, be a bounded polyhedral
domain. Furthermore, we assume that () is convex if necessary. Let T), = {T'}
be a simplicial mesh of 2 made up of closed d-simplices, such as

with h := maxrer, hr, where hy := diam(7"). We also use a symbol pr which
means the radius of the largest ball inscribed in 7. We assume that each
face of any d-simplex T3 in T, is either a subset of the boundary 0f2 or a face
of another d-simplex T5 in Tj. That is, T} is a simplicial mesh of © without
hanging nodes. Such mesh T}, is said to be conformal. Let {T),} be a family
of conformal meshes.

Let T be a simplex of T, which is a convex full of d+1 vertices, P, ..., Py.1,
that do not belong to the same hyperplane. Let S; be the face of a simplex
T opposite to the vertex P;. For d = 3, angles between faces of a tetrahedron
are called dihedral, whereas angles between its edges are called solid.

1.5.3 Broken Sobolev Spaces

We adopt the concepts of mesh faces, averages and jumps, e.g., see [30, 74].
Let F; be the set of interior faces and F? the set of the faces on the boundary
0Q. We set Fp, := .7:,2 U .7:,?. For any F' € F},, we define the unit normal ng
to F as follows: (i) If F € F; with F' =Ty NTy, T1,Ty € Ty, let ny and ny
be the outward unit normals of 77 and 75, respectively. Then, ng is either
of {n1,ny}; (i) If F € F2, np is the unit outward normal n to 9. We also
use the following set. For any F' € Fj,,

TFZ:{TGThZ FCT}



We consider R%-valued functions for some ¢ € N. Let p € [1, 00| and s> 0
be a positive real number. We define a broken (piecewise) Sobolev space as

WeP(Ty; RY) := {v € LP(;RY) : v|p € WHP(T;RY) VT € Tp,}

with the norms

1/p
|v]|wsr(Tyra) = (Z ||U||Wp T;R¢ ) if p € [1,00),

TeTy,

ollwsoomyira = maxfvljwse ).

When ¢ = 1, we denote W*P(T}) := W*P(T,;R). When p = 2, we write
H*(Ty; R?) := W*2(Ty,; RY) and H*(T}) := W*?(Ty; R). We use the norm

1/2
|0l m(ry) = (Z HVSOH%Q(T)d) o € HY(Ty).

TeTy,
Let o € W*P(T},) with s>}o if p € (1,00), or s > 1 if p = 1. Suppose that
F e Fj with F =T, NTy, Ty, Ty € Ty. Set 1 := |7, and ¢q := ¢|r,. The
jump and the average of ¢ across F'is then defined as
[elr =01 =2, {{ohr = (901 + ¢2).
For a boundary face F' € F? with F' = 9T N9, [¢]r := ¢|r and {{p}}r =
¢|r. For any v € WIP(T,,; R?) with p € [1,00), we use the notation
[v-n]p:=vi-np—vy-np, {olr:= (U1+U2)

for the jump of the normal component of v. Whenever no confusion can
arise, we simply write [¢], {{¢}}, [v - n] and {{v}}, respectively. For v €
WLe(Ty; RY) and ¢ € WHP(T,,) with p € [1,00), it holds that

[(vp) -n]r = {v}}r - nrlelr + [v-n]r{{e}}r

We define a broken gradient operator as follows. Let p € [1,00]. For
¢ € WLP(T},), the broken gradient V, : WHP(T),) — LP(Q)? is defined by

(Vep)lr := V(plr) VT €Ty,
and we define the broken H(div;T") space by
H(div; Ty,) := {v € L* ()% v|r € H(div; T) VT € Ty},

and the broken divergence operator divy, : H(div; Ty,) — L?(Q) such that, for
all v € H(div; Ty),

(dth U)’T = diV(UlT) YT €Ty,
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1.5.4 Barycentric Coodinates

For a simplex T C R?, let {P;}%! be vertices of T and (xgi), .

dinates of P;. We set

1
RCES))

1

x((id—i-l)

> 0.

The barycentric coordinates {A\;}*! : R? — R of P(z,,...

to {P;}9*! are then defined as

The barycentric coordinates have the following properties:

d+1

MN(Py) =05, > Nilz) =1,

1.6 Useful Tools for Analysis

1.6.1 Jensen-type Inequality

Td

1

xgd—i-l)

x((id—i-l)

,q) with respect

In this thesis, we use the following Jensen-type inequality (see [30, Exercise
1.20]): Let 0 <r <sanda; > 0,7 =1,2,...,n (n € N), be real numbers.

We then have

n 1/s n 1/r
£
=1 =1

1.6.2 Embedding Theorems

The following is well known as the Sobolev embedding theorem.

10
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Theorem 1.6.1. Letd > 2, s>0, and p € [1,00]. Let D C R? be a bounded
open subset of RY. If D is a Lipschitz set, we then have

LY(D) Vq e | ,di‘ip] if sp<d,
W#P(D) — ¢ LY(D) Vq € [p,00), if sp=d, (1.6.2)
L®(D)NC**(D) &=1—L ifsp>d.
Furthermore,
W*P(D) — L>*(D)NC°(D) (cases=d andp=1). (1.6.3)

Proof. See, for example, [30, Corollary B.43, Theorem B.40] and [31, The-
orem 2.31] and the references therein. ]

The following is the embedding theorem related to operator from W*?(D)
into L%(S,), where S, is some plane r-dimensional piece belonging to D with
dimensions r < d.

Theorem 1.6.2. Let p,q € [1,+00] and s > 1 be an integer. Let D C R?
be a bounded open set having piecewise smooth boundaries. The following
embeddings are then continuous:

) d _ pr
L9(S,) gf 1< §< o T>d—spandq< g7, (1.6.4)
LY(S,) ifp= < for g < 4o0.

WHP(D) — {
Proof. See, for example, [61, Theorem 2.1 (p. 61)] and the references therein.
]

Corollary 1.6.3. Let p € [1,+00) and s > 1 be an integer. Let D C R?
be a bounded open set having piecewise smooth boundaries. The following
embeddings are then continuous:

LP(S,) ifsp>d—r forp>1,

LP(S,) ifs>d—r forp=1. (1.6:5)

W*P(D) — {

Proof. Setting p = ¢ in (1.6.4), we have the desired result. Also see [31, pp.
31, 32). O

1.6.3 Trace Theorem

The following theorem is well-known and useful, e.g., see [31].
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Theorem 1.6.4 (Trace). Let p € [1,00). Lets>% ifp>1lors>1ifp=1.

Let D be a Lipschitz domain (e.g., see [31, Definition 3.2]) in R There
exists a bounded linear operator 9 : W*P(D) — LP(0D) such that

(1) ¥9(p) = ¢lap, whenever ¢ is smooth, e.g., p € C(D).
(II) The kernel of 9 is W5*(D).
22/,
p & {1,2}, then~9 : W*P(D) — W* »*(0D) is bounded and surjective,

that is, there exists C"° such that, for every functions g € WP (0D),
one can find a function @, € W*P(D), called a lifting of g, such that

(HI) If s =1 andp =1, orif s € (£,2) andp = 2, or if s € (%,1] and

o) =0, Iedwermr <Ol ppp:  (166)
where {p is a characteristic length of D, e.g., {p = diam(D).
Proof. See [31, Theorem 3.10], and the references therein. O

We introduce the following remarks described in [31, Remarks 3.13 and
3.14].

Remark 1.6.5 (W'*°(D)). The trace theory in W*°(D) is not trivial be-
cause C*®(D) is not dense in L>°(D). The situation simplifies if D is qua-
siconvex because WhH*(D) = C%(D) in this case. Here, a set D C R? is
said to be quasiconvex if there exists C' > 1 such that every pair of points
x,y € D can be jointed by a curve R in D with length(R) < Clz — y|g.

Remark 1.6.6. If ¢ € W*P(D) with p € [1,00) and s>1 +% if p>1 or
s > 2if p = 1, then Vi € W* 1P(D)? and we cam apply Theorem 1.6.4
componentwise, that is, v9(Vy) € Wsil*%’p(ﬁD).

Theorem 1.6.7 (Trace on low-dimensional manifolds). Let p € [1,00) and
let D be a Lipschitz domain in RY. Let M be a smooth, or polyhedral, man-

ifold of dimension r in D, r € {0 : d}. Then, there exists a bounded trace
operator from W*P(D) to LP(M), provided sp>d —r, ors >d—r if p=1.

Proof. See [31, Theorem 3.15]. O

Theorem 1.6.8 (Normal derivative). Let p € (1,00) and s —% €(1,2). Let

D be a domain in R* with a boundary of class C*' with k = 1 if s < 2,
and k = 2 otherwise. There exists a bounded linear map v : W*P(D) —

Ws_l_%’p(ﬁD) so that % (o) := (n - V)|ap for all p € C*(D), and letting
1= (19,9%) : WeP(D) — W*»2(dD) x W*™'"»*(9D),

12



(I) The map 1 is bounded and surjective.
(II) The kernel of v1 is Wy* (D).

Proof. See 31, Theorem 3.16], and the references therein. O

1.6.4 Bramble—Hilbert—type Lemma

The Bramble-Hilbert—type lemma (e.g., see [29, 22]) plays a major role
in interpolation error analysis. We mainly use the following estimates on
anisotropic meshes proposed in [4, Lemma 2.1].

Lemma 1.6.9. Let D C R? be a connected open set that is star-shaped with
respect to balls B. Let v be a multi-index with m := |y| and ¢ € L'(D)
be a function with o € W™P(D), where £ € N, m € No, 0 < m </,
p € [1,00]. It then holds that

107 (p — Q(Z)QO)HW‘Z*W»P(D) < CBH‘8790|W@*"W(D)7 (1.6.7)

where CBH depends only on d, ¢, diam D, and diam B, and QW ¢ is defined
as

(Q = > / ( 5 v’ Y dy e P, (1.6.8)
|8|<e—1 ’
where n € C3°(B) is a given function with [pndr = 1.

To give local interpolation error estimates on isotropic meshes, we use the
inequalities given in [28, Theorem 1.1] and [29, 22, 87] which are variants of
the Bramble-Hilbert lemma.

Lemma 1.6.10. Let D C R? be a bounded convex domain. Let o € W™P(D)
withm € N and 1 < p < co. There exists a polynomial n € P™~ such that

o — nlwrapy < CPH(d,m) diam(D)™ *|p|wmepy, k=0,1,...,m.
(1.6.9)

Proof. The proof is found in [28, Theorem 1.1]. O

Remark 1.6.11. In [22, Lemma 4.3.8], the Bramble—Hilbert lemma is given
as follows. Let B be a ball in D C R? such that D is star-shaped with respect
to B and its radius r > %rmax, where 7.y = sup{r : D is star-shaped with

13



respect to a ball of radius r}. Let ¢ € W™P(D) with m € Nand 1 < p < oc.
There exists a polynomial n € P™! such that

lo — 77|Wk,p(D) < C’BH(d, m,y) diam(D)m_k|gp|Wm,p(D), k=0,1,...,m.
(1.6.10)

Here, v is called the chunkiness parameter of D, which is defined by

diam(D)
voi= "
7”‘l’IlaX
The main drawback is that the constant CP#(d, m,~) depends on the chunk-
iness parameter. Meanwhile, the constant CP# (d, m) of the estimate (1.6.9)
does not depend on the geometric parameter ~.

Remark 1.6.12. For general Sobolev spaces W"™?(), the upper bounds on
the constant CBH(d, m) are not given, as far as we know. However, when
p = 2, the following result has been obtained by Verfirth [87].

Let D C R? be a bounded convex domain. Let ¢ € H™(D) with m € N.
There exists a polynomial n € P™~! such that

| —nlgrp) < CBH(d, k,m) diam(D)m*k](p\Hm(D), k=0,1,...,m—1.
(1.6.11)

Verfiirth has given upper bounds on the constants in the estimates such that

d+k—1\"" {(m— k)}V/2
)
where [z] denotes the largest integer less than or equal to x.

As an example, let us consider the case d = 3, k = 1, and m = 2. We
then have

CPH(d, k,m) < 7" (

V3
T )

CP1(3,1,2) <

thus on the standard reference element T introduced in Section 3.1.2, we
obtain

V6

b — ﬁ’Hl(f) < 7|@‘H2(T) Vo € H¥(T),

~

becase diam(T) = v/2.
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1.6.5 Poincaré inequality

Theorem 1.6.13 (Poincaré inequality). Let D C R? be a convex domain
with diameter diam(D). It then holds that, for ¢ € H'(D) with [, pdx =0,

diam(D)

ol 2 py < |0l sy (1.6.12)

Proof. The proof is found in [70, Theorem 3.2], also see [73]. O

Remark 1.6.14. The coefficient £ of (1.6.12) may be improved. The best
constant in eqrefpoincare is described in [31, Remark 3.25].
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Part 11

Geometric Conditions
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Chapter 2

Motivation

2.1 Regularity Conditions

Let 7 C R and T C RY be a reference element and a simplex, respectively.
Let these two elements be affine equivalent. Let us consider two finite ele-

ments {f,ﬁ, i} and {T, P, ¥} with associated normed vector spaces V(T
and V(7). The transformation ®; takes the form

Op:T 353 Op(d) :=Bri+breT,
where By € R%¥? is an invertible matrix and by € RL Let Iy : V(T) :=
W2*P(T) — P := PYT) with p € [1,00] be an interpolation on T with
Irp = p for any p € PYT). According to the classical theory (e.g., see

[25, 30]), there exists a positive constant ¢, independent of hp, such that

o = Irglwroery < ¢ (I1Brll2l|Brll2) 1Brllalelwzs .-

Here, the quantity ||Br||2||B;||2 is called the Buclidean condition number of
Br. By standard estimates (e.g., see [30, Lemma 1.100]), we have

_ hr
1Brll21B7 2 < e, [|Brll2 < chr.
Pr
It thus holds that
hr
|0 — Irplwiery < c—hrlplweem.
pr
As geometric conditions to obtain global interpolation error estimate and

to prove that this estimate converges to zero as h — 0, the shape-reqularity
condition is widely used and well known. This condition states as follows.
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Condition 2.1.1 (Shape-regularity condition). There exists a constant y; > 0
such that

or = ’ylhT VT, € {Th}, VT €Ty (211)

Under the condition, that is, when the quantity ]p”—; is controlled, it holds
that

[ — Tholwir) < chlplwzrq),

where I, is the standard global linear interpolation of ¢ on Tj,.
Furthermore, geometric conditions equivalent to the shape-regularity con-

dition are known; that is, the following three conditions are equivalent to the

shape-regularity one. The proof is found in [20, Theorem 1].

Condition 2.1.2 (Zlamal’s condition). There exists a constant v, > 0 such
that for any Tj, € {T}}, any simplex T' € T}, and any dihedral angle ¢ and
for d = 3, also any solid angle 6 of T', we have

Y=y, 027 (2.1.2)

Condition 2.1.3. There exists a constant 3 > 0 such that for any T), € {T}}
and any simplex T" € T}, we have

IT| > Ahd. (2.1.3)

Condition 2.1.4. There exists a constant 4 > 0 such that for any T), € {T}}
and any simplex 7" € T}, we have

IT| > v|B, (2.1.4)
where BT D T is the circumscribed ball of T'.

Note 2.1.5. If Condition 2.1.1 or 2.1.2 or 2.1.3 or 2.1.4 holds, a family of
simplicial partitions is called regular.

Note 2.1.6. Condition 2.1.2 was presented by Zlamal [90] in 1968. The
condition is called the minimum-angle condition and guarantees the conver-
gence of finite element methods for linear elliptic problems on R2. Zldmal’s
condition can be generalised into R™ for any n € {2,3,...}. Later, the shape-
regularity condition (the inscribed ball condition) was introduced; see, for
example, [25]. Triangles or tetrahedra cannot be too flat in a shape-regular
family of triangulations.
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Note 2.1.7. Condition 2.1.3 seems to be simpler than Condition 2.1.1 or
Condition 2.1.2. Therefore, it may be useful to analyse theoretical finite
element methods and implement finite element codes to keep nondegenerate
mesh partitions.

Remark 2.1.8. What happens if the shape-regularity condition is violated,
that is, the triangle becomes too flat as hy — 07 One of the answer is the
quantity %hT, equivalently Z_;hT may diverge. As an example, let 7' C R?
be the simplex with vertices P, := (0,0)7, P, := (2s,0)7 and Ps := (s,s%)7
for 0<s <1, s € Rand ¢ € R. We then have

hg 8%,

m T = glte )

If ¢ > 2, the quantity %hT diverges as hy — 0. Even if € <2, the conver-

gence order h7. ¢ is worse than hp which is optimal order under imposing the
shape-regular meshes. Therefore, It depends on € whether interpolation error
estimates converge or not. On general meshes, it may not easy to control
"degree of crushing of elements.”

Remark 2.1.9. We give the another example. Let 7' C R? be the simplex
with vertices Py := (0,0)7, P, := (s5,0)7 and P3 := (0,s°)7 for 0<s <« 1,
s € R and € € R. We then have

h2 (82 _|_825)3/2

L. =

2—e
|T| %31+5 ’

< cs

2
As with Remark 2.1.8; if ¢ > 2, the quantity %hT diverges as hr — 0.
However, in some cases, it is known that it is not necessary for Condition
2.1.1 to obtain

o — ]h90|W1’P(Q) < Ch|90|w2ﬁp(9)-

In this case, we observe that the Euclidean condition number ||Br|l2||B:'|2
of Br may be overestimated.

2.2 Semi-regularity Conditions for d = 2

In 1957, Synge [83, Section 3.8] proposed the following condition.

Condition 2.2.1 (Synge’s condition). There exists ¥ < 75 <7 such that,
for any T}, € {T\,} and any simplex T" € Ty,

QT,max S Y5, (221)

where 07 max is the maximal angle of 7T'.

21



Under Condition 2.2.1, Synge proved an optimal interpolation error esti-
mate as follows.

lo = Inpllwrn) < chlolw2r@) for p=oc.

The inequality (2.2.1) is called Synge’s condition or the mazimum-angle con-
dition. In 1976, several author’s [13, 15, 39, 51] independently proved the
convergence of finite element for p < oo. We observe that the minimal angle
may tend to zero as h — 0 under this condition. If Synge’s condition does
not hold, optimal order of the interpolation for linear triangular elements
is lost as when no imposing Zlamal’s condition, see e.g. [13, p. 223|, and
Remark 2.1.8.

In [57], Kiizek proposed the following circumscribed ball condition for
d = 2 which is equivalent to Synge’s condition.

Condition 2.2.2. There exists 75 > 0 such that, for any T, € {T,,} and any
simplex T € Ty,
2 (2.2.2)

where R, is the radius of the circumscribed ball of T' C R2.

Note 2.2.3. If Condition 2.2.1 or 2.2.2 holds, the associated families of
partitions are called semi-reqular.

Assume that Condition 2.1.3 holds, that is, there exists a constant 3 >0
such that for any T}, € {T,} and any simplex 7" € T}, we have

IT| > y3h7.

Let T C R? be the triangle with vertices P;, P, and P; such that the maxi-
mum angle 0r .y of T is ZP, Py Py. We then have hr = |P, P3| and
Ry | P, P3| B | PPy || Py Ps| hZ.

— = . = . < < < Ye-
hT 2hT Sin QT,max 2|P1P2||P1P3| Sin QT,maX |T| ’73

This implies that each regular family is semi-regular. However, the converse
implication does not hold.

Remark 2.2.4. Consider the same example as Remark 2.1.9. We easily
calculate the quantity % as follows.

Ry 5Vs*+s*E 1

hr V¥ +sE 2
This example implies that Synge’s condition makes it possible to use anisotropic
meshes.
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2.3 Semi-regularity Conditions for d = 3

Synge’s condition (2.2.1) is extended to the case of tetrahedra in [58].

Condition 2.3.1. There exists a constant 0 < v; <7 such that for any T}, €
{T}} and any simplex T € T},

eT,max S Y7, (231&)
77DT,rnaLx S Y7, (231b)

where 07 .« is the maximum angle of all triangular faces of the tetrahedron
T and Y7 max is the maximum dihedral angle of T'.

Anisotropic interpolation theory has also been developed [10, 4, 23]. Un-
der Synge’s and coordinate system conditions, anisotropic interpolation error
estimates can then be deduced (e.g., see [4]).

On the other hand, is there a semi-regularity condition which equivalent
to Synge’s condition (2.3.1) for d = 37 As far as we know, an extension of
(2.2.2) to R3 so that optimal interpolation error estimates in Sobolev norms
on simplicial finite elements hold is still open, e.g., see [20]. In this part,
we propose a new geometric condition to become an alternative to Synge’s
condition for d = 3.
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Chapter 3

Settings for the analysis of
anisotropic interpolation theory

3.1 Reference and Mesh Elements

This section introduces the Jacobian matrix proposed in [56] for the three-
dimensional case and that proposed in [67] for the two-dimensional case. Also
see [47, Section 3.

Let us first define a diagonal matrix A@ as
AD = diag(hy,... hg), h; €R, Vi (3.1.1)
We easily obtain the inverse matrix of A@.

(AD)1 = diag(hy',... hyY). (3.1.2)

3.1.1 Two-dimensional case

Let T C R? be the reference triangle with vertices P, := (0,0)7, P, := (1,0)7,
and P3 := (0,1)T.
Let T? be the family of triangles

T = A(T)

with vertices Py := (0,0)7, Py := (h1,0)7, and Py := (0, hy)”.

We next define the regular matrix A € R?*? by

A= (é j) : (3.1.3)
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with parameters
sS24+t2=1, t>0.
For T € T, let T be the family of triangles
T° = A(T)

with vertices P¢ := (0,0)7, P5 := (hy,0)", and P§ := (hys, haot)”. Then,
hi =P} = P3| >0 and hy = [P} — P§|>0.
We easily obtain the inverse matrix of A:

At = (é _%?) . (3.1.4)

3.1.2 Three-dimensional cases

In the three-dimensional case, we need to consider the following two cases (i)
and (ii); also see Condition 3.2.2.

Let T, 1 and fg be reference tetrahedra with the following vertices:

(i) T, has the vertices P, := (0,0,0)7T, Py = (1,0,0)T, ]33 = (0,1,0)T, and
P4 = (07 Oa 1>T7

(ii) 75 has the vertices P; := (0,0,0)7, Py := (1,0,0)7, Py := (1,1,0)7, and
P=(0,0,1)".

Let ‘§§3), 1 = 1,2, be the family of triangles
T, = AO(T), i=1.2,
with vertices
(i) P, :=(0,0,0)7, P, := (hy,0,0)T, P; := (0, hy,0)T, and Py := (0,0, hy)T;
(i) P :=(0,0,0)7, Ty := (hy,0,0)7, Py := (hy, hy,0)7, and Py := (0,0, hs)7.

We next define the regular matrices A;, Ay € R¥3 as

N L s1 s " I —s1 so
Al = 0 tl S99 5 .AQ = 0 tl 5929 (315)
0 O tQ 0 0 t2
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with parameters

S%"‘tQ:l, 51>0, t1>0, hast §h1/2,
8§1+S%2+t% =1, t2>0, h3521 < h1/2

For ﬁ € ‘EZ(-S), 1=1,2, let ‘153), 1 = 1,2, be the family of tetrahedra

with vertices

Pls = (0, O, O)T, PQS = (hl, 0, O)T, Pj = (h3521, h3822, hgtg)T,

Py := (hysy, hot1,0)T  for case (i),
P§ := (hy — hysy, hoty,0)T for case (ii).

Then, hy = |P} — P3| >0, hy = |P; — P§| >0, and

)PP = P5|>0 for case (i),
: |Ps — P;|>0 for case (ii).

We easily obtain the inverse matrices of le and ,Zg:

1 -5 S1822—1t1821 1 s —S1822—t1521
~ ltl tito ~ tf tito
-1 _ 1 _ 822 -1 _ 1 _ 822
Al - O t1 lith ) AQ - 0 t1 tlltZ . (316)
0 0 L 0 0 L
2 2

Note 3.1.1. Throughout this thesis, a symbol A is either A; or A;. When
there is no ambiguity, the script 1 or 2 is dropped.

3.2 Standard Elements

In the following, we impose conditions for 7% € T in the two-dimensional
case and 1% € T?) U ‘Ig’) =: TO) in the three-dimensional case.

Condition 3.2.1 (Case in which d = 2). Let 7° € T® with the vertices
P? (i =1,...,3) introduced in Section 3.1.1. We assume that Ps Py is the

longest edge of T°%; that is, hps := |Py — P§|. Recall that hy = |P; — P3| and
hy = |P; — P§|. We then assume that hy < hy. Note that hy = O(hyps).
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Condition 3.2.2 (Case in which d = 3). Let T* € T® with the vertices P?
(¢ =1,...,4) introduced in Section 3.1.2. Let E; (1 < i < 6) be the edges
of T°. We denote the edge of T* that has the minimum length by E,;,; that
is, | Fmin| = minj<;<¢ | E;|. We set hg := |Epin| and assume that

the end points of Eyy, are either { P/, Pj'} or { Py, P5}.

Among the four edges that share an end point with E,;,, we consider the
longest edge Eumr) Let P¢ and P§ be the end points of edge Eome’. We
thus have that

by = | B = | P — P,

max

Consider cutting R? using the plane that contains the midpoint of edge Elmim

and is perpendicular to the vector P — Pj. Then, there are two cases:
(Type i) Pj and P} belong to the same half-space;

(Type ii) P; and P; belong to different half-spaces.

In each case, we set

(Type i) P} and P§ as the end points of Eyy, that is, hy = |Pf — P§|;
(Type ii) P; and P; as the end points of Ey,, that is, ho = |Py — Pj].

Finally, we set that hy = | Py — P;|. Note that we implicitly assume that Py
and P} belong to the same half-space. Additionally, note that hy = O(hys).

Each d-simplex is congruent to the unique 7° € T4 satisfying Condition
3.2.1 or Condition 3.2.2. T* is therefore called the standard element of the
d-simplex. See Figures 3.1 and 3.2.
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PS = (hysy, byt 0)7
Py = (R385, hasy, hst)"

P; = (h,0,0)"

.__.A

Fig. 3.1: Standard Element (Type 1)

P = (hysy, hysy, haty)

P = (hy = hysy, byt ,0)"
P = (0,007

'S '*.
2 Pi=(h,00) A

Fig. 3.2: Standard Element (Type ii)
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Remark 3.2.3. Let T, be a conformal mesh (Section 1.5). We assume
that any simplex T € T, is transformed into TF € T such that Condition

3.2.1 is satisfied in the two-dimensional case or 7T’ € ‘371(3), t = 1,2, such that
Condition 3.2.2 is satisfied in the three-dimensional case through appropriate
rotation, translation, and mirror imaging. Note that none of the lengths of
the edges of a simplex or the measure of the simplex is changed by the
transformation.

Note 3.2.4. Note that the length of all edges of a simplex and measure of
the simplex does not change by the transformation. It then holds that

hi <hps=hp, i=1,....d. (3.2.1)

3.3 Additional Condition

The following condition is used for obtaining optimal interpolation error es-
timates.

Condition 3.3.1. In anisotropic interpolation error analysis, we impose the
following geometric condition for the simplex T:

(I) If d = 2, there are no additional conditions;

(IT) If d = 3, there must exist a positive constant M independent of hps
such that |sga| < Mh;—? Note that if s9s # 0, this condition means
that the order of hg with respect to hps coincides with the order of hs,
and if sg9 = 0, the order of hy may be different from that of hs.

3.4 Affine Mappings and Piola Transforms

In the present thesis, we adopt the following affine mappings and Piola trans-
formations.

Definition 3.4.1 (Affine mappings). Let T,T C R? be the simplices defined
in Sections 3.1.1 and 3.1.2. That is to say,

~ ~ o~ ~, ~ ~

T=3o(T), T°=oT) with i:=®(%):=AD% 2°:=d(F):= AL

We then define an affine mapping $° : T — T° as

~ A~

P =dod:T > T°, 2°=0%(&) =A%, A :=AAD  (3.4.1)
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Furthermore, let ®7s be an affine mapping defined as
Ops :T° > 2° — Arx® +bp € T, (3.4.2)

where by € R? and Ar € O(d) is a rotation and mirror imaging matrix. We

A~

define an affine mapping ® : 7" — T as
=P 0@ : T T, :=D(2) = (Pps 0 D°)(2) = Ak + by,  (3.4.3)
where A := ApA°.

Definition 3.4.2 (Piola transforms). Let T' € Ty,. Let 7%, T, and T c RY
be the simplices defined in Sections 3.1.1 and 3.1.2. Let &, ®7s, ®, and ® be
the affine mappings defined in Definition 3.4.1; that is,

T=dT), T°=dT), T=(T*), ®=opmodod.

We set V(T) := C(T)%. The Piola transformation ¥* := U o ¥ : V(T) —
V(T?) is defined as

U V(T) — V(T (3.4.4)

with two Piola transformations:

U V(T) — V(T)

0 (7)== U(0)(7) = ——e— ADi (3
=) = RO E) = 1o A6,
U V(T) — V(T)

~ ss._NﬁxS.: 1 N’lj.%
U v*(2®) = U(0)(2°) : det(ﬂ)A (Z).

Let Wps : V(T®) — V(T') be the Piola transformation defined as

Urps - V(T°) = V(T) (3.4.5)

V¥ v(x) = Ups (v°) () := m.ﬁlﬂ}s(ﬁ).

A~

We define the Piola transformation ¥ : V(T') — V(T') as

A~

v V(T)— V(T) (3.4.6)
0= v(x) = Wps 0 U¥(0)(2) :=

det(A) A().
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Py

Fig. 3.4: Affine Map (Type ii)
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Lemma 3.4.3 (Property of the Piola transformations 1). If & € CY(T)¢,
then v := W € CYT)? and there holds

Jov = ——AT0 A", (3.4.7)

dive = ———=divo, (3.4.8)
et

where J,v and j,;f) denote the Jacobian matrizes of v and v, respectively.

Proof. From the definition of the Piola transformation (3.4.6), we have

1 o 1 o _1
Joo(x) = det(A)AJx(vo(I) )(x) = det(A)AJxv(aﬁ)Jx@ (x)
_ 1 T A0 AL
= det(A) AJ0(z) A
Because the property of the trace, we get
. . _ 1 T A1
dive = Tr(Jv) = dot(A) Tr(AJ;0A)
L Te(Ji0) = ———div
det(A) T T Get(a)

]

Lemma 3.4.4 (Property of the Piola transformations 2). Let p € [1,00).
For ¢ € WY\(T), v € W'(T)* with ¢ := ¢ o ®~' and v := V(?), it holds
that

/ divopds = | divogdi, (3.4.9)

T T

/(v Vo )pdr = /A(@ - Vs)pdd, (3.4.10)
T T

/ (v-n)pds = / (0 - n)@ds. (3.4.11)
ar aT

Proof. Because det(.A) is positive, by a change a variable,

1 —
di dr = ——~ [ divop|det dz
/T ivopdz det(A)/f ivop| det(A)|dz,

which leads to (3.4.9).
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Because

VrQO == .A_T%;E@,

_ S AT o .
/T (v- Vo = 3o /T (Ab - AT9,)5| det(A)|di

= /A [(AD)T ATV ;] pdi = /A (6 - V2)@di,
T

T

which is (3.4.10).
From (3.4.9) and (3.4.10), applying the Gauss—Green formula yields

/ (v-n)pds = /(divv)goda: + /(v - V.)pdx

oT T T

:/A(cfi:f@)géd:%—i-/A(@@@)@d:&: /A(ﬁﬁ)@dé,
oT

T T

which is (3.4.11).

3.5 Additional Notation

For convenience, we introduce two definitions.

Definition 3.5.1. We define a parameter 577, i = 1,...,d, as

% = hl; % —- hgt lfd:2,
% = hl, % = hgtl, % = h3t2 if d = 3.

For a multi-index 8 = (B4, ...,34) € Nd, we use the following notation:
P = %51 .. .%ﬁd, WP = yf{ﬂl . ..%*Bd,

We also define h? := Ay - - bt and hF .= by ™ -~ b,

Definition 3.5.2. We define vectors 7, € R%, n = 1,...,d, as follows.

d=2,

ry o= (1,O)T, ro 1= (s,t)T,
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Py = (h3y), hysyy, haty)”

P, = (0,007 <

P2 = (h19090)T

Fig. 3.5: New parameter 77, i = 1,2,3

and if d = 3,
r o= (170;0)T7 r3 = (821,8227752)T7
ry == (s1,11,0)T  for case (i),
re := (—s1,t1,0)T  for case (ii).
For a sufficiently smooth function ¢ and vector function v := (vy,...,v4)%,

we define the directional derivative as, for i € {1 : d},

dp B d Op

8Ti T [(ATTZ) ’ VI]SO - j;):l(ATTl)]O axjoa

ov ov ova\ "

or = (67“1 PRI (9_7“d) = ([(ATTZ) : Va:]vlv SRR [(ATTZ) ’ vaf]vd)Tv

where Ar € O(d) is the orthogonal matrix defined in Definition 3.4.1. For a
multi-index 8 = (B4, ..., 84) € Nd, we use the notation

a\ﬂlgp
(7? =
v ardt . .Orgd

Furthermore, for ¢° = ¢ o ®7. and v* = U, lv, we define the directional
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derivative as, for i € {1 : d},

d

8()08 o s a(ps
Gy = i Vale® = Z(n)m o
jo=1 Jo
ov* ovy EAN
s = (a—ri, Ce 87"?) = ([ry - Vas]v§, ..o, [ - Vs o).

For a multi-index 8 = (8, ..., 34) € N&, we use the notation

oIl s

355 Si= .
2T )P (Ors)Pa

ATr2 + bT
ATrl + bT

ry=(s, )" ) .

0,07 r = (1,07

Fig. 3.6: Affine mapping ®* and vectors r;, ©+ = 1,2

Remark 3.5.3. The vectors r;, i € {1,...,d} defined in Definition 3.5.2 are
unit vectors. Indeed, if d = 2,

Ml =1, |rlg=Vvs2+t2=1,

if d =3,

rle =1, |rlp= /si+ti=1, |nslg=1/s5 +s5+15=1
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Note 3.5.4. Recall that

]3|§1, hgghl lfd:2,
’Sl‘SL |521|§1, h2§h3§h1 if d = 3.

When d = 3, if Condition 3.3.1 is imposed, there exists a positive constant
M independent of hr such that |ses| < M h}j—gl We thus have, if d = 2,

hl’[ ]Jl‘ < 7 h2|[ ]J2| < 7 j: 1727
and, if d =3, for A € {A;,A;} and j = 1,2,3,

W[l <56, hollAljp| < 7, hs|[Als] < max{1, M}, j=1,2,3.

3.6 Euclidean Condition Number

Lemma 3.6.1. It holds that

max{hy, -, hq}
min{hy, -+, ha}’

~ 2 ifd=2 ihy = Href g =2,
||A||2s{f =2 Al A < { e Y

IAD < hra, A ol (AD) 7], =

2 ifd=3, M = S ifd=3,
(3.6.1b)
Mzl =1, Az ]2 = 1. (3.6.1c)

where a parameter Hps is defined later (Definition 4.1.2). Furthermore, we
have

72| 1T

det(A%)| = |de det(A@
| det(A%)| = | det(A)|| det(A™)| = 7 7

= d\|T?|, |det(Ar)| = 1.
(3.6.2)

Proof. We fist show the equality (3.6.2). Because we obtain

/ dx—/|det (A%)|dz, / d:p—/|det )|dz, /dx—/|det |d,

we conclude (3.6.2).
We next show the equality (3.6.1a). From

(AD)TAD = diag(hi, ..., h5), (AD)(AD)T = diag(h;®,..., hy”),
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we have
Ay = A (D) AD) 2 = masc{ha, - b} < hre,
and

LA (AD) 72 = A (AD)TADY 2N (AD) 71 AD) T2
_ max{hy, -, hq}
~ min{hy, -, hg}’

which leads to (3.6.1a).
We next show the equality (3.6.1b). We consider for each dimension,
d=2,3.

Two-dimensional case

From
wa- () g (L7),
we have
[All2 = Amax (AT < (14 |s])/2 < V2,
and
AT Al = A (AT A2 A (ATLATT) 2 < % - %

which leads to (3.6.1b) for d = 2. We here used the fact that |T%| = Lh;hot.

Three-dimensional case

The matrices Avl and ,/2(2 introduced in (3.1.5) can be decomposed as Avl =
M()Ml and .AQ == M()MQ with

N 10 S921 N 1 S1 0 - 1 —S1 0
M() = 0 1 S29 |, Ml = 0 tl 0 s M2 = 0 tl 0
0 0 ¢t 0 0 1 0 0 1

The eigenvalues of ./WQT./W 5 coincide with those of ./TA/ITM 1, and we may there-
fore suppose without loss of generality that we have Case (i).
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We have the inequalities

A2 = Amax (AT ADY? < A (MEM) Y Apar (MT M)/

1/2
< (1+ \/531+8§2> (1+[s1))'/* < 2,

and
||"le|2||"11_1||2 = )‘max("z({"z(l)1/2)‘max(“11_1“11_T)1/2

(O VEER) A+ 4 ammn,
- 32 Tttty 3 7]

where we used the fact that |T%| = %hlhghgtltg.
Because the length of all edges of a simplex and measure of the simplex are

not changed by a rotation and mirror imaging matrix and Az, A;' € O(d),

T
Ty arle =1 A = 1.

| det(Ar)| = =1,
7]
which is (3.6.1c) and (3.6.2). O
Remark 3.6.2. It holds that
_ tilde hiho _ Ctilde@ ifd=2
Ay < g 2L T2 ’ 3.6.3
|| ||2 = {0321d hllé?s}lm _ Cngd IZTTSS fd— 37 ( )

where C414¢ .= max{t, |s|, 1} and C& := max{t to, s1ta, to, 51|S20|+t1|501|, S22, 11}

Proof. Recall that if d = 2,

~ 1/t —s
-1 _ =
=i(o )
and if d = 3,
_ 1 [tite —sita s1802 —tis;
.Al_l = ﬁ 0 tQ — 8929 N
20 0 ty
_ 1 [htz sita —S1822 — l1sa
A;l = ﬁ 0 tQ —S899
A0 0 ty

We consider for each dimension, d = 2, 3.
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Two-dimensional case

From (1.3.1), we have

1 hih
A7 2 < 20 A7 e < 2maxc{t, [s], 1} = max{t, 5], 1} |%|2
Three-dimensional case
Let A7 € {A[", A;'}. From (1.3.1), we have
A 2 < 3] A™ [ max
1
< 3max{tity, s1la, ta, 51]S22| + t1]521], ‘522”t1}ﬁ
1l2
1 hihah
= 5max{tltg,sth,t2,31\322| + t1]sa1], [s22], t1 } 1’T25‘ °

]

Remark 3.6.3. As described in Section 2.1, using A* = AA@ instead of Br,
Lemma 3.6.1 and the standard argument, the interpolation error estimate is
rewritten as

o = Irsplwias) < ¢ (A2l (A*) 7 l2) 1A% [[2lelwer ()
max{hy, -, hq} Hrps

c
= min{hy, -, hq} hrs

hTs|()0|W2,p(Ts).
In general, the optimal order is O(hys) for a linear interpolation operator
Irs. Additional two factors

max{hy, -+ ,hq}  Hrs
min{hy, - hq}’  hps

may worsen the convergence order on anisotropic meshes. However, imposing
an additional assumption (see Theorem 5.5.1) and a geometric condition (see
Condition 4.3.1), the above two factors can disappear explicitly.
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Chapter 4

New Semi-regularity Condition

4.1 New Parameters

We introduce two new parameters, which are proposed in [47].

Definition 4.1.1 (New parameter Hr). For T € T}, we denote by L; edges
of the simplex T'. We define the new parameter Hr as

h2 B2
Hrp = =L min |Lz| ifd=2, Hp:=

|T| 1<i<3

T ¥ e
T oein ILIL| ifd =3,
(4.1.1)

Definition 4.1.2 (New parameter Hrps). The parameter Hys is defined as

H('i—l hi
H s = = h ER 412
S T R

Remark 4.1.3. We set

H(h) := max Hr.

TeTy

If the maximum-angle condition is violated, the parameter H(h) may diverge
as h — 0 on anisotropic meshes. Therefore, imposing the maximum-angle
condition for mesh partitions guarantees the convergence of finite element
methods [11]. Reference [13] studied cases in which the finite element solution
may not converge to the exact solution.

4.2 Properties of New Parameters

We first show relation between hps and Hrps.
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Lemma 4.2.1. It holds that

(4.2.1)

hTs S %HTS Zfd - 2,
hps <tHps if d =3,

Proof. We consider for each dimension, d = 2, 3.

Two-dimensional case

By construct of the standard element in the two-dimensional case, the angle
Omax = £ PPy Py is the maximum angle of 7. We then have Z <0 <,
that is, 0 <sin 6., < 1. Therefore, it holds that

hihs 2

Hs:_hs:—hs>2hs.
T T sinbpee -

We here used the fact that |T%] = %hlhg Sin Oy

Three-dimensional case

We denote by ¢rs the angle between the base AP, P, P3 of T® and the segment
P Py. Recall that there are two types’ standard element, (Type i) or (Type
ii). We denote by 67s

(Type i) the angle between the segments PP, and P, Ps, that is, Ops :=
4P2P1P3, or

(Type ii) the angle between the segments P, P, and P, Ps, that is, Ops :=
/PP Ps.

We set t; := sin Ops and t5 := sin ¢rs. By construct of the standard element in
the three-dimensional case, the angle /P, P3P, is the maximum angle of the
base AP P, Ps of T*. Therefore, we have 0 <fps < 7. Because 0 < ¢ps <,
it holds that

hihohs 6
H s — s — h s > 6h S .
4 |T| T SinOps singps 4
We here used the fact that [T%] = éhlhzhg sin Ops sin ¢ps. O

According to the following lemma, the parameters Hps and Hp are equiv-
alent.
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Lemma 4.2.2. It holds that

1
EHT<HTS <2Hr. (422)

Furthermore, in the two-dimensional case, Hr is equivalent to the circumra-

dius Ry of T'.

Proof. We consider for each dimension, d = 2, 3.

Two-dimensional case

Let L; (1 = 1,2,3) denote edges of the triangle T" with |L;| < |Lo| < |Ls]|. It
obviously holds that he = |L1| and hps = |Ls| = hy. Because hy < hy < 2hgps
and hrs < hy + hy < 2hy for the triangle AP, P, Ps, it holds that

1 1
§hT = ihTs <h; = ’LQ‘ < 2hps = 2hp.

We thus have

1 L|Ly] hihy [L1| 5
—Hr = ——h7<Hps = —hps <2—h57 = 2H7.
PE I !
Furthermore, it holds that
| L || L[ Ls] [ Lal o o [ Lal[Lof|Ls|
2Ry =2———F—— < Hp = —h7 <8———F——— = 8Rs.
’ 4T tort 4T ’

Three-dimensional case

Let L; (i =1,...,6) denote edges of the triangle T" with |L;| < [Ly| < -+ <
|Lg|. It obviously holds that he = |Li| and hps = |Lg| = hy. Recall that
there are two types’ standard element, (Type i) or (Type ii).

(Type i) Weset hy := |Ps— Py|, hs := |P,— Py| and hg := | P,— P3|. Because
hy = |E{D| = | P, — Py| is the longest edge among the four edges that
share an end point with Ey, it holds that

ho < min{hs, hy, he} < max{hg, hy, he} < hy. (4.2.3)

Because P, and P, belong to the same half-space for the triangle
AP1P2P4, it holds that

h3 §h5 ShlthS or
h3§h1§h5:hTs.
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We thus have

h3§h5§h1:hTS or
hg < hl < hTS < 2h1, %hTS < hl < hTS-

Because hs < hs, the length of the edge Ls is equal to the one of hs,
]’L4 or h6.
Assume that |Ls| = hs. We then have

1 1|Ly||L
o LTI

27T 2 T

B2 < Hy. = 1lizhs

Ly||L
|Ts| e = | #| 2|h2T = Hr(<2Hr).

Assume that |Ls| = hy. We consider the triangle AP, P3P,. From the
assumption, we have hy < hy < h3 and %hg < hy < hs. We then obtain

| L1]| Lo
T

hihah
B2 < Hypo = Mal2hs

1 1
_HT:§

Li||L
. B < 9 El1 L2

h% = 2Hrp.
7| T
Assume that |Ly| = hg. We consider the triangle AP, P,P;. Because
P, and P; belong to the same half-space for the triangle AP, P, P, it
holds that hy < hg < h; and %hl < hg < hy. From (4.2.3), we have

1 1
§h3 < §h1 <hg < hy.

Because hg < hs, we then obtain

1 1
Ly, — 1|Ly[| Lo
2 2 T

hihahg | L1 || La|
h3 < Hps = hps <2
e T

h3 = 2Hrp.

(Type ll) We set h4 = |P3 — P4|, ]’L5 = |P2 - P4|, and h6 = |P1 — P3|
Because hy = |Er(§2§?)| = |P, — P3| is the longest edge among the four
edges that share an end point with Ly, it holds that

h2 S min{h4, h5, hG} S max{h4, h5, hﬁ} S hl. (424)

Because P, and P, belong to the same half-space for the triangle

AP, PyPy and (4.2.4), it holds that
hs < hs < hy.

This implies that hy = hps. Therefore, the length of the edge Lo is
equal to the one of hs, hy, or hg.

43



Assume that |Ls| = hs. We then have
1 |L1||L2| 2 hihahg
—Hp< )| Hp = h7 = Hps = hrs
(2T)T N
Ll
T

Assume that |Ly| = hy. For the triangle AP, P3Py, we have
hy < hy < h5 <2hy.
Because hs < hs and hy < hg, it holds that

]_ |L1||L2| 2 h1h2h3
—H < H = h <Hs:—h s
<2T)T A
|Ly1|| Lo, 4
<2 his = 2H.
T T ’

Assume that |Ls| = hg. We have hy < hy + hg < 2hg for the triangle
AP, P, P3;. Therefore, since hg < hs < hy, we obtain

1 |L1|| Lo 5 hihahsg
—Hr< | Hpr = hi < Hps = hs
(2 ! ) ! Fi s
|L1]|Ls]
<2———=hi =2Hp.
T T !

]

4.3 New Geometric Mesh Condition equiva-
lent to the Maximum-angle Condition

As mentioned in Section 2.3, as far as we know, there is not a semi-regularity
condition which equivalent to Synge’s condition (2.3.1) for d = 3. In what
following, we present the new geometric condition which is proposed in [47].
This condition includes the case of d = 2.

Condition 4.3.1. A family of meshes {T}} has a semi-regular property if
there exists 75 > 0 such that

H
h—T <n~g VT, €{T,}, VT eT,. (4.3.1)
T
Equivalently, there exists v9 > 0 such that
Hrps
= < (4.3.2)
hTs
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In the following theorem, we show that the new semi-regularity condition
is equivalent to the maximum-angle condition.

Theorem 4.3.2. For a family of conformal meshes {T},}, there exists 3 >0
such that (4.3.1) if and only if

(d=2) there exists 5 < 5 < such that (2.2.1) for any T, € {Ty} and any
simplex T € Ty,;

(d=3) there exists a constant 0 <~y; < such that (2.3.1) for any T, € {T1}
and any simplex T € T},.

Equivalently, there ezists v9 >0 such that (4.3.2) if and only if

(d=2) there ewists § < 10 <7 such that

gTs,max S Y10, (433)

where Ops max 15 the mazimum angle of T°, and

(d=3) there exists a constant 0 <~y; <7 such that

eTs,maX S Y11, 1/}T5,max S Y11, (434)

where Ops max @5 the mazimum angle of all triangular faces of the tetra-
hedron T and s max 15 the mazimum dihedral angle of T°.

Proof. We consider for each dimension, d = 2, 3.

Two-dimensional case

We use the previous research in [57], that is, there exists 7 < 75 <7 such

that (2.2.1) for any T, € {T,} and any simplex 7" € T}, if and only if there
exists 76 > 0 such that, for any T), € {T}} and any simplex 7" € T},

Combining this result with the fact that Hr is equivalent to the circumradius
Ry of T' (Lemma 4.2.2), we have the desired conclusion.

Three-dimensional case

The proof can be found in [50], also see Appendix A. O
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4.4 Good elements or not for d = 2,37

In this subsection, we consider good elements on meshes. In this paper, we
define "good elements” on meshes as there existing vy > 0 satisfying (4.3.1).
We treat a ”Right-angled triangle”, ”"Blade” and ”Dagger” for d = 2, and
”Spire”, ”Spear”, ”Spindle”, ”Spike”, ”Splinter” and ”Sliver” for d = 3,
which are introduced in [23]. We give the quantities hyax/hmin and Hy/hr
for those elements.

4.4.1 Isotropic mesh
If the geometric condition (2.1.3) is satisfied, it holds that

d d d
& S h_T S i’ hmax S CE — ch_T S £
hT |T| V3 hmin ‘TS | ‘Tl 3

In this case, elements satisfying the geometric condition (2.1.3) are ”good.”

4.4.2 Anisotropic mesh: two-dimensional case
Let S C R? be a triangle. Let 0<t < 1,t € R and ¢,6,v € R.

Example 4.4.1 (Right-angled triangle). Let S C R? be the simplex with
vertices Py := (0,0)T, P, := (¢,0)T and P3 := (0,t°)” with 1<e. We then
have h; =t and hy = t%; i.e.,

hmax HS

Xt s 0 ast— 0, —= =2.
hmin_ hS

In this case, the element S is ”good.”

Example 4.4.2 (Dagger). Let S C R? be the simplex with vertices P, :=
(0,0)T, Py := (t,0)T and P5 := (°,t°)T with 1<e<J. We then have h; =
(t —t°)2 4+t and hy = V20 + 1% ie.,

hmx t_t(5 2+t2g
== ( ) <ct'™ 500 ast—0,
hmin t2§ + 12

Hg B \/(t _ t5)2 + t2a\/t26 4 2 -

h_S o %t1+5 = ¢

In this case, the element S is ”"good.”

Remark 4.4.3. In the above examples, hy &~ % holds. That is, the good
element S C R? may satisfy conditions such as hy ~ 4.
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Example 4.4.4 (Blade). Let S C R? be the simplex with vertices P, :=
(0,00, Py := (2t,0)T and Ps := (t,t)T with 1 <e. We then have hy = hy =
ViE2+t2%E: e,

Pmax . Hg t*+1t*

A e e — 00 ast—0.
min S

In this case, the element S is "not good.”

Example 4.4.5 (Dagger). Let S C R? be the simplex with vertices P, :=
(0,0)7, P, := (t,0)T and P3 := (¢°,t°)T with 1< <e. We then have h; =
(t — )2 4+t and hy = V20 + 1% ie.,

Rax t —19)2 4 t2¢

== ( ) gctlf‘s%oo ast — 0,

hmin t26 + 2

H t_t62+t25 t25+t25

h_S:\/( )11+5\/ gct‘s’s%oo ast — 0.
S 5t

In this case, the element S is "not good.”

4.4.3 Anisotropic mesh: three-dimensional case

Example 4.4.6. Let T' C R? be a tetrahedron. Let S be the base of T i.e.,
S = AP, P, P;. Recall that

HT . hlhghg N hlhg h3 < HS Qa3

ik = — 4.4.1
hT |T| %hlhgtl %hth - hS %% ( )

If the triangle S is "not good” such as in Examples 4.4.4 and 4.4.5, the
quantity (4.4.1) may diverge. In the following, we consider the case that the
triangle S is "good”.

Assume that there exists a positive constant M such that IZ—? < M.
For simplicity, we set P, := (0,0,0)T, P, := (2t,0,0)", and P3 := (2t —
VA2 — 27 17.0)T with 1 <+. Then,

=2t h Sl
S W/ ek
and because hy. ~ ct,

h ct
L <t 500 ast—0.
hmin (%)
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If we set Py := (£,0,t5)T with 1 <e, the triangle AP, P,P; is the blade
(Example 4.4.4). Then,

hs = V2 4 1%.
We thus have

HT t2t+’Y

h—S tlﬂﬁ_ctl f—> o0 ast—0.
T

In this case, the element 7" is "not good.”
If we set Py := (t°,0,t°)T with 1 <§ <& <, the triangle AP, P, P, is the
dagger (Example 4.4.5). Then,

h3 = /126 + 2,

We thus have

Hy 1y +o

h—§ t1+7+s—Ct_£_>oo as t — 0.
T

In this case, the element 7" is "not good.”
If we set Py := (t°,0,t°)T with 1 <& < § <, the triangle AP, P, P, is the
dagger (Example 4.4.2). Then,

h3 = t25 + t2€.

We thus have

HT t1+’y+5
— <c—<c
hT - {liyte —

In this case, the element T" is "good” and hs ~ hsty = 73 holds.

In [23], the spire has a cycle of three daggers among its four triangles.
The splinter has four daggers. The spear and spike have two daggers and
two blades as triangles. The spindle has four blades as triangles.

Remark 4.4.7. The above examples reveal that the good element T' C R3
may satisfy conditions such as hy ~ 74 and hy ~ J43.

Example 4.4.8. Using an element 7' called Sliver, we compare the three
3

quantities |hTT‘, IZT, and R3 , where the formulation of the circumradius R3 of

a tetrahedron 7' is as follows, e.g., see [44]. Let a, b and ¢ be the lengths of
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Fig. 4.1: Ry

the three edges of T" and A, B, C the length of the opposite edges of a, b, c,
respectively. Then,

V(@A +bB + cC)(aA +bB — cC)(aA — bB + cC)(—aA + bB + cC)

R. =
’ 24|T| ’

see Fig. 4.1.

Let T C R3 be the simplex with vertices Py := (¢°2,0,0)7, Py := (—°2,0,0)%,
Py = (0,—t,t*)", and Py := (0,¢,¢7)" (e4,62>1), where ¢ :== &, N € N.
Let L; (1 <i <6) be the edges of T with hyy, = L1 < Ly < -+ < Lg = hr .
Recall that Ay« ~ hr and

hmax L6 HT . L1L2
Pain — L1" hr [T

hr.

Table 4.1: h%w/|T|, HT/hT and Rg/hT (81 = ].5, Eg9 = ].O)

N [t | L¢/Ly | b} /|T] | Hy/hr | Rs/hr

32 3.1250e-02 | 1.4033 | 6.7882e+01 | 3.4471e+01 | 5.0195e-01
64 1.5625e-02 | 1.4087 | 9.6000e+401 | 4.8375e+01 | 5.0098e-01
128 | 7.8125e-03 | 1.4115 | 1.3576e+02 | 6.8147e+01 | 5.0049e-01

In Table 4.1, the angle between AP, P,P; and AP, P, P, tends to m as
t — 0, and the simplex T is "not good.” In Table 4.2, the angle between
AP, P3P, and AP, P3P, tends to 0 as t — 0, the simplex T is "good.” In
Table 4.3, from the numerical result, the simplex 7" is "not good.”
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Table 4.2: h%w/|T|, HT/hT and Rg/hT (51 = ].O, Eg9 = ].5)

N |t | Le/ L | hp/IT] | Hr/hr | Rs/hr

32 | 3.1250e-02 | 5.6569 6.7882e+01 | 8.5513 | 5.0006e-01
64 | 1.5625e-02 | 8.0000 9.6000e+01 | 8.5184 | 5.0002e-01
128 | 7.8125e-03 | 1.1314e+01 | 1.3576e+02 | 8.5018 | 5.0000e-01

Table 4.3: hr_%w/|7—‘|7 HT/hT and Rg/hT (51 = 15, E9 = ]_5)

N |t | L¢/Ly | h}/IT | Hy/hr | R3/hr
32 | 3.1250e-02 | 5.6569 3.8400e+02 | 3.4986e+01 | 1.4170
64 | 1.5625e-02 | 8.0000 7.6800e+02 | 4.8744e-+01 | 2.0010
128 | 7.8125e-03 | 1.1314e+01 | 1.5360e+03 | 6.8411e+01 | 2.8288
A
’ Py = (0.1, 1°1)"
~
PZ = (_ISZ’O’O)T ‘b“*b_
Py=(0,— 1,
| P, = (+2,0,0)7

Fig.

4.2: Sliver
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Anisotropic Interpolation Error
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Chapter 5

Interpolation of Smooth
Functions

5.1 Finite Element Generation

We follow the procedure described in [30, Section 1.4.1 and 1.2.1]; also see
[47, Section 3.5].

For the reference element 7' defined in Sections 3.1.1 and 3.1.2, let {f, P , f]}
be a fixed reference finite element, where P is a vector space of functions
p: T — R" for some positive integer n (typically n =1orn =4d) and ¥ is a
set of ng linear forms {x1, ..., Xn,} such that

Pope (a(D), s Xno ()" € R™

is bijective; i.e., S is a basis for 5(13; R). Further, we denote by {91, . ,éno}
in P the local (R"-valued) shape functions such that

)Zz(ég) =05, 1<14,5<nyg.

Let V(f) be a normed vector space of functions ¢ : T — R™ such that

A~

P C V(T) and the linear forms {X1, . .., {n, } can be extended to V(7). The
local interpolation operator Iz is then defined by

I V(T) 3¢ > Xi(@)h; € P. (5.1.1)

-~

It obviously holds that, for any ¢ € V(T),
Xillp@) = Xi(@) i=1,... . no. (5.1.2)
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Proposition 5.1.1. P is invariant under I, that is,
Lp=p VpeP. (5.1.3)
Proof. The proof is found in [30, Proposition 1.30]. [

Let ®*, &D, and ® be the affine mappings defined in (3.4.1). For T*® =
O(T) = Pod(T'), we first define a Banach space V(1) of R*-valued functions
that is the counterpart of V(7T') and define a linear bijection mapping by

V= g0ty V(T?) 3 9" = = 07(¢%) i= 9" 0 & € V(T),
with two linear bijection mappings:
Vg V(T®) 2 ¢° = @ = (%) i= " 0 @ € V(T),
b7 V(T) 3 ¢ = @ i=1p(@) :=go® e V(T).
Furthermore, the triple {T P E} is defined by
T = ®(T);
P={u' () p e P )
Y ={{Xihi<i<no; Xi = Xi(¥7(p)), VP € P, x; € X},
while the triple {7, P* ¥} is defined by
T° = &(T);
P* = (05 (5); pe P, i
¥ = {{X h<inos Xi = Xi(¥7(p%)), Vp® € P°,x; € L}
The triples {T, P, E} and {7, P*,¥°} are then finite elements. The local

shape functions are 0, = w%l(&) and 67 = w;l(e) 1 < i < ng, and the
associated local interpolation operators are respectively defined by

I :V(T) 3¢ I7p = Zf@(@)éi e P, (5.1.4)
Ips - V(T®) 2 ¢ v Ips® le )92 € P, (5.1.5)

For any T € Ty, let ®7s be the affine mapping defined in Definition
3.4.1. We define a Banach space V(T') of R"-valued functions that is the
counterpart of V(7*) and define a linear bijection mapping by

s 1 V(T) 2 o= @° :=Yps(p) := o Pps € V(T?).
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For the finite element {7, P*,3°}, we define the triple {T, P, ¥} as

T = & (T%);
P = {47 (p"); p* € P*};
Y = {{Xihi<i<no: Xi = X;(Wrs(p)), VD € P, x; € ¥°}.

The triple {T', P,X} is then a finite element. The local shape function is
0; = ¥ (05), 1 < i < nyp, and the associated local interpolation operators
are respectively defined by

Ir :V(T) 3 ¢ Ipp = in(gp)ei S (5.1.6)

Proposition 5.1.2. The diagrams

V(T) v (1) v () - V(D)
It l Irs l [f \L \LIA
P = P e P . P
commute.
Proof. For example, see [30, Proposition 1.62]. O

Example 5.1.3. Let {f, ]3, f]} be a finite element.

A~

(I) For the Lagrange finite element of degree k, we set V(T') := C(T).

(IT) For the Hermite finite element, we set V(f) = Cl(f).

-~

(IIT) For the Crouzeix—Raviart finite element with & = 1, we set V(T) :=
wWhi(T).

5.2 Remarks on the Anisotropic Interpola-
tion

The proof of Theorem 2 in [47] included a mistake, and we need to modify
its statement to correct this error.
In [47], we showed the two lemmata.
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0. Let ¢ be such that 0 <
). It then holds that, for all

Lemma 4 ([47]). Let 1 < p < oo and k
0 < k. Let p € W™P(T) and ) € WHip(
m € {0,...,0+ 1},

>
T

1/p
’(ﬁ‘WmaP(T)
———— < max {hT1m} (P01
[lyeriog 154 |5§m o
—1/p
X Z (h ﬁ) |85¢|Wg+1 mp(T) ’ (41)
|Bl=m

with == ¢ o d~L and ¢ 1= o L.

Proof. Let 8, v and § be multi-indices with |3] = m, |y| = ¢ 4+ 1 and
6] =0+1—m
We first have, from ; = hj_ljij, that

8,3@ — hl—ﬁl L h;ﬂd&ﬁ@ _ h—ﬂaﬁ@‘
If 1 < p<oo, through a change in variable, we obtain

8 1(d) -8 B~ ||P
e WZ 10°3|I", 7 = | det(A )||5Z (R [l P

We similarly have

|77D|€I/€+1,p(j:‘)
Iy|=t+1
— 5 38.,7,||P
- Z Z 1o°0 wHLP(T)
|6|=t+1—m [B]=m
= [det(AD)] Y Y (WP, 4
|6|=¢+1—m |B]=m
> A(d) |6]p ye|16°0°
[ det(A)| min (h Y Y D (WO, g
|8|=¢+1—m |B]=m
When p = oo, a proof can be made by an analogous argument. O]

Lemma 5 ([47]). Let 1 < p < oo and k > 0. Let ¢ be such that 0 <
( < k. Let p € W™P(T) and ) € W2(T). It then holds that, for all
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m € {0,...,0+ 1},

’908|Wm,p(T8) S CA’d (HTs)m |¢|Wm,p(f)
)

, 49
|¢S |W£+1,p(Ts hTS ( )

‘w’Wl+1,p(T)

with ¢ = ¢ o d 1 and ¥* = o &1, Here, C42 := 27 "C* and

CA3 = 2;—;10“, where C*¢ is a constant independent of T° and T.

Proof. Using the standard estimates in [30, Lemma 1.101], we easily get

0% [wrmn (s we (1 501 ety \™ 1 Fei—m Plwma @
< O (A ) A S (4
WEHLR(T?) ‘¢|Wﬁ+1,p(T)
The inequality (4.2) follows from (4.3) and (3.6.1). O

Using the above lemmata and the standard Bramble-Hilbert—type lemma
on the reference elements (see, for example, (1.6.9) and (1.6.10)), the follow-
ing theorem was proved.

~ Incorrect statement ~

Let 1 < p < oo and assume that there exists a nonnegative integer k
such that

PFc P c WHY(T) ¢ V(T).

Let ¢ (0 < ¢ < k) be such that WL»(T) C V(f) with continuous
embedding. It then holds that, for any m € {0,...,¢ + 1} and any
P € WHIH(T™),

Hyps
hps

0% = Irs@®|wma(rsy) < C' ( ) hEE™ 0% lwesto e, (4.10)

where C! is a positive constant independent of Aps.

. /

As explained the above, there exist mistakes in the proof of this theorem,
and its statement is not valid in the original form. To clarify the following
description, we explain the errors in the proof. Let T' C R? be the reference
element defined in Section 3.1.1. We set £k = m = ( =1, p = 2. For
$ € H*(T), we set ¢ := ¢o® ! and ¢ := ¢ o ®~!. In the proof, we tried

to show the existence of positive constants C’g) and C’g), independent of A,
and a polynomial 7 := 7j o ® € P! such that

Plizy — Pl Pl g2

)
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and, using Lemma 4,

6 = 11 g2 (7 < e Sy b 1058 = Doy < CDh
Pl — S22 hi2)05,8 L B
‘[:F(ﬁ_@)b{l(f) < SE 1 zQHazZI (¢ — 77)||L2(T) <D
|95|H2(f) - Z?:l i2|a£i90|H1(T) e
or equivalently
B0 (& — ) 2ag + B 2100 (@ — ),
<ol (h‘ 100,22 ) +h2‘2|8x2¢]H1(f)> , (5.2.1)
I 210, I5(@ = 1o gy + 12 105 (6 — D172 7
< O (21022 3y + D100 Pl 7, ) - (5.2.2)

To this end, we employed Lemma 1.6.10, a variant of the Bramble—Hilbert
lemma, which claims that there exists a polynomial 75 € P! such that

< Ol

. (5.2.3)

where the constant C’S) depends only on T. However, in general, we cannot
deduce (5.2.1) from (5.2.3) for arbitrary hy and hy. Furthermore, from the
definition of the interpolation operator, we have, for j =1, 2,

Haa:jlf( HL2 < Z|Xt |H8:r30 HLQ(T

<ZHX2HH2 N6 =l 122102, 0ill 2 )

< o masc (Il ey 102, 8l ) 16 = g
(5.2.4)
Setting 7 := ns in (5.2.4) yields
102, 17(6 — )||L2 < C ‘90|H2(T (5.2.5)

However, in general, we cannot deduce (5.2.2) from (5.2.5) for arbitrary h;
and hy. That is why the proof of [47, Theorem 2] is incorrect.
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We consider this problem. Using Lemma 4, we have

~ ~ 2 _ A~ A~
0~ L5l _, 2l 2102, (& = I59) | 27
Ts 5 — ~ .
die1 h 2|aii90|Hl(T)

= (5.2.6)
|‘P|H2(iﬁ)

From Lemma 1.6.9, there exist two polynomials #;,7; € P! such that, for
1=1,2,

Using the triangle inequality, we have
102:(¢ = L3P 27y < 102:(P = 1)l L2y + 108, (i = L) o7y (5:2.8)
If it holds that

192: (7 = L) 27y < €llO2: (i = D)l a7y (5.2.9)

-~

the inequality (5.2.8) together with the Sobolev embedding theorem H'(T') <
L*(T), (5.2.7) and (5.2.9) can be estimated as

10:(@ — Iz0) | 27y < cll02,(& = 130) | a7y < €l 02, Pl g 7
However, in general, this proof does not valid. Because
10z, (i — L)\ 27y = 102, (I — 13@) || 27,
< cllfi = @l ey

and thus,

12; 17 = ll 27y < cl @l

i

in which the quantity h; is not included. Therefore, the quantity h;? in
(5.2.6) remains.

To overcome this problem, we give two theorems (Theorem 5.4.1, Theo-
rem 5.6.1) to replace [47, Theorem 2.

5.3 Scaling Argument

This section gives estimates related to a scaling argument corresponding to
[30, Lemma 1.101].
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Note 5.3.1. Recall that

|S|§1, hQShl lfd:2,
|s1] <1, fs;| <1, hg <hg<hy ifd=3.

When d = 3, if Condition 3.3.1 is imposed, there exists a positive constant
M independent of hy such that [sqe| < M h}j—? We thus have, if d = 2

Al <24, hollAlp| <, j=1.2,
and, if d = 3, for A € {./2(1,./2{2} and j = 1,2, 3,
W[l <56, hol[Aljp| < 76, hs|[Aljs| < max{1, M}, j=1,2,3.

Note 5.3.2. We use the following calculations in (5.3.2). For any multi-
indices 8 and 7, we have

181+
00" = 0
z 8A51 . 8jgdaA71 . a"'Yd
= E hl[A]i(ll)l[AT]igo’l)i(ll) s E hl [.A] (1) [.AT] (o 1) (1)
1
(1) (0,1 1) .(0,1
#D0 _y i 0
[1times
d d
E hd[A] (d) [AT] (0,d) (d) *** E hd[.A] (d) [.AT] (0,d) ;(d)
i ’d i 0y ig d g g
(@) (0.d)_ [ 0Dy ¢ ¢
ot = 8484 ,
Bgtimes
d d
hilA] ., [Ar] .01 .a) -+ hilA] .o, [Ar] .01 -
g 1 ];§1>1[ T]AOJ)AI) E 1l ]J%)l[ T]jgi,n]gll)
Jil):J(O M=t iy =1
vlt;;rles
d d
halAl @ [A7] 0.0 @) - halAl @ [AT] (0. .
d > d al Al jea [ AT] 00 0 d > d al A o [ AT] 0.0 400
(d) . 0,
AP 0P =1 J§d> y&d '=1
'ydt‘i?nes
Hb HbBa om o
81‘.(0,1) -Ox ;0.1) ax.(o,d) T 6m.(0,d) Ox (0,1) """ Oz .(0,1) Oz (0,d) """ 0z .(0,d)
5} ch 3 Yy 1 Jn 1 Jg
B1 t‘i;nes B dt\i;nes ~y1times Yatimes
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Let ¢ € CYT) with g = @ o !, ¢ = Go o~ and ¢ = ¢* o &, Then,
for 1 <i<d,

P
0,

Iy
h/ 1 ./4 0,1 1
Z Z () T]( )()axwl)

iM =1 0D

dp
=hy; ;). = h; | =
E E [Ar] (m)()?“)()ax(m)

{01400y

< hi HAHmaXHATHmax Z Z )

(1) _ Z 'y (0 1)

and for 1 <4,5 <d,

Z Z hzh] ["Z]iil)i[j]jgl)j

i (1) (0,1) (0 1)
iy gy =lay gy =1

‘ 83328%

[AT]Z.go,nZ.?) [AT]].§O,1) (1)

0T (0,1)0T (o4
31 J1

d

0%
Z [AT] (0 1) (l W

(0,1
J§ J=1

d
< hlh] Z H“Alﬁl)j’

i=1

d

< hz‘th.Z(HmaXHAT”max Z

(0,1
=1

foatt)
or,0z
J1

d

0
< hi | A AT e S

0T 31,07 o1 |
250,1)7‘7.50,1):1 zg 1) Jé 1)

Note 5.3.3. We use the following calculations in (5.3.3). For any multi-
indices # and 7, we have

afﬂ 9B+
0t - 0ihA 97T - Oa
d N d d N
- Z hl['A]z{%'" Z ha[A] i1’ Z halA (d)d"' Z hd[A]igd)d
iM=1 i) =1 i{M=1 i) =1 ’
Blt‘i:nes ,Bdt;;nes
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d
> hl[jqj;l)l Z Al o, - Z halA Jjog Z hal A oy
371 nyd

iM=1 iD=1
vy1times Yatimes
L] HbBa o o

s s s s ... s :
8xi1) -0x® ‘W Ehi(d) - 0xs i ox?® fo - 0x° 05 4 - - 07,

1 51 1 Bq '~ Jwb R I de/
N ~” N " vV v

B1times Batimes Y1times Yatimes

Let ¢ € CXT) with ¢ = pod~' and ¢* = o ® 1. Then, for 1 <i < d,

9" hi HAHmaXZ M=y ( ) or,
<1> <
:L\S
V=1 it SNy o |22
itV=17%1 825 |
‘1
and for 1 <14,5 <d,
25 2
i § hiby (Ao, 1A )A
91;0%; i jaiﬁu)am%(l)
it gV =1 i
.
d 824,05
i HA”maX Zigl)vjil)zl 0" (1) 07° o
‘1 J1
T 62<ps
h Z H ] - hz[ALgl)lm
< i 0
T d d 2,5
< eyl Allmas S50y X A | E | on
"1 1
82 s
CZ 1_4 Z D 1)%(1 o
(11) e

\

Lemma 5.3.4. Let m,{ € Ny with £ > m. Let 8 := (B1,...,Bq4) € N¢ and
vi=(V,--,7) € NO be multi-indices with || = m and |y| =€ —m. Then,

for any o € W™P(T ) with 3 = o @1 and ¢* = 3o d~, it holds that

1/p
1~ 1im _ . .
[ lwrncrey < | det(A)F LA g | S0 (PPNOLRIE, 7 | iFpEL00),
|Bl=m
(5.3.1a)
@iy < el A7 max (21020l i) o0 = oo (5.3.1D)
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Let p € [0,00]. Furthermore, for any ¢ € We’p(f) with @ = ¢ o dL,
0 =pod! and p = ¢* o &L, it holds that

1020261 oy < el det(A)[ 2 LAI5R S h¥|OEplwmar). (5.3.2)

le[=I1

In particular, if Condition 3.3.1 is imposed, then for any ¢ € Wé’p(f) with
¢p=po® " and p* = @o @, it holds that

1020261 oy < el det(A)[ P LAISR Y AP lwmarsy. (5:3.3)

lel=l
. 1
Here, for p =00 and any positive real x, v~ » = 1.

Proof. We divide the proof into three parts.

Proof of (5.3.1)

Let p € [1,00). Because the > space c™(T ) is dense in the space Wm’p(f),
we show (5.3.1) for ¢ € C™(T) with 3 = o ! and ¢* = G o &', From
T; = hj_lfcj, we have that, for any multi-index j,

5 =hi". . h P05 = P90, (5.3.4)

Through a change in variable, we obtain

[Pl 79 = > 10°317, 7 = [ det(AD)| > (h NN, 7y (5:3.5)
|Bl=m |Bl=m

From the standard estimate in [30, Lemma 1.101], we have
Pl < CSA det( D 1A NP B ymosy: (536)

Inequality (5.3.1a) follows from (5.3.5) and (5.3.6) with (3.6.2).
We consider the case that p = oco. A function ¢ € W™(T') belongs to
the space W™P(T) for any p € [1,00). It therefore holds that ¢ € W™?(T)
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for any p € [1,00) and, from (1.6.1),

Ha’Y@HLp(fF) < ‘@‘le\,p(f)
1/p
~ 1 . .
= [det(AD)> | 37 (nAIO%RI, g,

1BI=171

~ 1 _ ~
< (sup]det(A(d))|P) Z h 5H85<P”Lp(f)

1<
=P 18=1

< (sup det (AN ) S 0006l <00 (53)
p

181=I

for multi-index v € N& with |y| < m. This implies that the function 97 is
in the space L>(T) for each |y| < m. We therefore have ¢ € W™>(T). By
passing to the limit p — oo in (5.3.7) and because limy o0 |[[| o7 = Il oo (7
we have

[Bluymry < € (P 2110%@ iy ) - (5.3.8)
From the standard estimate in [30, Lemma 1.101], we have

wmeo ey < el ATHE@lymooo (79 (5.3.9)
|°) <A &

Inequality (5.3.1b) follows from (5.3.8) and (5.3.9).

Proof of (5.3.3)

Let € = (g1,...,64) € Nd and § = (dy,...,d4) € N& be multi-indies with
le] = |v| and |6 = |B|. Let p € [1,00). Because the space CY(T ) is dense
in the space W% (T)), we show (5.3.3) for ¢ € C/(T) with ¢ = ¢ o ! and
©* = o ®~!. Through a simple calculation, we have

[0
3"81 . _aigdai&yl . aA’m

SPU S D SETD SRt zz z Yy

|8B+795| —

T R I Iy L

\
(. 7 [ /
~~ -~ v g

Bitimes Bgtimes Y1times Yatimes

Ty Ty I - Hoa
J1 Jeq 1 Jeg

Vo Vv
vy1times Yqtimes
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5% 9B om o

S

PR PR (p
\8-%’:1) A a.fEZSgll) ax:gd> c ax:g? \82321) st ax‘j’(yll)l aiji) A aﬂfj’(ﬁ?
Bﬁgnes Bdt‘i,mes ’Ylt‘i:nes vdt;:Iles
<ch’|Allik D D AT,
161=18] le|=I]
We then have, using (1.3.1),
/A]é?ﬁéwgb\pd:i: <Al YN e /A 0°6° o |Pdz
T —_ — T
161=18] lel=1
= c| det(A")[ M| AZTRP > ST o | |0P0F " Pda.
181=181 lel=1] ”

Therefore, using (1.6.1), we have

0% 3l ) < el det(A)FIAIF? S A0 i,
lel=1
which concludes (5.3.3).
We consider the case that p = co. A function ¢ € W5*(T) belongs to
the space W4P(T) for any p € [1,00). It therefore holds that ¢ € W&p(f)
for any p € [1,00) and thus

~ S -1 A m € €, S
10707 Gl 7y < el det(A)| 7| ANSRS Y S0 0" lwmare)
le[=vl
< | AIgh® Y AN fwme ey < 0. (5.3.10)
lel=ll
This implies that the function 9°97¢ is in the space L*(T). Inequality

(5.3.3) for p = oo is obtained by passing to the limit p — oo in (5.3.10) on
the basis that limy oo || - || o7 = [+ | oo 7

Proof of (5.3.2)

We follow the proof of (5.3.3). Let p € [1,00). Because the space CX(T) is
dense in the space W*P(T'), we show (5.3.2) for ¢ € CY(T) with ¢ = pod 1
P =@od land p = ¢°o @;51, it holds that, for 1 < i,k </d,

[077¢] < PP AIGNATIEL d- D h°|0°050] .
51=I8] le|=|~|
Using (3.6.1c) and (1.3.1), we obtain (5.3.2) for p € [1,00] by an argument
analogous to the proof of (5.3.3). O
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Remark 5.3.5. In inequality (5.3.3), it is possible to obtain the estimates
in T by specifically determining the matrix Ar.
Let /=2, m =1 and p = q = 2. Recall that

Ors :T°>2° —~ax=Ar2® +breT.
For p* € C*(T*) with p = ¢® o CID;O1 and 1 <1,5 < d, we have
2 P
@ =] X Ml A, (o

I 0x .1y 0T (1)
51 J1

62905
Ox;0x;

it =1

Let d = 2. We define the matrix Az as

T ain T
A = (COS 3 Sin 2)
T - o .

: s
S1n 2 COS B}

Because || Ap||max = 1, we have
62(’03

oAt
ZF ()] <
Ox;0x; (x)‘ -

07107544

Y

()

where the indices i, 4+ 1 and j, 7+ 1 have to be understood mod 2. Because
| det(Ar)| = 1, it holds that

‘ 82905 8290
082075 W p2grey ~ || 9%iia 0% | Loy
We then have
2 2
0p® 0
YoMl SR Alg—|
: oxs| ., : 0z, 4
j=1 JVHY(TS) j=1 J+HLgYT)

where the indices j, j + 1 have to be understood mod 2.
We define the matrix A as

We then have




which leads to

i

We then have, using (1.6.1),

2
2 2

<c
L2(T%)

62908
Ox30x?

J

oAl
oz ,,0x
B e

< el -

it =1

< Z%|¢|H2(T) < chrlo| g ).

In this case, anisotropic interpolation error estimates cannot be obtained.

Lemma 5.3.6. Let ®7s be the affine mapping defined in Definition 3.4.1.
Let s > 0 and 1 < p < oo. There exists positive constants c¢; and co such
that, for all T € T), and o € W*P(T),

cilelwsrry < 0% |wew@sy < cal@lwsrr, (5.3.11)
with ¢° = @ o Orps.
Proof. The following inequalities are found in [30, Lemma 1.101]. There
exists a positive constant ¢ such that, for all T'€ T), and ¢ € W*?(T),

_1
|0 |wer(rs) < cf| Ar|l3] det(Ar)| ™7 [olwsr(m), (5.3.12)
— S 1 S

| lwenery < cll Azt [15] det(Az)[¥ |9 [wencre). (5.3.13)

with ¢* = ¢ o Ops.

Because the length of all edges of a simplex and measure of the simplex are
not changed by a rotation and mirror imaging matrix and Az, A;' € O(d),

T
_m
I

| det(Az)] Azl =1, AR = 1. (5.3.14)

From (5.3.12), (5.3.13), and (5.3.14), we obtain the desired inequality (5.3.11).
[

5.4 Classical interpolation error estimates

The following theorem is another representation of the standard interpolation
error estimates, e.g., see [30, Theorem 1.103].
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Theorem 5.4.1. Let 1 < p < oo and assume that there exists a nonnegative
integer k such that

Pk c P c WHY(T) c V(T).

Let ¢ (0 < € < k) be such that W2 (T) C V(T) with continuous embedding.
Furthermore, assume that ¢, m € NU{0} and p,q € [1,00] such that 0 <
m</{+1 and

WL (T) — W™4(T). (5.4.1)
It holds that, for any m € {0,..., 0+ 1} and any ¢ € WHLP(T),

s 11 hm X " (H " —m
|0* — Irplwmar) < CH|T|» (h ; ) (h_;> h ™ plweror),
(5.4.2)

where CT is a positive constant independent of hy and Hry, and the parameters
hmax and hyi, are defined by

hmax := max{hy,...,hq}, Amin :=min{hy,..., hg}. (5.4.3)

Proof. Let ¢ € W”l’p(f). Because 0 < ¢ < k, P* C P* C P. Therefore,
for any 7 € P*, we have Iz = 7). Using (5.1.3) and (5.4.1), we obtain

’95 - [?@‘Wm,q(’f) < |95 - 77|Wm,q(:F) + |IT(77 - @)’Wm&(f)
< CHQZ) - ﬁ”WZH,p(f)a

where we used the stability of the interpolation operator Iz, that is,

206 - |qu(T<Z|xz Oyt < i = Bllpessoty

Using the classic Bramble-Hilbert-type lemma (e.g., [22, Lemma 4.3.8]), we
obtain

P — I:?@‘Wm,q(f) < Cﬁien; 17— 95HW£+1,p(f) < C|¢|Wl+1,p(f)~ (5.4.4)
The inequalities (5.3.11), (5.3.1), (1.6.1), and (5.4.4) yield

lo — Irplwmar) < c|l® — Irs@®lwma(rs)

1/q
< ol det(A) |7 A5 | D ()%~ 1R, 5,
|B]l=m
10 1im _ _ - N
< ¢| det(A 5>|q||A g max{hi?, ... hg YNG — Te@lyma)
< | det(A*) 7 | A5 ol [l s - (5.4.5)
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Using the inequalities (1.6.1), (5.3.11) and (5.3.2), we have

‘¢‘W‘-’+1m(f) < Z Z Haﬁafyﬁum(f)

[y|=t+1-m [B|=m

<cldet(A)FIAlg DT DDA Y lakelwmea)

[y|=t+1—m |Bl=m  |e|=]y]
< ¢ det(A*)| "7 || A||5 max{hi, ..., ha}PTRET e
—l 1 m —m
< c| det((A%)| "7 || A3 RELRFT™ @l o). (5.4.6)

From (5.4.5) and (5.4.6) together with (3.6.1) and (3.6.2), we have the desired
estimate (5.4.2). O

Remark 5.4.2. We introduced the estimate (1.6.9) that is a variant of the
Bramble-Hilbert lemma. However, because we prove estimate (5.4.4) with
p = q using the reference element, it is sufficient to use the standard estimate
(e.g., [29, 22]) to achieve our goal.

Example 5.4.3. As the examples in [30, Example 1.106], we get local in-
terpolation error estimates for a Lagrange finite element of degree k, a more
general finite element, and the Crouzeix—Raviart finite element with k£ = 1.

(I) For a Lagrange finite element of degree k, we set V(T) := C(T). The
condition on ¢ in Theorem 5.4.1 is 1_9 — 1< (< k because WH(T) C

C° (T\) if ¢ +1> % according to the Sobolev imbedding theorem.

(IT) For a general finite element with V( ) := C{T) and t € N. The
condition on ¢ in Theorem 5.4.1 is 5 —14+t<?¢ <k. When t =1, there
is a Hermite finite element.

(III) For the Crouzeix-Raviart finite element with k& = 1, we set V(T) :=
WHL(T). The condition on £ in Theorem 5.4.1is 0 < ¢ < 1.

Example 5.4.4. We introduce typical examples of the quantity Amax/fmin i
two dimensions. Let 0<t < 1,t € R and ¢, € R. All examples degenerate
in the y-axis direction.

(I) Let 7% C R? be the simplex with vertices P, := (0,0)7, P, := (¢,0)T and
P3 := (0,1°)T with 1 <& <2. We then have h; =t and hy = t°, that is,

hmax t

Hps e

tl—a

hmin 1€ ) hTs %tl—i-a
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When m = ¢ =1 in (5.4.2) of Theorem 5.4.1, it holds that

|QOS - ]TsQOS|W1,p(Ts) S Ch%:e gOs’sz(Ts) VQOS c W2’p(Ts).

Remark that |PyPs| = vt? + % = hps. If € > 2, the interpolation
error estimates do not converge.

(IT) Let T° C R? be the simplex with vertices P := (0,0)7, Py := (¢,0)” and

Py = (°,15)T with 1 <§<e<2. We then have h; = /(t — t%)2 + t2¢

and hy = V20 + %, that is,

Panax (t—1)* +t* < otld Hrs \/(t —19)2 + 12e4/128 1 ¢2¢
= <ect ™, = '

hmin B V 120 + 1% hTs %t1+6
When m = ¢ =1 in (5.4.2) of Theorem 5.4.1, it holds that

|0° = Irs @ lwiwirsy < ch3 5% lwon(rsy  Vo© € W2P(T?).

Remark that |P 1P| = t = hps. If ¢ > 2, the interpolation error
estimates do not converge.

(ITII) Let T° C R? be the simplex with vertices P, := (0,0)T, P, := (2¢,0)T
and Py := (t,t°)7 with 1<e<2. We then have h; = V{2 + t?¢ and
ho = V1?2 4 1%, that is,

fnax - Hre _ 24t
Poin  hps  tFE

When m = ¢ =1 in (5.4.2) of Theorem 5.4.1, it holds that

|(p8 - [TSSOS|W17P(TS) S Ch%;é‘ (pS’WQ,p(Ts) VQOS G W2,p(T8)'

Remark that |PP| = 2t = hps. If ¢ > 2, the interpolation error
estimates do not converge.

Example 5.4.5 (Lagrange finite element in R?). Let T C R3 be the simplex
with vertices P, := (0,0,0)", P, := (¢,0,0), Py := (t/2,¢°,0)T, and P, :=
(0,0,6)7 (1<e<?2), and 0<t < 1, t € R. We then have hy = t, hy =

\t?/4+ %% and hg :=t, that is,

hmax t <
= C.
hmin o




Let

1
O (x,y, 2) = 2+ ZyQ + 22

Let I : CO(T%) — P! be the local Lagrange interpolation operator. We set
I (2, y, 2) = ax + by + cz + d,

where a, b, c,d € R. For any nodes P of T, since I£,0*(P) = ©*(P), we have

1
T (@,,2) = to — (P75 — E)y + 12,

It thus holds that

1 1
(¢° — IE¢*) (2, v, z) = %+ Zyz + 22 —tr + Z(tQ_E —t%)y — tz,

Therefore, we have

o* = gy 4 1)

= JTS .
|(ps’W2,oo(Ts) 2
By simple calculation, we have
JTS t4 + t2+2a t4 + t2+25 t4 1

Hr ~ ygyam, (L + = 24V106 ~ 24/108 24410
We here used

6v2t3, /(L)% + %

Te t2+e

We conclude that

1
S_ILS s ,00 s Z HS s ,00 s) .
|§0 7P |W1 (T*) 24\/E T |<P |W2 (T*)

From (5.4.2), we have
‘(’08 - [le;sgps‘wl,oo(’fs) S CCiHTSl(pS’WQ,oo(Ts) VQOS E WZ’OO(TS)

This example indicates that the convergence order on the simplex cannot be
improved.
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Example 5.4.6 (P! + bubble finite element in R?). We give a numerical
example which is not optimal in the usual sense. Let T° C R? be the triangle
with vertices P, := (0,0)%, P, := (¢,0), P3 := (0,t°)T (Case I, Example

5.4.4), where t := %, N eNand e e R, 1<e <2. Let P, be the barycentre
of T%.
Using the barycentric coordinates \; : R? — R, i = 1,...,3, we define

the local basis functions as
O4(x) := 27A1(2) Ao () A3(2),
1

The interpolation operator % defined by
4
I’?“s : H2(T) > QOS — Igﬂsgﬁs = ZQOS(IZ)GZ € span{01,92,93,«94}.
i=1

From Theorem 5.4.1, we have

0" — I20® | sy < ch3®| @ lersy  V© € H?(T?).
Let ¢° be a function such that
o (2, y) = 22 — wy + 3y,

We compute the convergence order with respect to the H' norm defined by

s Ibs s <
@2 (1)

for the cases: ¢ = 1.5 (Table 5.3) and ¢ = 2.0 (Table 5.4). The convergence
indicator r is defined by

1 Errb(HY)
"= log(2) log (Errb (Hl)) '

t/2

Remark 5.4.7. As stated above, we are not able to prove Theorem 2 under
the original assumptions. If we are concerned with anisotropic elements, it
would be desirable to remove the quantity Apax/hmin from estimate (5.4.2).
To this end, we employ the approach described in [4], and consider the case

of a finite element with V(7)) := C(T) and P := P*(T).
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Table 5.1: Error of the local interpolation operator (¢ = 1.5)
N |t | Errj(HY) |r
128 | 7.8125e-03 | 2.9951e-02
256 | 3.9062e-03 | 2.1101e-02 | 5.0529e-01
512 | 1.9531e-03 | 1.4874e-02 | 5.0452e-01
1024 | 9.7656e-04 | 1.0491e-02 | 5.0364e-01
Table 5.2: Error of the local interpolation operator (¢ = 2.0)

N ‘ t ‘ Err?(HY) ‘ r

128 | 7.8125e-03 | 3.3397e-01

256 3.9062e-03 | 3.3366e-01 | 1.3398e-03
512 1.9531e-03 | 3.3350e-01 | 6.9198e-04
1024 | 9.7656e-04 | 3.3341e-01 | 3.8939¢-04

5.5 Anisotropic Interpolation Analysis on the
Reference Element

We introduce estimates on the reference element due to [10, 4] in order to
obtain anisotropic interpolation error estimates.

For the reference element T defined in Sections 3.1.1 and 3.1.2, let the
triple {T', ﬁ, i} be the reference finite element with associated normed vector
space V(f)

The original research [10, Lemma3] and [4, Lemma 2.2] gives error esti-
mates for the reference finite element {7, P, S}

Theorem 5.5.1. Let I : C(T) — P*(T) be a linear operator. Fiz m,{ € N
and p,q € [1,00] such that 0 <m < ¢ <k+1 and
WEmP(T) — LY(T). (5.5.1)

Let 3 be a multi-index with |5] = m. We set j = dim(0P*). Assume that

there exist linear functionals %;, i =1,...,7, such that
F; e WEMP(TY, Yi=1,...,], (5.5.2a)
T (@ —1:0) =0 Vi=1,...,5, VpeCT): ’¢peW=m»(T),
(5.5.2b)
nePr F0°) =0 Vi=1,....,; = d5=0 (5.5.2¢)
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It holds that for all ¢ € C(T) with 9°¢ € W =m(T),
162(¢ — Ld) gy < CT 1Ll yemmn(y- (5.5.3)

Proof. We follow [4, Lemma 2.2].
For all 7 € P~1, we have

1076 = L) pagy < 105 = Dl oy + 10520 = L) oy (5.5:4)

Note that 7 — I=p € P*, because ¢ < k + 1. That is, 85(77 — Izp) €
85 P*. Because the polynomial spaces are finite-dimensional all norms are
equivalent, that is, by the fact >>7_, [.%i(7)| is a norm on 9;P*, together
with (5.5.2a), (5.5.2b) and (5.5.2¢), we have for any 7 € P~?

J J
105 () = 150) pazy < € Y 1F02() = Iz@)| = ¢ Y | Fa( 0 (7 — )]
i=1 i=1
< ellOf (= D) lwe-mor:
Using (5.5.4) and (5.5.1), it holds that for any 7 € P*1,
107 (& = 130) | pacry < 105 (@ = Dl acry + 102 (5 = L) | oy
< |95 (i — )Hwé—m,p(fy
By Lemma 1.6.7, we have
102(¢ = L) oz < € inf RG] [ F—
e \P — La(T) e nm— We=mp(T)
<c| gAchlWZ*mvp(f)'
Remark 5.5.2. Note that it is not required /77 = 7 for any 7 € P,

Remark 5.5.3. In this thesis, we use the result of [10, 4], that is, Theorem
5.9.1.

Later, in [23], the authors showed another interpretation of anisotropic
interpolation theory as follows.
We set P = Pk( ) with k € No. Let 8 = (Bi,...,B4) € N& be a multi-

index. Then, 8B P is a vector space on T. We set

j = dim(07P).
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Let {@k}fczl be a set of basis functions of 97 P, that is, there exists a set
{di x}1—; C R such that

J
070 = d;iy O, 1<i <, (5.5.5)

J ng
82 (1) = ZXZ )020; = (Z di,kxi(ga)) Op. (5.5.6)

k=1 =1
We set
AR(@) =D disil(9). (5.5.7)
i=1

From (5.1.2) and (5.5.7), we have

The/grem 5/.\5.4. Let ¢ € Ny with 0 < ¢ < k. Let 3 be a multi-index such that
PUT) c O2P. Fizm € Ny and p,q € [1,00] such that 0 <m < (+1 < k+1
and

WL (T) — W™(T). (5.5.9)

Let I3 : V(T) = WHHBL(TY — P be the interpolation operator on T
defined in (5.1.1) such that

I7 € L;(W€+1+Iﬁl,p(f); Wm+\ﬂ\,q(f))_

Assume that there exists an interpolation operator Jz : W P(T ) — 85P
such that

Jz € LOWHP(T ) wma(T )), (5.5.10)
and
1o = Jp00¢ Vo e WHHBN(T), (5.5.11)
It then holds that
’85(85 - I:F@)‘Wm,q(:?) < C(T\, [:F)‘afﬂwffﬂyp(f) Vo e WHH'BLP(T\)-
(5.5.12)
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Proof. We follow [23]. From (5.5.11), we obviously have

Because PHT) C (9518, for any p € PYT), there exists ¢ € PHE(T) c P
such that p = 87¢. We then have, from (5.5.11) and (5.1.3),

Jp = Jp00G = 05134 = 974 = p.
Therefore, we obtain, from (5.5.10) and (5.5.14),
|3f@ - Jfa§¢|wm,q(f) < |(95<,27 - ]5|W"uq(f) + [0 — ag@”wmq(f)

= |5’f(<ﬁ - q)|wm7f1(f) + |Jf{a§<‘j - @)}|Wm,q(:f)
< 0’35(95 - Cj)’wﬁﬂ,p(ﬂ-

From the Bramble-Hilbert-type lemma (e.g., Lemma 1.6.10), we thus have

|8§¢ - Jfaaf@‘wm,q(f) <c inf_ |8§<ﬁ - ]3|W4+1m(f)
PEPH(T)
< C’ag@lweﬂ,p(f)u
which is the target inequality. O]

Therrem 5.5.5. Let ¢ € Ny with 0 < ¢ < k. Let 8 be a multi-index such that
PYUT) C &P. Fizm € Ny and p,q € [1,00] such that 0 <m < (+1 < k+1
and

WELL(TY — W™4(T). (5.5.14)

Let I3 : V(T) = WHHBL(TY — P be the interpolation operator on T
defined in (5.1.1) such that

I; € LWEHBLe (T, pym+Bla(Ty),
If (o) of (5.5.7) can be expressed by
Ae(@) = Z(009), k=1,....], (5.5.15)
where
T e WY k=1,...,], (5.5.16)

then (5.5.12) holds.
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Proof. We follow [23]. We define the interpolation operator.Jz : W*? (T) —
5’5 p by

Iz =Y ()8 Vi € WL (T),

We then have, from (5.5.16),

J

1Tzl wmaizy < D12 @IOKwmaczy < elliillesiniry:
k=1

that is, Jz € L(WHLP(T); Wqu(f)).

Furthermore, for any ¢ € WA (T) we have, from (5.5.15) and
(5.5.6),
J R J R
0% =Y Au(00)8k = Y Mu()Or = 87 (7).
k=1 k=1
Therefore, the estimate (5.5.12) follows from Theorem 5.5.4. O

Remark 5.5.6 ([23]). From (5.5.15) and (5.5.8), we have
Su02170) = MlI39) = (@) = Fu(09), h=1,....].

For any ¢ € 85 ﬁ, there exists p € P such that q= 85 p. We also have, from
(5.1.3), (5.5.6) and (5.5.15),

J J J
G=0p=01;p=> M(P)Or = Zu(059)Or = > F1(§)6k.
k=1 k=1

Because {O}_, is a basis for 87 P, we obtain

Ve dlP, 7§ =0, 1<k<j & §=0.

5.6 Local Interpolation Error Estimates

Theorem 5.6.1 (Local interpolation). Let {T P, S} be a finite element with
the normed vector space V(T) := C(T) and P := P*(T) with k > 1. Let
I : V(f) — P be a linear operator. Fiz ¢ € N, m € Ny, and p,q € [1, 0]
such that 0 < m < ¢ <k+1, £ —m > 1, and the embeddings (1.6.2) and
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(1.6.3) with s := ¢ —m hold. Let 5 be a multi-index with |3| = m. We set
§ := dim(9°P*). Assume that there exist linear functionals %;, i =1,...,7,
satisfying the conditions (5.5.2). It then holds that, for all € W' (T)NC(T)
with ¢ == @ o d~L,

i1 (Hp\™ clae
o~ Inphvman < CHTE (32) 8 #05elwnr. (66)

le|=£—m

where C{ is a positive constant independent of hy and Hy. In particular, if
Condition 3.3.1 is imposed, it holds that, for all $ € W5 (T) N C(T) with
pi=god,

Wmp(@1(T)):

11 (Hp\™ el qe
o = Irglwmacry < C3|T|s 7 (h_T> > KN (podr)

le|=f—m

(5.6.2)

where C% is a positive constant independent of hps and Hrs.

Proof. The introduction of the functionals .%; follows from [10, 4], also see
Theorem 5.5.1. Actually, under the same assumptions as in Theorem 5.6.1,
we have

105(8 = L50)| gy < CP102 B we-moniiys (5.6.3)

where 3] = m, ¢ € C(T), and o e Wi=mp(T).
The inequalities in (5.3.11), (1.6.1), (5.3.1), and (5.6.3) yield

| — Irplwmary < c|@® — Irs@®|ywma(rs)

1/q
< ol det( AN A | 30 ()02 — I,
|B]=m
Lo _ . .

< cf det(A%)[a || A5 Y (W02 (8 — I3@) | oy

|Bl=m
< c| det(A%)[a ]| A5 Y (1[0 R———" (5.6.4)

|Bl=m
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Inequalities (1.6.1) and (5.3.2) yield
Y (Gl yemmury

\Bl=m
< 0D (N0 L

|7| £=m [B]=m

< cldet() AR ST ST (R Y WGk hwesa

[y|=t—m |B]=m le[=I1

L0 Tm €| Qe
< | det(A%)| P [JAl5 Y B0 plwmn .- (5.6.5)

le|=t—m

From (3.6.1), (3.6.2), (5.6.4), and (5.6.5), we have

11 (H
¢ — Inplwmagr < ol (—) S K0l

le|=f—m

which is the inequality (5.6.1).
If Condition 3.3.1 is imposed, inequality (5.3.3) yields

Z (hiﬁ)mg@wf—m’p(f)

|Bl=m
< 3> OO
Ivl {—m |B|=m
<cldet(A)FNAl Y D (R A0 e
[v|=€—m |B|=m lel=[~|
< cfdet(A)[ AR Y A [wma (- (5.6.6)

le|=C—m

From (3.6.1), (3.6.2), (5.6.4), and (5.6.6), we have

1_1 H " €, .S
o — Irplwmar) < cfT|e p(_T> > A lwnar,

le]=£—m

which is the inequality (5.6.2) using 7° = ®.}(T) and ¢* = ¢ o ®r. O

5.7 Global Interpolation Error Estimates

A global interpolation operator I, is constructed as follows ([30, Section
1.4.2]). Its domain is defined by

D(I) = {p € L'(Q); ¢|r € V(T), VT € T}}.
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For T' € T}, and ¢ € D(I}), the quantities x;(¢|r) are meaningful on all the
mesh elements and 1 <7 < ny. The global interpolation I can be specified
elementwise using the local interpolation operators, that is,

<[h90)|T = [T (p‘T le §0|T 9 \V/T € Th; VQO € D([h)
=1
The global interpolation operator I, : D(I,) — V}, is defined as
no
Ih : D(Ih) D QY Ihg0 = Z ZXAQD’T)H% € Vh,
TeT), i=1
where V}, is defined as

Vi = {goh S LI(Q)n, goh]T e P VI e Th}

Theorem 5.7.1. Suppose that the assumptions of Theorem 5.6.1 are satis-
fied. We impose Condition 4.53.1. Let Ij, be the corresponding global interpo-
lation operator. It then holds that, for any ¢ € W5P(Q);

(I) if Condition 3.3.1 is not imposed,

o — Inplwmay S ¢ D |TIi 7S he|OEplwman) (5.7.1)

TeTy, le|=t—m
(IT) if Condition 3.5.1 is imposed,

lo — Inplwma) < c Z |T|777 Z |0 (p o Prps)

WP (@5 (T))"
TEeTy, le|=f—m
(5.7.2)
Proof. If Condition 3.3.1 is not imposed, using (5.6.1),
i — Ih@wym,q(g) = Z o — IT90|%Vm,q(T)
TEeT
qm !
q 1_1 HT
<X rrd) (35) | X wlotelwnen | |
TeT le|=¢—m

which leads to the desired result together with (1.6.1) and Condition 4.3.1.
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If Condition 3.3.1 is imposed, using (5.6.2),

|80 - IhSO|(1]/Vm,q(Q) < CZ |<Ps - ITS‘PS|(11/Vm,q(Ts)

TeT
qm !
q 1_1 HT E| QE, S
S CZ ’T’ (ll P) <E) Z % ‘a 90 ‘W'm,p(Ts) 5
TeT le|=t—m

which leads to the desired result together with (1.6.1) and Condition 4.3.1.
O

5.8 Examples satisfying Conditions (5.5.2) in
Theorem 5.5.1

5.8.1 Lagrange Finite Element
5.8.1.1 Finite Element Generation on Standard Element

Let T C R? be the reference element defined in Sections 3.1.1 and 3.1.2. Let
« be a multi-index. We define the set of nodes as

. . T
~ o 1
2 =By ={(2,2) er’ —{ aeRr? Cifd=2
k' k k
0<iy+ia<k lo| <k

.. .\ T
=~ 1 12 13 3 .
T -, =, = R fd=3.
m{(k’k’k)e } , ifd=3

0<i1,i2,i3<k

BANGH
P = {Pi}i]il :
The Lagrange finite element on the reference element is defined by the triple
{T, P,%} as follows.
(1) P:=PHD);
(1) £ is a set {Xiti<icniam of N@H linear forms {{;}i<icnr with its
components such that, for any p € P,

(D) == p(P) Vi€ {l: NG} (5.8.1)

The nodal basis functions associated with the degrees of freedom by (5.8.1)
are defined as

~

0:(P)) =6y Vi,je{1: NGO}, (5.8.2)
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It then holds that ¥;(6;) = &, for any i,j € {1: d+1}. Setting V(T) :=C(T)
or V(T) := WP(T) with p € [1,00] and ps>d (s > dif p = 1), t
operator I % is defined as

the local

V(T3 Ikp: Z (5.8.3)

By analogous argument in Section 5.1, we assume that the Lagrange finite
elements {T', P, 3}, {17, P°,%°} and {T P, ¥} are constructed. The local
shape functions are 6; = ¢T (0;), 05 = 77/)% (6;) and 6; = 171(#7) for any i €
{1: N (d’k)}, and the associated local interpolation operators are respectively
defined as

N(d.k)
IE:V(T) 3¢ IEp= > @(P)b; € P, (5.8.4)
=1
N(dk
L . s s L s .__ s\ S s
It - V(T) 3 ¢° 5 ILo® == Y @°(P)0; € P, (5.8.5)
=1
dk
IE:V(T) 3 ¢ Thp = Z P)b; € P, (5.8.6)

=1

~

where P, = @(ﬁi), P = ®(P) and P, = s (P?) for i € {1: NRL

5.8.1.2 Local Error Estimates

Lemma 5.8.1 (d = 2). Let 8 be a multi-index with m := |B| and ¢ € C(T)
a function such that 8¢ € Wm»(T T), where {,m € Ny, p € [1,00] are such
that 0 <m </¢<k+1 and

p=o0 ifm=0andl=0, (5.8.7a)
p>2 ifm=0andl =1, (5.8.7b)
m<{ if 1 =0 or By =0, and m>0. (5.8.7¢)

Fiz q € [1,00] such that W*="#(T) — L4(T). Let I := IL. It then holds
that

102(6 — TEG) | oy < ClOZBlyyemmn(y- (5.8.8)

Proof. The proof is found in [4, Lemma 2.4]. O
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Lemma 5.8.2 (d = 3). Let 8 be a multi-index with m := |B| and ¢ € C(T)
a function such that afgé € WHmP(T), where £, m € Ny, p € [1,00] are such
that 0 <m <{<k+1 and

p=oo ifm=0andl=0, (5.8.9a)
p> % ifm=0and(=1,2, (5.8.9b)
m<{ if B1=0,5,=0, or f3=0, (5.8.9¢)
p>2 ifBe{(f—1,0,0);(0,¢—1,0);(0,0,¢ —1)}. (5.8.9d)

Fiz q € [1,00] such that W*="#(T) — L4(T). Let I := Ik. It then holds
that

102(2 = I3@) | oy < 1L @l vy (5.8.10)
Proof. The proof is found in [4, Lemma 2.6]. ]
Corollary 5.8.3. Let {T, P, S} be the Lagrange finite element with V(T :=

C(T) and P := P*(T) with k > 1. Let I7 = I#. Let m € Ny, ¢ € N, and
p € R be such that 0 <m < /{ < k+1 and

J—9- pe (2,00 ifm=0,0=1,

ST Ipell,o] fm=0,0>20rm>1,0—m>1,
pe (3,00 ifm=0,0=1,2,

d=3: ¢{pe(2,00] ifm>1,0—m=1,
pe[l,oo] ifm=0,0>30orm>1,{—m>2.

Setting q € [1,00] such that W=2(T) — LU(T). Then, for all $ € W'P(T)
with ¢ == ¢ o ®~1, we have

11 (Hyp .

lp — IZp|wmarr) < c|T|q » (h_:r> Z h# |05 olwmr (1) (5.8.11)
le|=f—m

In particular, if Condition 3.3.1 is imposed, it holds that,for all ¢ € W&p(f)

with ¢ = @ o d~1,

a H 3 13
o — I @lwmairy < Cy |T|q (h;) Z A0 (p 0 Drs)

le|=—m

W (B (T)-
(5.8.12)
Furthermore, for any ¢ € C(f) with ¢ == ¢ o ®~L, it holds that

oo = Ir@|| oo (1) < cll@l Lo ()
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5.8.2 Nodal Crouzeix—Raviart Finite Element

5.8.2.1 Finite Element Generation on Standard Element

Let T C R? be the reference element defined in Sections 3.1.1 and 3.1.2.
Let F be the face of T opposite to P and let & the barycentre of the face

F,. The (nodal) Crouzeix-Raviart finite element on the reference element is
defined by the triple {T\, P, Y} as follows.

(1) P =P (T);

(I) £ is a set {Xiti<icn@n of N linear forms {X;},<;<nn with its
components such that, for any p € P,

D) = pdp) Vie{l:d+1}, (5.8.13)

Using the barycentric coordinates {)\ @1 . R? — R on the reference element,

the nodal basis functions associated w1th the degrees of freedom by (5.8.13)
are defined as

d

It then holds that ¥;(6;) = &, for any i, € {1 : d+1}. Setting V(T) :=C(T)
or V(T') := W*P(T') with p € [1,00] and ps>d (s > d if p = 1), the local
operator ]:%CR is defined as

é():_d(——A()) Vie{l:d+1}. (5.8.14)

d+1
R V(T) 5 ¢ 190G =Y ¢lig )0 € P. (5.8.15)
i=1
By analogous argument in Section 5.1, we assume that the (nodal) Crouzeix—
Raviart finite elements {7, P, E} {1°, P, 5%} and {T P, 3} are constructed.
The local shape functions are 0; = @Z)T (6;), 05 = Lb% (0;) and 6; = 71(6?)
for any ¢ € {1 : d+ 1}, and the associated local interpolation operators are
respectively defined as
d+1

R V(T) 5 ¢ 12900 =Y g3z )0; € P, (5.8.16)

d+1

IR V(T*) 3 ¢ s R o=~ @ (aps)0 € P, (5.8.17)
=1
d+1

O V(T) 3 o = 1% = " p(ap,)0; € P, (5.8.18)

=1

where {F; := ®(F}) Yicqrary, {FF = ®(F) Yieqraryy and {F := e (F) Yic (i)
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5.8.2.2 Local Error Estimates

Corollary 5.8.4. Let {T P Z} be the Crouzeiz—Raviart finite element with
V(T) := C(T) and P := PYT). Set Iz = [”CR. Let m € Ny, ¢ € N, and
p € R be such that

J—o pE (2,00 ifm=0,0=1,

B pe[l,oo] ifm=0,{=20rm=1,(=2
de3. pe (3,00 ifm=0,0=1,2,

T lpe @] ifm=1,0=2

Setting q € [1, 00] such that Wg’m’p(f) — Lq(f). Then, for all ¢ € W'(T)
with ¢ == ¢ o ®~L, we have

n 1.1 (Hyp .

’90 . [TCRSO’Wm,q(T) S C’T‘q P (hT) Z h ’ @lep (5819)
le]=£—m

In particular, if Condition 3.5.1 is imposed, it holds that, for all p € Wﬁ’p(f)

with ¢ == @ o d~1,

’U\*—‘

1_
[ — Irplwmacr) < [T W (@ 1(T))"

HT)
JC°|0° Pps
( hr |e|—Z€;m o leetr)

(5.8.20)
Furthermore, for any ¢ € C(f) with ¢ := ¢ o ®~L, it holds that

o — I7@|| oo (1) < cll@| Lo ()

Proof. For k£ = 1, we only introduce functionals .%; satisfying (5.5.2) in
Theorem 5.6.1 (or Theorem 5.5.1) for each ¢ and m.

Let m = 0, that is, 8 = (0,--- ,0) € N&. We then have j = dim P! = d+1.
From the Sobolev embedding theorem (Theorem 1.6.1), we have WP (f) C
CO(T\) with 1<p <oo,d<fporp=1,d </ Under this condition, we use

Fi(p) = ¢(ip), ¢eWPT), i=1,...,d+1.
It then holds that

[ Zi(D)| < 19lleogry < cllPllwen s
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which means .%; € W5(T) for i = 1,...,d + 1, that is, (5.5.2a) is satisfied.
Furthermore, we have

which satisfies (5.5.2b) For all 7) € 731 it Z(n) =0fori=1,...,d+1,it
obviously holds 77 = 0. This means that (5.5.2c) is satisfied.

Let d = 2and m =1 (¢{ = 2). We set § = (1,0). We then have
j = dim(9°P') = 1. We consider a functional

% ]
Fi() = / 201, 1/2)di, e WD), 1<p.
0

We set 1 := {z € f; Ty = %} The continuity is then shown by the trace
theorem (e.g., see Corollary 1.6.3):

(O <18l < ell@llwra),

which means %, € W“’(f)’ , that is, (5.5.2a) is satisfied. Furthermore, it
holds that

91 (8(1’0)( InCR /

n (1/2,1/2)
=[# _ICR ]01/2) =0,

— I297Q) (21, 1/2)diy

which satisfy (5.5.2b). Let 7 := aZ; + by + ¢. We then have

F,(0005) — %a.
If #,(0%99) =0, a = 0. This implies that 9107 = 0. This means that
(5.5.2¢) is satisfied.

By analogous argument, the case 5 = (0, 1) holds.

Let d = 3 and m = 1 (¢ = 2). We consider Type (i) in Section 3.1.2
in detail. That is, the reference element is T = conv{0, e, e9,e3}. Here,
e1,...,e3 € R are the canonical basis. We set 8 = (1,0,0). We then have
j = dim(9°P') = 1. We consider a functional

1

. RN N N ~ 3
Z1(9) ;:/ Pl 1/3,1/3)din, WD), S <p
0

We set T := {z € T\; Tg9 = %, Ty = %} The continuity is then shown by the
trace theorem:

1O <18l gy < ellellwea) Er>2
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which means ., € W2P(T), that is, (5.5.2a) is satisfied. Furthermore, it
holds that

1,0,0) / nCR~\\ _ [~ nCR ~7(1/3,1/3,1/3)
tgjl(@( )(90 - ]f P)) = {‘P - ]:F 90} (0,1/3,1/3) 0,

which satisfy (5.5.2b). Let 7 := a&; + by + ¢Z3 + d. We then have

R 1
F1(0M0) = za.

If 7, (01997) =0, a = 0. This implies that 9%%%7 = 0. This means that
(5.5.2¢) is satisfied.

By analogous argument, it holds the cases 5 = (0, 1,0), (0,0, 1).

We consider Type (ii) in Section 3.1.2. That is, the reference element
is T = conv{0,e1,e; + eg,e3}. We set 5 = (1,0,0). We then have j =
dim(9°P1) = 1. We consider a functional

2

3 ~
91(95) = /; @(ii‘l, 1/3, 1/3)di'1, @ € WQ’p(T).

3

By similar argument with Type (i), we can deduce the result.
When m = ¢ =0, p=o00 and ¢ € [1, 0], it holds that

16— ]%CR@HLq(f) < C||927HL00(T)’

because we have

d+1
(R 0) (@) < )y 1@(@p)lei(@)] < (d+1) ( max ||9i||Loo(f)> 1@l oo (7

i1 1<i<d+1
O
5.9 Example that does not satisfy conditions
(5.5.2) in Theorem 5.5.1

5.9.1 Motivation

The following lemma ([10, Lemma 4], [4, Lemma 2.3]) gives a criterion for
the existence of linear functionals satisfying conditions (5.5.2b) and (5.5.2c).
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Lemma 5.9.1. Let P be an arbitrary polynomial space and (8 be a multi-
index. We set j := dim(9°P). Assume that I : CH(T ) — P, pneN,isa
linear operator with In) = 1 Vi € P. Then, there exist linear functionals
F; :C®(T) =R, i=1,...,7, such that

F((p—1¢) =0 Vi=1,....5, Ypec>T), (5.9.1)
neP F(0n)=0 Vi=1,....,; = 9°7=0 (5.9.2)
if and only if the condition
peCxT), ’¢=0 = 0Ip=0 (5.9.3)
holds.
Proof. The proof can be found in [10, Lemma 4]. O

If Condition (5.9.3) is violated, estimate (5.5.3) does not hold. This means
that one cannot obtain estimate (5.6.1), which is sharper than (5.4.2). The
following is a counterexample that does not satisfy (5.9.3).

Let T C R? be the reference element with vertices P := (0,0)7, Py :=
(1,0)7, Py := (0,1)7. We set Py := (1/3,1/3)7. We define the barycentric

coordinates \; : R? - R, i =1,...,3, on the reference element as

— 5 o — A — 5 s AT =
)\1 =1 T, — T, )\2 =T, )\3 = T9, (.1'1,1’2) eT.

5.9.2 P! 4+ bubble Finite Element

As mentioned in Example 5.4.6, we define the local basis functions as
04(z) = 27N (z) Aa(x) A3(2),

1
0;(x) = N\i(x) — 504@), i=1,2,3.

The interpolation operator % defined by

4
I":CHT)> ¢ " : Z (P,)0; € span{f;, 0, 03,04}

=1

Let 8 = (1,0). Setting ¢(#1,4) := 22, we have 22 = 0. By simple calcula-
tion, we obtain
0 00, 00, 005 00,
I’ = (P, P P P
P @( 1)8A + &( 2)8A + &( S)aA + &( 4)8951

90 106, 106, 106,

=9, T 3on, 308, 320
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Therefore, the condition (5.9.3) is not satisfied. This implies that the error
estimate (5.5.3) on the reference element does not hold for the P! 4+ bubble
finite element.

5.9.3 P3 Hermite Finite Element

Following [25, Theorem 2.2.8], we define the Hermite interpolation operator
I H3(T) — P? as

3
Mg =" (—2A§ +3X2 -7\ > AjAk> B(P) + 27 M A As@(Py)
i=1 1<j < k<3,ji,k#i
3

+Z<Z>\)\ (2 + Xy — 1) (P Pm)) a?(Ai)

9
+Z <Z)\>\ (2 + X, — 1)(PP P<2))> g—?@x

where f’i(k), 1 < k <2, are the components of a point ]31 c R2.
Let 8 = (1,0). Setting ¢(@1,22) := 23, we have g—g’; = 0. Furthermore,
by a simple calculation, i.e.,
0
07y
M(2As + A — 1)} = =29 + 22129,

w

()\1/\2)\3) = —3%3 - 23}152’2 - '%27

Ao(2A3 + Ay — 1)} = —@p + 22139 + 233,

we obtain
0 H » 0 3 2 A~ D
8551[ o= —2X3 4+ 3)2 — T)s | Z M | o(Ps)
1<) < k<3,j#3,k#3
0 ~
27— (P
+ 73@1 (MA2A3)p(Py)
0 (< ¢
52 _ p@) 5
5 (; Ash;(2Xs + Ay — 1)(P — Py )) 5, (Ps)
) .
=7 7 (MAoAs)@(Ps) % (A1 A2A3)d( )
+ 55 {)\3/\1(2>\3+)\1 —1)(P? -
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0
024

0P =~

P
+ a5, %)

{)\3/\2(2)\3 + A2 — 1)(132(2) - ]3352))}

. . 1, . .
3 — 23139 — T9) + g(—ajg — 2819 — To)

= —7(—%
+ 8(y — 20149 — &3) Z 0.

Here, we have used

N 05  ~
p(P) =0, 5 —(FR)=0 =12,
HP)=0. SE(R)=0.

. Sl 9g -
5(P) =1, $(P) =, —2(P)=4
90( 3) ) 30( 4) 34’ 8[%2( 3) )

~

PP — 1

~

PO PO _ .

Y

Therefore, Condition (5.9.3) is not satisfied. This implies that error estimate
(5.5.3) on the reference element does not hold for Hermitian finite elements.

5.10 Concluding remarks

As concluding remarks, we present some topics related to the above sections.

5.10.1 One dimensional Lagrange interpolation

Let © :=(0,1) CR. For N €N, let T, = {0=0p<z1< - <ay<Ty41 =
1} be a mesh of  such as

N
ﬁ::UIi, int; Nint I; =0 for i # j,
i=1
where I; := [z;, ;1] for 0 < i < N. We denote h; := x;41 — x; for 0 <
i < N. For T := [0,1] € R and P := P* with k € N, let {T',P, %}
be the reference Lagrange finite element, e.g., see [30]. The corresponding
interpolation operator is defined as

k
IE:C(T) 0> IE(D) =) (&m)LE,,
m=0

where &, := 7 and {Z’g, e Z’,j} is the Lagrange polynomials associated with
the nodes {fo, . ,fk} For i € {0,..., N}, we consider the affine transfor-
mations

@,fatHx:xl—i—chEL

For © € C(T), we set & = v o ®;.

91



Theorem 5.10.1. Let 1 < p < oo and assume that there exists a nonnegative
integer k such that

Pk = P c WHL(T) c C(T).

Let ¢ (0 < ¢ < k) be such that W“l’p(f) C C(T) with continuous embedding.
Furthermore, assume that {,m € NU {0} and p,q € [1,00] such that 0 <
m</{+1 and

WELP(TY < W™4(T).
It then holds that, for any v € WP(L) with © = v o @;,

L 1 iot1-m

v — Ijvlwma,) < chi * V] west(ry)- (5.10.1)

Proof. We only show the outline of the proof. Scaling argument yields

1
q|A

_m+ R
v ]TU|Wm,q(f)7

"U - ]£U|Wm,q([i) = hl

. e41-1
’U|Wl+1vp(f) = h, ! |U’W”1’p(h‘)'

Using the Sobolev embedding theorem and the Bramble-Hilbert-type lemma,
we have

A

|0 — [T@’Wqu(’f) < C‘/&‘WH—LP(T)
Therefore, we obtain the estimate (5.10.1). ]

Remark 5.10.2. The assumptions of Theorem 5.10.1 are standard; that is,
there is no need to show the existences of functionals such as Theorem 5.6.1.
Furthermore, the quantity Apax/hmin that deteriorates the convergent order
does not appear in (5.10.1).

Remark 5.10.3. If we set z; := N+r1’ 7=0,1,...,N,N + 1, the mesh T}
is said to be the uniform mesh. If we set z; :=g¢ (ﬁ), j=1,...,NNN+1
with a grading function ¢, the mesh T}, is said to be the graded mesh with
respect to x = 0, see [14]. In particular, when one sets ¢g(y) := y° (¢ >0), the
mesh is called the radical mesh.

Remark 5.10.4 (Optimal order). If p = ¢, it is possible to have the optimal
error estimates even if the scale is different for each element. In one dimen-
sional case, when ¢ > p, the convergence order of the interpolation operator
may deteriorate.
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5.10.2 Effect of the quantity |T|57% in the interpolation
error estimates for d = 2,3

We consider the effect of the factor |T' ]%_%

5.10.2.1 Case that ¢>p

When ¢ > p, the factor may affect the convergence order. In particular, the
interpolation error estimate may diverge on anisotropic mesh partitions.

Let T C R? be the triangle with vertices P, := (0,0)7, P, := (¢,0)7,
Py :=(0,t5)T for 0<t < 1,e>1,t € R and € € R. Then,

h 1
max tlis Tl — _t1+5'
hmin ’ ’ | 2

Let k=1,=2m=1,¢g=2,and p € (1,2). Then, WH?(T) — L?*(T) and

Theorem B lead to
leP(T)) .
When € = 1 (the case of the isotropic element), we get

2(p—1) 2 p— 1
[ — Irolgiry < chp ™ [plwar(m), % >

9y
8$1

o9

+ ¢
81‘2

|90 — ]TSO|H1(T) < Ct_(H—E)Q?;Pp t
WLp(T)

0.

However, when € > 1 (the case of the anisotropic element), the estimate may
diverge as t — 0. Therefore, if ¢ > p, the convergence order of the interpola-
tion operator may deteriorate.

We next set m =0, ¢ =2, ¢ =00, and p = 2. Let

oz, y) =2+ .

Let I : CO%(T) — P! be the local Lagrange interpolation operator. For any
nodes P of T, because I%p(P) = p(P), we have

Irp(z,y) =t + ty.

It thus holds that

-t = (e 1) + (-5 - de v
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We therefore have, because H*(T') — L>(T),

1 , )
lp — I @l Loy = Z<t2 +17), Y AN ey = 2AT| (8 + 1),

lv|=2

and thus,

I = IF ol o) 1
_1 T Q
772 X N0l 2y 8

This example implies that the convergence order is not optimal, but the
estimate converges on anisotropic meshes.

5.10.2.2 Case that ¢<p

We consider Theorem B. Let I£ : CO(T) — P* (k € N) be the local Lagrange
interpolation operator. Let ¢ € W5=(T) be such that £ € N, 2 < £ < k + 1.
It then holds that, for any m € {0,...,¢ — 1} and ¢ € [1, o0,

1 HT "
lp — [:%90|Wm>q(T) < c|T|s (E) Z AN (po CDTS)‘WWOO(@;HT))'
[y|=£—m

(5.10.2)

The convergence order is therefore improved by |T|%
We do numerical tests to confirm this. Let £ =1 and

1
o(z,y,2) = 2° + 1y2 + 22,

Let t := %, N € Nand € € R, 1 <e. We compute the convergence order
with respect to the H! norm defined by

Erré(HY) :==|p — [:%90|H1(T).
The convergence indicator r is defined by

1 Erré(HY)
= log
log(2) Erre, (HY)

t/2
(I) Let T C R? be the simplex with vertices P :=
Py :=(0,t5,0)T, and P, := (0,0,t°)T (1<6 <
We then have hy = V12 + t%¢, hy = t° and hs :

Hr _

r

(0,0,0), Py := (¢,0,0)T,
g),and 0<t < 1,t € R.

Vit + 12 ie.,




From (5.10.2) with m = 1, £ = 2, and ¢ = 2, because |T'| ~ t'**+° we

have the estimate

o — IFolmir) < chy ?

3

+e+48

Computational results are for the case that ¢ = 3.0 and § = 2.0 (Table

5.3).

Table 5.3: Error of the local interpolation operator (¢ = 3.0, = 2.0)

N |t

‘ Err}O(H?) ‘ r

64
128
256

1.5625e-02
7.8125e-03
3.9062e-03

2.4336e-08
1.5209e-09
9.5053e-11

4.00
4.00

(IT) Let T C R3 be the simplex with vertices P, := (0,0,0)7, P, := (¢,0,0)7,
Py = (t/2,t5,0)7, and Py := (0,0,6)T (1<e < 6)and 0<t < 1, ¢ € R.

We then have hy =t, hy = \/t2/4 + 1% and hs

From (5.10.2) with m =1, ¢ = 2, and ¢ = 2,

hmax t
= <
hmin \/t2/4+t2€ -

have the estimate

Hy
hr

3_¢
lo — Irp|mry < chy 2.

=1t li.e.,

< ct' e,

because |T'| ~ 27, we

Computational results are for the cases that ¢ = 3.0,6.0 (Table 5.4).

Table 5.4: Error of the local interpolation operator (¢ = 3.0,6.0)

N |t | Errf°(HY) [r | Errf°(HY) | r
64 | 1.5625e-02 | 1.9934e-04 1.0206e-01

128 | 7.8125e-03 | 7.0477e-05 | 1.50 | 1.0206e-01 | O
256 | 3.9062e-03 | 2.4917e-05 | 1.50 | 1.0206e-01 | O

5.10.3

condition?

What happens if violating the maximum-angle

This subsection introduces two negative points by violating the maximum-
angle condition. One is that it is practically disadvantageous. As an example,
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let T° C R? be the triangle with vertices P, := (0,0)7, P, := (¢t,0)7, P3 :=
(t/2,t5) for 0<t < 1,e>1,¢t € R and ¢ € R. From Theorem 5.6.1 with
k=1,0=2 m=1,p=q=2, we have
0p®
T

dp*®
8&72

t2—€ + t

HY(Ts)

|©° — I @ | sy < €

H1(T5).

Even if one wants to reduce the step size in a specific direction (y-axis di-
rection), the interpolation error may diverge as t — 0 when ¢ > 2. This loses
the benefits of using anisotropic meshes.

Another is that violating the condition makes it challenging to show math-
ematical validity in the finite element method. One of the answers can be
found in [11], also see Section 11.8. That is, the maximum-angle condition
is sufficient to do numerical calculations safely.
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Chapter 6

L*-orthogonal projection

In this chapter, we consider error estimates of the L?-orthogonal projection,
e.g., for standard argument, see [30, Section 1.4.3] and [31, Section 11.5.3].

6.1 Finite Element Generation on Standard
Element

Let k € Ny. Let T C RY be the reference element defined in Sections 3.1.1
and 3.1.2. The finite element of the L?-orthogonal projection on the reference

element is defined by the triple {i 13, Y.} as follows.
(1) P:=PT);

(II) For any p € P, we define a linear form ¥y, i € {1 : N@M} ag
. 1 N
Xi(D) = = [ Phidz, (6.1.1)
|T| J7

where #; is a smooth function on 7. We set 3 := {)Ql}fvz(fk) In partic-
ular, if k£ = 0, we set k1 = 1, and a linear form Yy is defined as

1
7| J7

The nodal basis functions {éz}fﬁf " associated with the degree of freedom by
(6.1.1) is defined as

Xi(0,) =06, i,je{l:NE@R} (6.1.2)
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If k = 0, we choose f; = 1. Setting V(T') := L'(T), the local operator HA is
defined as

N(d,k) N(d,k) 1
H;% V(T) > ¢— H’%@ = Ri(@)0; = Z (]T] / gp/@d;l:) 0; € P,
i=1 i=1

(6.1.3)

By analogous argument in Section 5.1, we assume that finite elements {T, P , i},
{T%, P*,%°} and {T, P,X} are constructed For i € {1 : N@M} the local
shape functions are f; = @/)T (6;), 65 = V= L(6;) and 0; = ;2(67), and the
associated local interpolation operators are respectively defined by

N(d.k) N(d.k) 1
IE:V(T) 3¢ TG = ) %i(¢)f; = Z (m / somdfv) 0; € P,
=1
(6.1.4)
N (d,k) N (d,k) 1
M5 V(T®) 5 ¢° o T o= ) xS0 = > (W/ gps/ffdJU) 0; € P,
i=1 i=1 Ie
(6.1.5)
N(d.k) N(d.k) 1
5 V(T) 5 o g = Z Xi(p)0; = Z <|T| / %da;) 0; € P,
i=1
(6.1.6)

where &; = R; o Cffl, kS = F; 0 d ! and K; = Ko ®L! for i € {1: N@hY,

6.2 Local Error Estimates of the Projection

Lemma 6.2.1. P is invariant under H’%, that is, H’%ﬁ =p foranyp € P.

N(d.k)
J=1

Proof. Let p:= > ajéj. We then have

Lemma 6.2.2. Let g € [1,00]. It holds that
T3 Loy < ll@ll oy V9 € LHD). (6.2.1)
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Proof. Using the definition of the projection and Holder’s inequality yields

1 N(d;k)
ITERN a7y Sﬁ 0 il ooy 10l Loy | 18M Ly
=1
N (d,k)

~2o1 .
< ’T|2 P Z H’%”Lm |9HLq (T) ”SOHLP(T)

Because |T| = 4 and

N(d:k)

Z ‘|’%i‘|L°°(f)’|9i|‘L9(f) <c
i=1

we conclude (6.2.1). O

The following theorem gives an anisotropic error estimate of the projec-
tion ITX.

Theorem 6.2.3. For k € Ny, let { € Ny be such that 0 < ¢ < k. Let
p,q € [1,00] be such that WYP(T) — LY(T). It then holds that, for any

XS W”l’p(f) with ¢ := o d~1,

T — @llacry < e|Tfs7% > h[|05 ¢ or- (6.2.2)
le|=£+1

In particular, if Condition 3.5.1 is imposed, it holds that, for any ¢ €
WHHLP(T) with o == o d~1,

T — ol oy < clT]7 7 > A" (p o Prs)
le|=t+1

wepiay  (623)

Proof. Using the scaling argument, we have

T — oy < el T5ui® — [l zare) = ] det(A%)] 4 [|TTE — Bl 1o -
(6.2.4)

For any 1) € P* C Pwith0< (< k, from the triangle inequality and Lemma
6.2.1, that is, H’%f] =1, we have

T2 = @l oy < I = )l oy + 11 = Gllzac). (6.2.5)
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Using (6.2.1) for the first term on the right-hand side of (6.2.5), we have

(2 = )l oy < €l = il pacay (6.2.6)

Using the Sobolev embedding theorem for the second term on the right-hand
side of (6.2.5) and (6.2.6), we obtain

16 = 0l Loy < cll® = Nlwro (6.2.7)

Combining (6.2.4), (6.2.5), (6.2.6), and (6.2.7), we have

IT0* = @l agrsy < C(T)| det(A)]7 Hlf 16 = nillwrr ) (6.2.8)

From the Blamble-Hilbert-type lemma (e.g., see Subsection 1.6.4), there ex-
ists a constant 73 € P* such that, for any ¢ € WHHP(T),

p— 776|th < CPH(T )"P‘W’H »@y =01 (6.2.9)

If Condition 3.3.1 is not imposed, using (5.3.2) (m = 0) and (6.2.9), we then
have
||95 - ﬁﬁuwl,p(:ﬁ) < C‘@|W£+1,p(:f)
1
< cldet(A)| 7 Y B05ol Loy (6.2.10)

le|=¢+1

If Condition 3.3.1 is imposed, using (5.3.3) (m = 0) and (6.2.9), we then
have

16— ﬁﬁ”wl,p(f) < C|95|W2+1,p(f)
1 s
<ol det(A) 7 S AP o, (6.2.11)

le|=0+1

Therefore, combining (6.2.8), (6.2.10), and (6.2.11) with (3.6.2), we have
(6.2.2) and (6.2.3) using 7% = &1 (T) and ¢* = ¢ o Pr. O

We have the following stability estimate of the projection II%..

Lemma 6.2.4. Let k € Ny and let p, q € [1, 00] be such that LP(T') — LY(T').
It then holds that, for any ¢ € LP(T),

Tl oy < e|T|5 77 |0l oy (6.2.12)
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Proof. Using the scaling argument, we have
1Tl oy < el |l zagre) = o] det(A)[4[TTE| o7, (6.2.13)

The stability estimate (6.2.1) on the reference element and the Sobolev em-
bedding theorem yield

1T llzocry < f det(A)[al|&] oy < ol det(A) Gl oy (6:214)

Using the scaling argument, we have

120 o) = 1 det((A) )Pl oy < el det((A) )7 [@llinery. (6.2.15)
Therefore, combining (6.2.14), and (6.2.15) with (3.6.2), we have (6.2.12). O

6.3 Global Error Estimates of the Projection

We define the standard piecewise constant space as
My = {o, € LYQ); gulr € PHT) VT € Ty}
We also define the global interpolation II¥ to the space M} as

N(d,k)

() |7 == 1 (ol ) = Z (|;|/90|dex)9

for any T' € T}, and any ¢ € L'(), that is

N(d,k)

I LYQ) 3 o = Iy = Z Z <|T|/g0|Tliidl‘> 0, € MF.

TeT, =1

Theorem 6.3.1. Suppose that the assumptions of Theorem 6.2.3 are satis-
fied. Let TI¥ be the corresponding global interpolation operator. It then holds
that, for any ¢ € W 1P(Q);

(I) if Condition 3.3.1 is not imposed,
le = Tplliaey < e > (Tl > b|05elmmy.  (6:3.)

TeTy, le|=0+1
(IT) if Condition 3.5.1 is imposed,

1_1 15} E S
lo = Mhplluey < YT Y AN ooty (6:32)

TeTy, le|=0+1

Proof. This theorem is proved in the same argument as Theorem 5.7.1. [
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6.4 Further Insight

In some case, the coefficient of (6.3.1) (or (6.3.2)) can be calculated explicitly.
Furthermore, we do not use the concept of the standard elements in this
section.

Theorem 6.4.1. Let T C R be a simplex. Let 113 : L*(T) — P(T) be the
local L?-projection defined by

1
= — / pdr Vo € L*(T).
T Jr
It then holds that
hT .
1T — @l 27 < —lelmay Yy e HY(T). (6.4.1)
Proof. For any ¢ € H'(T), we set w := [I%.¢ — ¢. It then holds that

/wdm—/ (I — @)d ’T|/<pdx|T] /gadx:O.
T

Therefore, using the Poincaré inequality (1.6.12), we conclude (6.4.1). O
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Chapter 7

Crouzeix—Raviart Interpolation

7.1 Finite Element Generation on Standard
Element

Let T c R? be the reference element defined in Sections 3.1.1 and 3.1.2. Let
F be the face of T opposite to P The Crouzeix— Rav1art finite element on

the reference element is defined by the triple {T , P , Z} as follows.
W) Pi=P'(T);

(1) £ is a set {Viti<icyw@n of N@Y linear forms {X;};<;<ywn with its
components such that, for any p € P

1

Using the barycentric coordinates {)\ ¢l . R? — R on the reference element,

the nodal basis functions associated w1th the degrees of freedom by (7.1. 1)
are defined in (5.8.14):

6i(3) = d (é - Xi(gz)) vie{l:d+1). (7.1.2)

It then holds that {;(6,) = &;; for any 4,5 € {1 : d + 1}. Setting V(T) :=
WH(T), the local operator I£" is defined as

d+1
N 1 L
ISR V(T) 5 ¢ 1SRG = Y (ﬁ[ ¢d§> 6 e P. (7.1.3)
i=1 il JF
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By analogous argument in Section 5.1, we assume that the Crouzeix—Raviart
finite elements {T, P, 3}, {T*, P* ZS} and {7, P,X} are constructed. The
local shape functions are 0; = wT (0;), 0¢ = 1/1%1(91-) and 0; = 5! (65) for
any i € {1 : d+ 1}, and the associated local interpolation operators are
respectively defined as

d+1
~ 1
]TQR V(T)> ¢ ITQRQE = E (ﬁﬁ gods) 6; € P, (7.1.4)
i=1 il JF

d+1
1
ISR V(1) 5 o0 s ISR =) (IFS| i g03d5> 0: € P, (7.1.5)
i=1 i i

d+1
1
]qu : V(T) S Y L?R(p = Z (’F‘ /F ngS) 0; € P, (7.1.6)

=1

where {ﬁz = a(ﬁi)}ie{lszrl}a {Ff = &)(E)}ie{lszrl} and {E = (I)TS(FiS)}iE{l:dJrl}-

7.2 Local Error Estimates

We present anisotropic Crouzeix—Raviart interpolation error estimates (also
see [8]).

Theorem 7.2.1. Let p € [1,00) and q € [1,00] be such that (5.5.1) with
¢ =1 and m = 0 holds. It then holds that

1550 — lway < c|T]a Z hs Vo € W2P(T), (7.2.1)

= anax] Lo(T)
11 d agp
11550 — @llay S eT777 Y b Vo € W(T).  (1.2.2)
i=1 il o(r)

In particular, if Condition 3.5.1 is imposed, it holds that

d
11 0?
1550 = plwrary < e|T|a77 Y A Sma. P © 1) Vi € W2I(T),
ij=1 LiOZ; Lp(D73(T))
(7.2.3)
11550 = @l Laery < e|T]a 7 —(po®r:) Vo € WH(T).
i=1 : LP(®75(T))
(7.2.4)
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Proof. For ¢ € W*P(T), Green’s formula and the definition of the Crouzeix—
Raviart interpolation imply that, because I$Fp € P!,

a d+1
CR CR
p)dr = I pd
AT / oz CTIA Z” / o
d+1
1 Op dp
ds = —Ldy =11},
GE: Z”T / YT o (axj)

for y = 1,...,d, where ngp) denotes the j-th component of the outer unit

normal Vector nr. Using (6.2.2), it then holds that

q
|IIQR‘P - 90|?/V1,q(T) Z H T o — )
La(T)
d q
=3 ||me (5’_90) _ <3_%0>
=1 8xj 8ZEJ La(T)
d d
11 P ||
< o7|Gim9)a Bl ,
DY BL il

which leads to (7.2.1) using (1.6.1). Furthermore, if Condition 3.3.1 is im-
posed, using (6.2.3), the following holds:

d

a q
7% = liyrary = D || 7 (F e — ¢)
j=1 J La(T)
d

=5 | 9o 9o (7.2.5)

= oz ox; La(T)
ry i ” q

< c|T| ) I (p o Prps) ,

== 01,0z Lp(@7(T)

which leads to (7.2.3) using (1.6.1).
Let o € W1P(T). Using the scaling argument, we have

1 o o
11770 = ollLay < el I750° = @\l Lairs) = [ det(A)|a [ 170 — @l Lo 7-
(7.2.6)

For any 7 € P°, from the triangle inequality and I g R =7, we have

HE"0 = Bl oy < MEHP = Dl pazy + 15 = Gll oz (7.2.7)
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Using the definition of the Crouzeix—Raviart interpolation (7.1.3) and the
trace theorem, we have

d+1
VSR = )l gty < / 16 = 21810 Loy < el — Allwuncr,
1= 1
(7.2.8)
Combining (6.2.7), (7.2.7), and (7.2.8) with (7.2.6), we have
11550 — || Lagry < C(T 7| det(A%)|a mf 16 = Do) (7.2.9)

Therefore, combining (6.2.10), (6.2.11), and (7.2.9) with (3.6.2), we have
(7.2.2) and (7.2.4). O

We have the following stability estimate of the projection IS%.
Lemma 7.2.2. It holds that, for any ¢ € WP(T),
|15 plwrnery < clelwin). (7.2.10)
Proof. Using the triangle inequality, we have

|]$R90|W1vp(T) < |I$R90 - 90|W1’P(T5) + |90|W1vP(TS)-

From (7.2.5) and (6.2.12), we have
d a9
; ax]

115%0 = eltipmy = > T

7=1 Lr(T)
d P
<c = || 1
> |7z, = celinen
Gathering the above inequalities leads to (7.2.10). O

7.3 Global Error Estimates

We define the Crouzeix—Raviart finite element space as
| {gph € L™(Q); pu|r € PH(T) VT € Ty, /[[gph]]ds =0VF € f;g} :

We also define the global interpolation I¢F : WH(Q) — V,F as follows (also
see [30, pp. 44,45] and [32, pp. 177,178])

d+1
1
(ICR )| = IR (gly) — Z (IF! / ¢|Tds) 6, VT € Tp, Vo € WH(Q),
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Theorem 7.3.1. Suppose that the assumptions of Theorem 7.2.1 are sat-
isfied. Let ISR be the corresponding global Crouzeir—Raviart interpolation
operator. It then holds that

(I) if Condition 3.3.1 is not imposed,

11 0%
o= I plwiamy < ¢ Y 1T Z il 5 —— Vi € W2P(Q),
TeTy i,7=1 v JNLP(T)
(7.3.1)
1_1 Op
o~ 1§ plliuey < e 3 171 Zh : Vo € WH(0).
TeT, "illee )
(7.3.2)
(IT) if Condition 3.3.1 is imposed,
o — I Fplwracr,)
11 0? 2p
<CZ|T| ST, ———(po ) Yo € W2P(Q),
TeTy, 1,7=1 Lp(q:.;i(T))
(7.3.3)
le = I el ooy
11 0
<e XTI Y A g (podr) v € WH(Q).
T€T, ‘ Lr(27:(T))
(7.3.4)

Proof. This theorem is proved in the same argument as Theorem 5.7.1. [J

Theorem 7.3.2. Let IF® be the corresponding global Crouzeiz—Raviart in-
terpolation operator. It then holds that

|I]?Rg0|wl,p(jrh) S Cl@‘wl,p(g) V(p c Wl’p(Q). (735)

Proof. Using (7.2.10) and (5.3.11)

Jri® ’Wlp Z 115 el Pliyray < ¢ Z Mww sc Z ’90’1;1/1@@)
TeTy, TeTy, TeTy,
which leads to (7.3.5). O
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7.4 Further Insight

In some cases, the coefficient of (7.2.1) (or (7.2.3)) can be calculated explic-
itly. Furthermore, we do not use the concept of the standard elements in this
section.

Theorem 7.4.1. Let T C R be a simplex. Let IS® : HY(T) — PYT) be
the local Crouzeiz—Raviart interpolation operator defined as

d+1
1
IR H(T) 3 o Ifp = <|F’ / gpds) 0; € P.
i=1 il JF;
It then holds that
h
17" — ol < ?T|90|H2(T) Yo € H*(T). (7.4.1)

Proof. By the same argument as the proof of Theorem 7.2.1, we have, using
(6.4.1).

d 2

0
1I9%0 — ol = Z a—(ITC% —9)
L2(T)
2
( ) <8$1> L2(T)
2 d 2
( > JZ: ‘ 9zi0%; || 127
hr
—\ |90|H2(T)7
which conclude (7.4.1). O
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Chapter 8

Morley Interpolation

8.1 Finite Element Generation on Standard
Element

Any dimensional Morley finite element is introduced in [88].

Let T C R? d € {2,3}, be the reference element defined in Sections 3.1.1
and 3.1.2. Let ﬁ’i, 1 <i < d+1, be the (d — 1)-dimensional subsimplex of
T without P; and §Z~7j, 1 <i<j<d+1, the (d—2)-dimensional subsimplex
of T without ]32 and ]3] The d-dimensional Morley finite element on the
reference element is defined by the triple {f, p , ﬁ» as follows.

(1) P:=P*T);

(IT) $is a set {Xihi<icntaz of N(2) Jinear forms {)A(E’lj)}lgi<j§d+1u{>252)}1§i§d+1

with its components such that, for any p € P,

1
) = —— [ pds, 1<i<j<d+1, (8.1.1a)
‘Sij| Si,j
@ . L[ OD . :
Xi (p) = —= —ds, 1<i1<d+1, 8.1.1b
0= | o (8.1.1b)
where % = vz -V, and vg is the unit outer normal to }?’Z c 8T. For
d=2, )251]) (p) is interpreted as

0y =p(B), k=1,2,3, k#i,j.

It is shown that for the Morley finite element, 5 is unisolvent (see [88, Lemma
2]). The nodal basis functions associated with the degrees of freedom by
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(8.1.1) are defined by

(1) . V) )
0,7 =1—(d—=1)(N+ ) +d(d— 1)\

A d)\ — 2
—(d—1)(VA)TVA }: (d 1<i<j<d+1, (8.1.2a)
: Ai(dX; —2
99::—1—7—2, 1<i<d+1, (8.1.2b)
2|V e
where S\Z :RY - R, i=1,...,d+ 1 is the barycentric coordinates on the

reference element. It then proven in [88, Theorem 1] that, for 1 < i<j <
d+1,

X0y = 0udje, 1<k<t<d+1, xP@0)=0, 1<k<d+1,
(8.1.3)

and, for 1 <i<d+1,

X0y =0, 1<k<t<d+1, x20P)=6n, 1<k<d+1.

(8.1.4)
The local interpolation operator I 7]‘4 is defined by
M . 2.1/ A M D
IZ W2 (T)>¢p= 179 € P, (8.1.5)
with
Me= > VY kP (8.1.6)
1<i <j§d+1 1<i<d+1
It then holds that 1%4]3 = p for any p € p and, for any ¢ € W2’1(f),
UJIEe) =1 @), 1<i<j<d+l, (8.1.7a)
e = (@), 1<i<d+1 (8.1.7b)

By analogous argument in Section 5.1, the Morley finite elements {T , 15, i}
and {T°*, P*, ¥*} are constructed. The Morley finite element {7, P*, ¥°} is
thus defined as
7“—¢%ﬂ-
—{() '(p); p € P; R
= {{Xz‘hgigzv(dq?), Xi = Xi(¥*(p%)),Vp® € P*, x; € L}
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The local shape functions are

0" = ()70, 1<i<j<d+1, o8P = @) 0P), 1<i<d+l

i»j 7;’]' (]
The associated local Morley interpolation operator is defined by
L WHHT?) 3 ¢° = M € P?, (8.1.8)

with, for any ¢°* € W2(T*),

XUty = x50 (e), 1<i<j<d+1, (8.1.9a)
XU = (e, 1<i<d+1, (8.1.9b)

Where {FZS = q)s(ﬁ;')}ie{lzd—i-l} and {Sij = ¢S(§i,j)}1§i<j§d+l~
Furthermore, the Morley finite element {7, P, X} is thus defined as

T = &ps(T7);
P ={(¢rs) "' (p°); p° € P°};
Y= {{Xi}lgz‘gN(dﬂ); Xi = X; (Wrs(p)),Vp € P, xj € ¥°}.

The local shape functions are
0 =y (05Y), 1<i<j<d+1, 07 =¢ple?), 1<i<d+1.
The associated local Morley interpolation operator is defined by
WP T s o IMp e P, (8.1.10)
with, for any o € WY(T),
XU ) =X (9), 1<i<j<d+1, (8.1.11a)

(1) = xP(e), 1<i<d+1, (8.1.11b)

i

Where {Fz = (I)Ts (Fis)}ie{l:d—i-l} and {Si,j = ©TS(SZj)}1§i<j§d+1'

8.2 Local Error Estimates

This section gives the Morley interpolation error estimates in R%.

Lemma 8.2.1. Let T C R? be a simplex. Let Fy,, k=1,...,d+1, be a face
((d — 1)-dimensional subsimplex) of T. Denote by v = (vy,...,vq)T the unit
normal of Fy, by Si,...,Sq all (d — 2)-dimensional subsimplezes of Fy, and
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by n¥) the unit out normal of Se. For any v € CY(T) and any constant vector
£ e RY, setting T := & — (€ - v)v, it holds that T - v = 0 and

/Fk@-vw:

Note that the (d — 2)-dimensional subsimplezes Si,...,Sq are viewed as the
boundary of an (d — 1)-simplex in (d — 1)-dimensional space.

M=

ov
T-n“)/v+ £-v — 8.2.1
2 5 (& v) v (8.2.1)

Proof. We follow [88, Lemma 1].
Let v € CY(T) and ¢ € R We easily have

Trv=E&v—({-v)v-v=0.

Therefore, 7 is the tangent vector of Fj. Furthermore, it follows that, using
the Gauss—Green formula,

/F<5~v>v= G IR I )

_ g/&(rw)wﬁk(ey)%.

Because the quantities 7-n¥) and £-v are constants on Sy and Fj,, respectively,

we have the desired result (8.2.1). O
Corollary 8.2.2. We keep the notations of Lemma 8.2.1. Let v € CY(T) be
such that
0
/ v =0, v, (8.2.2)
Sy Fy, aV
foranyl=1,...,dand k=1,...,d+ 1. It then holds that
0
/ Y20, i=1,...,d (8.2.3)
P, J;

Proof. Let e1,...,eq € R? be the canonical basis. Setting £ := ¢; in (8.2.1),
we have the desired result (8.2.3) under the assumptions (8.2.2). O

Theorem 8.2.3. Let p € [1,00) and q € [1,00] be such that (5.5.1) with
¢ =1 and m = 0 holds. It then holds that, for any ¢ € W3?(T)NC(T),

Py

_— 24
Ori0x;0xy, (8.2.4)

d
11
|I¥§0 - S0|W27q(T) < C|T|q P Z h;
/L'7.j7k:1

LP(T)
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In particular, if Condition 3.3.1 is imposed, it holds that, for any ¢ €
W3»(T)NCYT),

d 3
11 0
1130 — ¢lwaary < c|T|a > ————(p o Prs) ,
1;1 O0z;0;0y, LP (@3 (T))
(8.2.5)

Proof. Let ¢ € W3P(T)NCHT). We set v := IMp — ¢. From the definition
of the Morley interpolation operator (8.1.8), we have

/ vds =0, 1<i<j<d+1, /—dS—O 1<:<d+1.
Si.

Therefore, Corollary 8.2.2 yields

ov

0, i=1,....d+1, k=1,....d (8.2.6)
F; Oxy,
From (8.2.6), it follows that, for 1 < j, k < d,

d+1

—ds =0,
/ijaxk Z,ZVT]/ 8:des

which leads to
o? 1 ot D¢
IYe) = — dz = 11
axjﬁxk( 7 ¢) T| J7 00z v T <8xj8xk) ’

because 75— a:c = (IMp) € PYUT) for 1 < j,k < d.
Using (6 2.2), it holds that

d q
1170 = @l ®—¥)
W kz 8:1:]855 La(T)
= 5’x38xk Oz ;0xy, La(T)
d
L 9% q
< (q p a|\l_~ r
< T ZZh Or;0x;0xy, Lo( ’
J,k=11 (1)

which leads to (8.2.4) using the Jensen-type inequality (1.6.1).
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Furthermore, if Condition 3.3.1 is imposed, using (6.2.3), the following

holds:
d

0% ¢ |
s (25 (25
7 ¢ 90|W 4(T) j;l Ox;0xy, OOy, La(T)

d d a

< of7|(i=3)e A |5 (p 0 Orv) )
]kzl ZZI ox; 3% Oxy, Lp(D74(T))

which leads to (8.2.5) using the Jensen-type inequality (1.6.1). -

8.3 Global Error Estimates

We define the Morley finite element space by

VhM = {gph € LQ(Q)7 QDh,|T € P2(T) VT € Th’ / [[%]} ds = O)
F al/ F

VF € Fi, the integral average of o, over each (d — 2)-dimensional
subsimplex of T" € T}, is continuous},

Vil .= {on € V;M; degrees of freedom of ¢, in (8.1.1) vanish on 9Q}.

We also define the global interpolation IV : W2'(Q) — VM (or IM .
Wl (Q) — VM) as follows.

(I o) = I} (plr) VT € Ty, Y € W>H(Q).

Theorem 8.3.1. Suppose that the assumptions of Theorem 8.2.3 are satis-
fied. Let IM be the corresponding global Morley interpolation operator. It
then holds that, for any ¢ € W3P(Q) N C(Q),

(I) if Condition 3.3.1 is not imposed,

Mo — amy) < T| hi 8.3.1
RIS ST o) M = 2 Pyt
TeT), (1)
(IT) if Condition 3.5.1 is imposed,
B~ o <e 3115 3 o2 ponn
TP~ Plwat,) =€ e P @ o Prs )
ret, iy 107050y Lr(@5k(r)
(8.3.2)

Proof. This theorem is proved in the same argument as Theorem 5.7.1. [
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8.4 Further Insight

In some case, the coefficient of (8.2.4) (or (8.2.5)) can be calculated explicitly.
Furthermore, we do not use the concept of the standard elements in this
section.

Theorem 8.4.1. Let T C R? be a simplex. Let I3 : H*(T) — P*(T) be the
local Morley interpolation operator defined as

I HX(T) 3 ¢ — IMNp e PAT),
with

x§,1j)(1%4<p)=><§,1}(90), 1<i<j<d+1,
X (I 0) = xP(p), 1<i<d+1.

for any p € H*(T). It then holds that

hr
17" 0 — pl2r) < —\w\mm Vo € H*(T). (8.4.2)

Proof. By the same argument as the proof of Theorem 8.2.3, we have, using
(6.4.1).

d
1120 — olieay = D ‘
J,k=

d

2

2

( )—( o)
= Oxj0xy, Oxj0xy, L2(T)

hT 2 Y 82@ 2 hT
s(7) )3 = (") ot
G k=1 HY(T)

Oxj0xy,
which conclude (8.4.2). O

2
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Chapter 9

Raviart—Thomas Interpolation

9.1 Finite Element Generation on Standard
Element

Let T C R be the reference element defined in Sections 3.1.1 and 3.1.2. The
Raviart-Thomas finite element on the reference element is defined by the

triple {f, ]3, 2/]? as follows:
(I) P = RT’“(?);

(1) is a set {Xi}1<icnrr) of NUET) linear forms with its components such
that, for any p € P,

/Ap - fpgrds, Vg € PR(F), FcoT, (9.1.1)

F

[ 5+ sds, Vs e P (9.12)
T

shere s denotes the outer unit normal vector of T on the face . Note
that for £ = 0, the local degrees of freedom of type (9.1.2) are violated.

For the simplicial Raviart-Thomas element in R¢, it holds that

k+1)(k+3) ifd=2,

Tk+1)(k+2)(k+4) ifd=3. (9-1:3)

dim RT*(T) = {

The Raviart-Thomas finite element with the local degrees of freedom with
respect to (9.1.1) and (9.1.2) is unisolvent; for example, see [18, Proposition
2.3.4].
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We set the domain of the local Raviart—Thomas interpolation to V(T) :=
WeP(T)¢ with sp>1, p € (1,00) or s = 1, p = 1; for example, see [31, p.
188]. The local Raviart-Thomas interpolation ]ng : V(T) — P is then

-~

defined as follows: For any v € V(T),

[ (IR0 — 4) - hpppds = 0 Vpy, € PH(F), FcaT, (9.1.4)
F
and if £ > 1,
/f (IET"5 — §) - Gooydi = 0 Vi1 € P YD) (9.1.5)
In particular, when k& = 0, the degrees of freedom by (9.1.1) are describe as
Xi(P) = /A pripds Vpe RTUT), Vie{l:d+1}. (9.1.6)
o

The nodal basis functions associated with the degrees of freedom by (9.1.6)
are defined as, for any ¢ € {1:d + 1},
- 1
0 .

= — (2 —P), &= (3,...,5)7. 9.1.7
d\T!( ) (21 a) (9.1.7)

Indeed, 0; € RT*(T) and X;(6;) = &;; for any i,j € {1 : d+ 1}. The local

~

Raviart—Thomas interpolation IT}?TO : V(T) — RT°(T) is then described as

d+1
I V(T) 30— IE0 =) ([ b ﬁﬁidg) 0; € RT°(T).  (9.1.8)

=1

Let @7, &L and @ be the affine mappings defined in Definition 3.4.1. Let
U W, and ¥ be the Piola transformations defined in Definition 3.4.2. Let
T* € T satisfy Condition 3.2.1 or Condition 3.2.2. The triples {T', RT*(T), %}
and {T%, RT*(T?), %%} are defined as

T =&(T);
RTH(T) = {¥(p); p € RTH(T)}; o
Y = {{Xiheicyvan; X = X(V(D)), VP € RT*(T), x; € £};
and
T° = &(T);
RTMNT*) = {¥(p); p € RT™(T)};
¥ = {{Xf}lgz‘SN(RT); Xi = Xz‘(cl}_l(ps))vv]?s S RTk(TS)JZi S i}
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The triples {T, RT*(T),S} and {T*, RT*(T*),%*} are then the Raviart—
Thomas finite elements. Furthermore, let

IF™ . v(T) — RT*(T) (9.1.9)
and
IET" . V(T) — RTH(T?) (9.1.10)

be the associated local Raviart-Thomas interpolation defined in (9.1.4) and
(9.1.5), respectively.

For any T' € T}, let ®ps be the affine mapping defined in (3.4.2). Let
Urs : V(T®) — V(T) be the Piola transformation defined in (3.4.5).

For the Raviart-Thomas finite element {7, RT*(T*), %%} with k € N,
we define {T, RT*(T), %} as

T = &p(T°);
RTH(T) = {¥r:(p*); p* € RTH(T*)};
Y= {{Xi}1§i§N<RT>; Xi = Xf(‘lf;sl(p)),Vp € RTk(T)>Xf € ZS}-

The triple {T', RT*(T), X} is then the Raviart-Thomas finite element. Let
IET" . V(T) — RT*(T) (9.1.11)

be the associated local Raviart—-Thomas interpolation defined in (9.1.4) and
(9.1.5), where V(T) := W*P(T)? with sp>1,p€ (I,00) or s=1,p= 1.

Proposition 9.1.1. Let p € [1,00). For any o € W(T)® with v := U(d),
it holds that

\p(ngk@) = [FT" (W),

that is, the diagrams

vl F- G- ~
V(T) =2 V(T%) 25 V(T) X5 v (T)
P
P— P ———>P—>P
s Tt Vb

commute.
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Proof. We extend the proof of [17, Lemma 3.4]. Recall that ¥ = Uz oWoW.
Let v € WHP(T)4 and F; C 9T, i € {1 : d+ 1} be a face of T. We then check
that U~ 'IET"(Ud) satisfies the conditions defining IT}?Tk”&,

[(Wllﬁk(w)-m)ﬁkdﬁ: / (6-m)peds Vi, € PER),  (9.1.12)

where F; = ®~1(F;), and if k > 1,

/A(\I/‘llﬁTk(\If@))-(jk_ldi :/@-qk_ld:f; Vi1 € PFH (D)L (9.1.13)

T T

Given f, € P*(F}), we have

/A(@ 7 )prds :/ (vo - 1) prds. (9.1.14)

Fi Fi
Indeed, this follows from (3.4.11) by a density argument. However, we cannot

apply (3.4.11). Because the function obtained by extending py by zero to the

other faces of T is not in Wr? '(8T) and therefore, it is not the restriction to
the boundary of a function ¢ € W' (T).
We take a sequence of functions ¢; € C§°(F;) such that ¢; — py, in L¥ (F}),

and because the extension by zero to 07" of g; is in W (0T), there exists
p; € WP (T) such that the restriction of @, to I is equal to ¢;. Hence,

applying (3.4.11),

F; F;

Because v-n; € LP(F;), we can pass to the limit to obtain (9.1.14). Similarly,
from the definition of the Raviart—Thomas finite element interpolation and
(9.1.14),

F; F;

= / (v-n;)prds = / (0 - 1) prds,
which is (9.1.12).
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For any G,_1 € P*1(T)?, we have

[T ) dsdi = [ (0 () (0 )i
T T

- / (IFT) - gos | det(A)|da
T

= / v - qp_1| det(A)| dx
T

- / (U6) - (WGr)| det(A)|dz

:/\'U'ledm,
T

which is (9.1.13). O

Lemma 9.1.2. Let k € Ny and p € [1,00). Let 115 : LY(T) — P*(T) be the
L2-orthogonal projection defined as

/(H%@ — )prdz =0 Vp, € PH(T).
T
Then, the following diagram commutes:

Wi(T)! A [1(T)

K k

RT*(T) —~P*(T)
In other words, it holds that
div(ZF™ v) = Ik (dive) Vo € WHY(T)%. (9.1.15)

Proof. The proof is found in [31, Lemma 16.2]. O

9.2 Remarks on the Anisotropic Raviart—Thomas
Interpolation

In the proof of Theorem 3 in [47], we first proved the following lemmata in
[47, Lemmas 6 and 7].
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Lemma 6. Let  be such that 0 < ¢ < k. It holds that, for any ©

(01,...,09)7 € LAT) witht = (31, ..., 02)" = Vo and w = (b, ..., 0a)" €
HAY (T with @ = (W, . .., 10q)7 = Vb,
) 1/2
H?’}HLQ(T)d E 1 (Zz lh’ || HLQ(T )
Ep 1< <d{ + 7 (9.2.1)
/41 ? 2
HAH1(T)d (Zz 1 hz | H‘*l( ))
Proof. From the definition of the Piola transformation, for i = 1,...,d,
1 1
)= sy M i) = @)
Let 8 be a multi-index with |G| = ¢+ 1. We then have
1 1
O2w;(%) = ———hy (9w h P - h P = ————h;(8,)h P
det(A@) det(A)

We here used #; = A;'Z
For any & € L2(T)?, from the definition of the Piola transformation, we
have

1 -~ 1
= | ADy2. = N Tp? '
170y = oy 1A e = |ddAWM§: 2l

Meanwhile, we have, for any w € H“l(T)d,

d

[ en ) Z Wil e 7y Z > |07 @[3

=1 i=1 |B|=t+1

B Bay2(| 98~
- §j S R0

=1 |Bl=t+1

1 218 2 B 1|2
Z—Ad))‘lgljlgd{ }Zh D[40 Py

| det (Al =1 |fl=t+1

U

These inequalities conclude (9.2.1).

Lemma 7. Let ¢ be such that 0 < ¢ < k. For any v € Lz(f)d with v® = UP
and W € HHY(T)? with w® := Vb, we have

|77\|L2(T)d

’US 2(7Ts H s
1o llz2ye _ paHr 7 (9.2.2)

|U}S|Hé+1(Ts)d - hs U~J|HZ+1(1~'*)d

121



2€+2

where CP? = 2“716'”“, and CP3 =
independent of T and T.

=—Cv, where C" is a constant

Proof. Using the standard estimates in [30, Lemma 1.113], we easily get

v 2]
Wl guee (1 2130 )) 1A DL, 25, (9023)
ey @] 71 7y
Therefore, (9.2.2) follows from (9.2.3), and (3.6.1b). O

For any v* € H'(T*%)4, using (9.2.1) and (9.2.2) yield

1/2
d 2| ( TRT* 4
RT s s . - P —
H[Ts v —v ||L2(Ts)d < CPvd HTs hTs (Zz:l th<IT ) UZHLQ T))

|US|H1 s)d - hTS d ~ 1/2
) (Zz‘:l h12|'UZ ?{1(?))

If the component-wise stability of the Raviart—Thomas interpolation on the
reference element T°

k .
IUFT0)i = 0ill pogpy < clOilgrzy, i=1,....d (9.2.4)

holds, then the target estimate

Hps
1T 0% — v°|| 2oy < e
hps

S
v |H1(Ts)d

is obtained. However, the estimate (9.2.4) generally does not hold (see [1,
Introduction]): that is, we cannot apply the Babuska and Aziz technique
[13]. We provide a counterexample of [1, Introduction].

We consider the simplex T C R? with vertices P; := - (0, 07, Py := ({1, 0)7,
and P; := (0,1)7. For 1 < i < 3, let F} be the face of T opposite to P;. The
Raviart—Thomas interpolation of v is defined as

3
Fo=3%" ([ o - fzid§) 6, € RT",

i=1 F;

where

Setting 0 := (0,%3)7 yields
1

0.
IIJA?T )
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This implies that (];AfTO@)l — 91 # 0 for any # € R? and the following
component-wise stability does not hold:

0, .
||(IZ§T U)l”L?(f) = C|U1|H1(f)'
In other words, (IgToﬁ)l depends on both ¥; and ¥y. Meanwhile, setting
b= (0,897 yields IF6 = 1(0,1)".
A key observation is that if 7 := (0,¢(Z;))7, then (IgTOf’)l = 0. In the

next section, we introduce component-wise stabilities of the Raviart—Thomas
interpolation on the reference element by [1].

9.3 Component-wise stability of the Raviart—
Thomas interpolation on the reference el-
ement

9.3.1 Two-dimensional case

Let T C R2 be the reference triangle with vertices A; := (1,0)7, Ay =
(0,1)7, and A3 := (0,0)” with Ny := (=1,0)", Ny := (0,—1)7, and N3 :=
%(1, 1)T. For 1 < i < 3, let E; be the edge of T opposite to A;.

We use the same notation for a function of some variable than for its
extension to 7" as a function independent of the other variable. For example,
f(&2) denotes a function define on E; as well as one is defined in T'. Further-
more, the same notation is used to denote a polynomial p; on a edge and a
polynomial in two variables such that its restriction to that edge agrees with
Pr. For example, for p, € PH(Ej3), we write pi(1 — &2, 22).

Lemma 9.3.1. Let f; € LP(E)), i € {1,2}. If
W) = (fi(@2),0)7, 8(&) = (0, fo(#1))",
then there exist polynomials §; € Pk(li-), i € {1,2}, such that
IE™ i = (§u(#2),0)7,  IET"6 = (0,G2(1))"

Proof. The proof is provided in [1, Lemma 3.2] (also see Lemma 9.3.3) for
the case d = 3. The estimate in the case d = 2 can be proved analogously. [

Lemma 9.3.2. For k € Ny, there exists a constant ¢ such that, for all

~

U = (ﬁl, ﬁg)T S Wl’p(T)2,
kL . ST .
||(];1F%T U)iHLp(f) <c (HUz‘HWl,p(f) + HleUHLp(f)) ;ot=12 (9.3.1)
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Proof. The proof is provided in [1, Lemma 3.3] (also see Lemma 9.3.4) for
the case d = 3. The estimate in the case d = 2 can be proved analogously. [

9.3.2 Three-dimensional case: Type i

Let T C R3 be the reference triangle with vertices A = (1,0,0)T, Ay =
(0,1,0)7, A3 := (0,0,1)T, and A4 := (0,0,0)T with Ny := (=1,0,0)T, Ny :=
(0,—1,0)T, N3 := (0,0, —1)T, and N, := (1,1, 1)T. For 1 <i < 4, let E;

V3

be the edge of T opposite to fAlZ

As two-dimensional case, we use the same notation for a function of some
variable than for its extension to 7" as a function independent of the other
variable. For example, f(&s,%3) denotes a function define on F; as well as
one is defined in 7. Furthermore, the same notation is used to denote a
polynomial pj on a edge and a polynomial in two variables such that its
restriction to that edge agrees with py. For example, for p, € P*(E,), we
write pg(l — &g — T3, Tg, T3).

Lemma 9.3.3. Let k € Ny. Let f; € LP(E;), i € {1,2,3}. If
ﬂ(i’) = (fl (5%27 '@3)7 07 O)T7 ﬁ(i.) = (Oa fQ(jla i'3>7 O)Ta
b (#) = (0,0, fs(d1, )",
then there exist polynomials §; € Pk(Ei), i € {1,2,3}, such that
k . N ~ N k A ~ ~ ~
Ij\}?T u = (QI (IQa Ig), 07 0)T7 Irf]?T v = (Oa (]2@17 1’3), O>T7
IE™ 0 = (0,0, G5(21, 22))7.

Proof. We follow [1, Lemma 3.2]. Because diva = 0, from the definition of
the Raviart-Thomas interpolation and the Green’s formula, we have, for any
ﬁk S Pk (T),

0= [ prdivadi

T
4

=3 [ @uF-ads— [ (@ Dopua
i=1 Y Ei

T
4 -~ AN
=3 [ @R G yds - [ (- )i
i=1 7 Fi

T

_ /A prdiv (157" ) da,
T
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which leads to (TR/([ TI?TIC @) = 0. Therefore, form the property of the Raviart—

Thomas interpolation, Ingﬁ € P(T)3, e.g. see [17, Lemma 3.1].
Using (9.1.4) for i = 2,3, and 4y = u3 = 0, we have

[ (I @)ppds = 0 Vpy € PHE), i=2,3
E;

Setting py = (IR 0);, we obtain that (]RTk )| g, = 0 for i =2,3.

For k = 0, because IJI?T @ € PO(T)? and (]RTO )ilg, = 0 for i = 2,3, it
holds that (]gToﬁ)i =0in 7T fori = 2,3. This implies that the first result
holds. R

For k > 1, there exists a polynomial #; € P¥~1(T), i = 2,3, such that
([%%Tkﬁ)i T f‘ Using (9.1.5) for ¢ = 2,3, and @, = 43 = 0, we have, for
i=2,3,

(IRTk )ifidi = 0. as gg_1 == (0,7;,0)" in (9.1.5),

q\

which leads to

[ (I%?kazl)?di = [ Ziif 7 dE < | Tl| foo 7 /A &2di = 0.
T T T

Note that #; > 0 in T for i = 2,3. We hence conclude that (Ingql)i =0 in
T fori = 2,3.
Because div(/ %{T@) = 0, it follows that

O(IFT" @),

= 0.
014

This means that (7% RT"11) is independent of 7.
The other two results are analogous. O

Lemma 9.3.4. For k EANO, there exists a constant ¢ such that, for all
0 = (g, G, u3)T € WIP(T)3,

k .
H(IRT (OF ||Lp <c <||“zHW1p @ T HdlquLp(T ) 1 =1,2,3. (9.3.2)
Proof. We follow [1, Lemma 3.3|. From Lemma 9.3.3, if

V= (ﬁbﬁ? — QQ(.@l, 0, 52'3), Us — ﬁ?,(i)la *%27 0))T?
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it holds that

IR G = IR G — TET"(0, dy(i1, 0, 23), 0)T — IET*(0,0, (i1, 72, 0)) 7,

k A k A
and thus, (IF770); = (IF" a),. 0
Let k = 0. Because 0a|5, = 0 and 03], = 0, I£7"0 is determined by the
equations

IET°6),ds = | ,ds, 9.3.3a
_ (7 _

E E
[E (IET"0),ds = 0, (9.3.3b)
IET)5ds = 0, 9.3.3¢
~ T
E:

{UIET%), + (BT 0)y + (IE0)3}ds = / (0, + Dy + 03)d3.  (9.3.3d)

Ey E4

From the divergence formula and the definition of ©, we have

— 1
/div@d:%:/ b-nds = — (@1+ﬁ2+@3)d§+/ b - hds
7 oF V3 /5, o7\ B,

(01 + 09 + 03)dS + /A 01dS5. (9.3.4)

Eq

1
V3 /5,

Because i, = oy, divii = divd, (]gTOﬂ)l = (IQIA?TO@)I, (9.3.3), (9.3.4), the
definition of the Raviart—Thomas interpolation, and the trace theorem, we
have

0,
01 ey

/ b+ Nyds
B,

| g
01ds + %/A (01 + g + 03)d3
Ey

~—~

0.
I(ZF" @)1l oy

1@ oy

< ¢ (lirllyro) + 4Vl yiz))

which is the desired result forAk: = 0.
Let k > 1. Let ¢; € P*X(T), i = 1,2, be such that

ﬁ(ﬁzﬂrl - i’i+1di)ﬁk,1diff - O Vﬁk,1 € Pk71<f), 1= 1, 2. (935)
T
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Note that there exist ¢; € 77"‘_1(?), i = 1,2. Indeed, we can prove uniqueness
(and therefore existence) of solutions of the linear systems.
We set

W = (Dy, Dy — £2G1, O3 — £3Ga)" .
Because (0, 2261, 23G2)7 € RT*(T), it holds that

RTk RT* - RT* s o~ oa A N\T RTk ~ s s oA AT
If w:]f U_If (0, Z2G1, T3G2) :If 0 — (0, 22G1, T3G2)",

and thus, (I%%Tku?)l = ([%%Tk@)l, therefore (I%%Tkﬁ)l = ([ngw)l.

Because |z, = 0, w3]g, = 0, and (9.3.5), Ij@Tkﬁ) is determined as follows:

/A (J;ET’“w)ﬂakdé — [ i peds  Vpr € PHEY), (9.3.6a)

El El

/A (J;L?T’“w)Qﬁkdé =0 Vpp € PHE,), (9.3.6b)
Es

/A (IzifT’“w)gﬁkdé =0 Vpp € PHE,), (9.3.6¢)
E3

AU @)+ (U w) + (T )3} pds
Ey

_ [ (i + b + ) peds Vi € PH(EY),  (9.3.6d)
Ey

[ (]%?Tkw)lpk_ldi = [ Wy pro1di Vi, € PFYT), (9.3.6¢)

T T

[ (I @)yprrdi =0 ey € PH(T), (9.3.61)
T

[ (IE" @)3pp_1di = 0 Vpp_y € PFY(T). (9.3.6g)
T

For 7, € P*(T), using (9.3.5), the Green formula and the definition of W
yields

/ diviipds = / (W - 7)) Fdd — / (W - V)ydd
7 of 7

(m+@+%Mﬁ—/
B T on

(9.3.7)

S . Oy
wireds — | Wy dz.
19)

A

1
- V3 Ja
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Furthermore, we have
divid = dive — div(0, 261, £362)T = divii — div(0, &6y, 2362)T.  (9.3.8)

Because @y = 1y, (I87"0), = (I87")y, (9.3.6), (9.3.7), (9.3.8), the definition
of the Raviart—Thomas interpolation, and the trace theorem, we have

k. kA
ICE @ill oy = ICE @y
/wldﬁz
T

1
<c /@Dd§—i——/ Wy + Wy + W3 )ds
(E v RCEERS

<c <||@1||W1,p(f) + ||diva“LP(f) + |[div(0, 572@17f3@2>T”Lp(f)> :

+

To show (9.3.2) for i = 1 is that there exists ¢ such that
v 0, 221, 35@2) oy < € (Inllyprogm + 10Villz ) - (9.3.9)
For any §, € P¥(T), from (9.3.5) and the Green formula, we have
0= /T;{(Ov Uy — TGy, U3 — 553@2)T ' 6}ékdﬂf?

= | {(0,05 — Z2G1, 03 — Z3G2)" - N} 5pdS

oT
T ~ A A A ~ ANT A -
—/Ale(O,UQ—I'qu,Ug—ZL'gC_IQ) Sdz.
7

Setting
8h(2) 1= (1 — &1 — &9 — &3)bp_, tpy € PPYD),
it holds that

/Jl — By — &y — 3)div(0, Dy — Zady, O3 — B3G2) e 1dd = 0,
T
that is,

/A(1 — By — &y — d3)div(0, Dy, 03)TEy_ 1 d
T

_ / (1 &y — &g — £3)AIV(0, o, B3da) T Eerd,
T
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because § S = 0 on E4, ( Vg — .TQ(h)TLQ =0on 8T\E4, and (A3 - Zi’g(jg)ﬂg =0on
(‘3T\E4 Therefore, setting tx_1 := d1v(0 %91, 23G2)T, and using the Holder
inequality, we have

‘ —

diV(Oa Taqn, 52’3(?2)

2 —_
T </1—A—A—A div(0, 2241, #3G2)7 |2 di
P f( Ty — @y — 3)|div(0, 221, £3G2)" [*d

<cfl =2 =iy - Jif’»”yxv(f)||diV(Oa@27{’?»)THLP@)||diV(Oa352(217 i3qA2)T||Lp’(T)'

Note that 1 — 27 — 23 — 23 > 0 in T. Because all the norms on Pk_l(f) are
equivalent, we obtain

’ o~

AV (0, 22, d5d)” |

Tiv (0 5o )T
.~ cl|div(0, D2, 03)" || 1o 7y (9.3.10)

Observing that d/i:f((), g, 03)T = d/i:f((), ty, u3)T, and

v (0, a2, @)™ || 1y < ldival ey + Idiv(@, 0,0)7]] 1z
< divall oy + 1aallywro ),
the target estimate (9.3.9) follows from (9.3.10).

By analogous argument, the estimates for (ITI?Tkﬂ)Z-, 1 = 2,3, can be
proved. Il

9.3.3 Three-dimensional case: Type ii

Let T C R3 be the reference triangle with vertices A; := (1,0,0)7, A, =
7=

(1,1,0)7, Ay := (0,0,1)7, and Ay := (0,0,0)” with N; := 55(—1,1,0)7,

N, := (0,—1,0)7, N3 := (0,0, —1)", and N, := 2(1,0,1)7. For 1 <i <4,

let E be the edge of T opposite to ﬁl and with E; the projection of El onto
the plane given by #; = 0.

Lemma 9.3.5. Let k € Ny. Let f; € LP(Ey), and f; € LP(E;), i € {2,3}. If

A

W(@) = (fi(@s,23),0,0)T,  0(2) = (0, folir, #5),0),
W(7) = (0,0, f3(dy, @2))7,

then there exist polynomials ¢ € P*(E,), and §; € Pk(Ei), i € {2,3}, such
that

I = (41(32, 23),0,0)7,  IF""6 = (0, Ga(1, ), 0)",
IE™ 40 = (0,0, Gs (i1, 42))"
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Proof. We follow [1, Lemma 4.2]. The proof is similar to that of Lemma
9.3.3. We prove the second equality. The other two follow in an analogous
argument.

Because divi = 0, from the definition of the Raviart-Thomas interpo-
lation and the Green’s formula, we have le([,ﬁTk ) = 0. Therefore, form

the property of the Raviart-Thomas interpolation, Izika@ c Pk (T\)g’ Using
(9.1.4) for i = 3, and 93 = 0, we have

/A (IET"0)3prds = 0 Vpy, € PH(Es).
Es

Setting py, : ([R )3, we obtain that ([RTk )slg, = 0.
Let k = 0. Because Ij@TO@ e PYT)? and (IRT )3z, = 0, it holds that
([T]?TO'ZA)>3 —=0in 7. Using (9.1.4) for i = 4, and 4, = 03 = 0, we have

{UIET ), + (IE0)3}ds = 0,

Ey

~

which leads to (IRTO )ilg, = 0. Tt then holds that that (IRT 0);y =01in T.
This implies that the second result holds.
Let £k > 1. As in the proof of Lemma 9.3.3, we obtain that (Ing@)S =0

in 7. Using (9.1.4) for i = 4, and v, = 03 = 0, we have
AUF 01+ (I 0)s}inds = 0 ¥ € PHEW),
4
which implies that {(Ing@)l + (]ng@)g}hfh = 0, and hence
(BT 0)y + (IR 0)3 = (1 — &y — d3)F
for some 7 € Pkil(f). Using (9.1.5) and 0; = 03 = 0, we have
[{(Jng@)l + (IE" 0)3}rdi = 0. as Gyy = (7,0,7)" in (9.1.5),
T
which leads to
/A {(IET"0), + (1B 0)3}2di = /A (1 — & — &3)%2di
T T

<1 = a1 — @3l oo /f(l — &1 — 23)P%di = 0.
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Note that 1 — & — &3 > 0 in 7. We hence have ([;Tk@)l - (];Tk@)g’ =0 in
T. Because we know (I;Tk@)g = 0in 7, we conclude that (];@Tk@)l =0in 7.

Because (fi?/([%kaﬁ) =0, it follows that

O(IET" o
oM 0
8[L’2
This means that (I g‘Tk@)g is independent of 5. O

Lemma 9.3.6. For k € Ny, there exists a constant ¢ such that, for all

A~

U = (ﬁl, ﬁ/Q, ’llg)T € Wl’p(T)g,

RFT ~ 8ﬁ2 8123
||(Irf Tu)i“Lp(f) <c <||U1||W1,p(f) + ‘ 8_:132 . ’ D75 Lp(f)) , (9.3.11a)
ko . A .
||(I$T U)z‘HLp(T) <c <||Uz‘||W1,p(T) + ||d1VU||Lp(T)> , 1=2,3. (9.3.11b)

In particular,

3
k. N
ICE @)l oy < € (H“i”wwm + D

J=Lj

8Uj

3.75]-

, 1=1,2,3.
Lr(T)

(9.3.12)

Proof. We follow [1, Lemma 4.3]. We prove the estimates for ¢ = 1,2. The
other one follows in an analogous argument.

Case for 1 =1

From Lemma 9.3.5, if
0= (g, Gy — (21,0, 23), Gz — U3(21, 2,0))7,
it holds that

IET G = IR 4 — IET"(0, dy(i1, 0, 23), 0)7 — IET(0,0, @3(i1, 22, 0))7,

and thus, (]ng@)l = (ITI?kaL)l.
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Let k = 0. Because 0p|p, = 0 and 03]z, = 0, IT]?TO@ is determined by the
equations

{ (IR ), + (IE"0),}ds = /E (—0y + Bo)d3, (9.3.13a)
1
/E (IE7%)5ds = 0, (9.3.13b)
2
/E(I;Toﬁ)3d§: ; (9.3.13¢)
3
E{(I§T°ﬁ)1+(1§7’°6>3}d§: /@ (D1 + 3)d3. (9.3.13d)
4 4

From the divergence formula and the definition of v, we have
/ div(dy, by, 0)7dz = / (1, 0, 0)T - A3
T T

1 1
= — | (i +0)ds+ — [ ids, 9.3.14
V2 El( 1+ ) V2 e ( )

and
/cﬁv(@l,o,@g)Tdaez/ (91,0,85)7 - Ad3
T oT
1 1
= — | (=0)dé+ —
V2l TR )

Because 4 = 07, 24 = avl for i = 2,3, (]RTOA)l (IRTO )1, (9.3.13),

0%

(9.3.14), (9.3.15), the deﬁnltlon of the Raviart-Thomas 1nterp01at10n and
the trace theorem, we have

(01 + 03)ds,  (9.3.15)

0 . 0 .
I(ZF" i = IF" 01l oy

/ o - Nyds
B,

[

||(éi)1||Lp(T)

(—@1+U2 d8+— U1+U3
El E4
Ols 0ls
< Haulhorner + | 52 A ,
( W 0% |y 110 [l

which is the desired result for £ = 0.
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Let k> 1. Let ¢; € 77"”_1(?), i = 1,2, be such that

/;({)i—f—l — i’i-&-léi)ﬁk—ldi =0 Vpk—l S Pk_l(j—\‘), 1= 1, 2. (9316)
T

We set

~

W= (01,02 — T2G1, V3 — f36f2)T-
Because (0, 2261, 23G2)" € RT*(T), it holds that
k. k. k A A k. N A A A
IﬁT w = IQIA?T U= [%%T (0, 1'2(]1,373612)T = If]?T o — (0, 5U2CI1,9CSCZ2)T7

and thus, (Ingw)l = ([fl?Tkﬁ)l, therefore ([ng&)l = ([T@Tkui)l.

Because |z, = 0, wslp, = 0, and (9.3.16), IIIA?T}CID is determined as
follows:
{ (IET"0), + (IET"0)o} prds = [ (—tby + wo)prds  Vpi, € PH(EY),
Ey

(9.3.17a)
[ (Jngw)gpkdg =0 Vpp € PH(Ey), (9.3.17b)

Eo
[ (Jngw)gpkdg =0 Vpp € PH(Ey), (9.3.17c¢)

E3

[ {(IET"0)y + (IET"0)3}prds = [ (W + W3)prds  Vpi € PF(Ey),
E4 E4

(9.3.17d)
/A<I§Tkw>1m1df= / ipr_1dd Vo € PENT),
T T
(9.3.17¢)
[ (IgT%)Qﬁk_ld@ —0 VYpp_1 € PYD), (9.3.17f)
T
/A (IR @)3pp_1di = 0 Vpp_ € PEY(T). (9.3.17g)
T

For 7, € P*(T), using (9.3.16), the Green formula and the definition of @
yields

/A(fi:/(wl,wQ,O)Tfkdi’:/A(ﬁ)l,wz,O)T ﬁfkdg—/((wl,wQ,O)Tﬁ)fkd;f:
T orT

1 ory,
= — ds ds 0 v
\/5 El( w1+w2 Tk S+ — /;4?1)17% S — /;11)18:%1 Xz
(9.3.18)
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and

/;CTR/'(’UA]l, 07 UA)3)T72kd§; = /A(wh 07 w3)T ’ ﬁfkdg - [((@1, 07 uA)3)T ’ 6)72kd§:
T oT T

1 a’/’k
= — —Wy)Tpds + —= /w—l—w rds—/w
\/5 El( 1) * Ey ' 3> ' 181;1
(9.3.19)

Because iy = iy, (187" @), = (IFT"i),, (9.3.17), (9.3.18), (9.3.19), the defi-
nition of the Raviart—Thomas interpolation, the trace theorem, and

o . Oiyr O(Ti1Gi)
A~ YUz 7 [ - A ) = 1727
0% <U = Hq) 0%i41 O0%i41 '
we have
k k A
||(IRT i)y ||LP ||(I$T w)IHLp(f)
1
SC—/ (—UA}1+UJ2dS+— UJ1+IU3
El E4
81@ ‘ 8U3
<c| |lu + ~ —
(H I o I £ T
0
N H (Z201) H T3ds) . (9.3.20)

From the definition of @ and (9.3.16), we have, for any &, € P*(T),

ot s -
0= / gk / WaPiabeds — / ﬂtkdi«.
T 03 oT

If we set {f := (1 — &1 — &3)p_q with £,_, € PE=1(T),

N 1 . .
Wshalpds = — [ y(1 — &y — 33)fp_1d5 — / Wt pds = 0.
/af V2 JB, B

E3

Because 288 — 2% — W3 VYo have
Bz 6:)33 6:)33

Ows
7 03

LIRS - /8(&3@2) ¢
1 — 2y — Z3)tp_1dT — 1 — 2 — Z3)tg_1dz.
f(%:3( 1 3)tk—1 O ( 1 3)k—1

0= (1 — 2 — 23)tp_1dd
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Setting f5_; := 3(;_232) yields

|2l <o [ (P - s
013 L2(T) T 013
Otz 0(Z3q
o Q0 0Eh) 4 gas
7 0T3 O3
. Dt A(Z3G2)
<[l =1 = &5 poo 7 By ~ ~
L3\ e (T) LY (T)
Because all the norms on P*~1(T) are equivalent, we obtain
(234 ot
(F52) <c| B . (9.3.21)
03 Lp(T) 013 L»(T)
By the analogous argument, we can prove
(224 ot
O#201) <2 , (9.3.22)

The desired result follows from (9.3.20), (9.3.21) and (9.3.22).

Case for 1 =2
From Lemma 9.3.5, if
0= (U — U1 (Do, T, £3), Ug, U3 — Us(21, 29, 0))7,
it holds that
IE™ 5 = [FT 4 — IET" (i (&9, o, 23), 0,007 — IET(0,0, 15 (1, 22, 0))7,
and thus, (Ing@)g = ([j@Tkﬁ)z.

Let k = 0. Because 1|5 = 0 and 03]z, = 0, IgTOfJ is determined by the
equations

A=IET )+ (157 0)5)ds = /A Dy, (9.3.23a)
Ey E
/ (157 0)yds = / By, (9.3.23b)
B B,
/A (IE79)3ds = 0, (9.3.23¢)
E
/A{(infTO@)1 + (15" 0)3}ds :[ (01 + 13)d8. (9.3.23d)
Ey Ey
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From the divergence formula and the definition of ©, we have

/@(@1,@2,@3)%&:/ (D1, D, 03)7 - A3
T oT
1

1
— | ydi— / ods + — [ (b + D4)d3,
V2 /5 B, V2 /g,

(9.3.24)
Because diy = 0y, 95 = 5% for i = 1,3, (IF0), = (IF70),, (9.3.23), (9.3.24),

the definition of the Raviart-Thomas interpolation, and the trace theorem,
we have

I(ZF" ) = |(ZF"

7 U)ZHLp(f)

/ b - Nyds
B,

1
S Cl—= @ng‘i‘/ U2d8+— U1+’U3
2 JE B

E,
LP@) ’
which is the desired result for & = 0.
Let k > 1. Let ¢; € P*1(T), i = 1,3, be such that, for any pp_; €
PENT),

[

IN

2

1

16l )

4

(2

<c (||a2||wl,p(f) + |[dival

/T{@l — (22 — 21)q1 }Pr—1d2 = 0, (9.3.25a)
/?(@3 — ¥3q3)pr-1dz = 0. (9.3.25b)
We set
@ = (8 — (&g — 21)Gu, Do, B3 — F3ds)T.
Because ((#5 — #1)G1,0, &3qs)” € RT*(T), it holds that
k

[RTk = fRTk IRT ((Z2 — 21)G1,0, 23G3)" = L5 0 — (&2 — 1)1, 0, &3G3) ",

and thus, (Ing )y = ([R ), therefore ([ji?Tka)z — ([ff?T’“w)g.
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Because 1|z = 0, wslp, = 0, and (9.3.25), IRT w is determined as
follows:

AU 0+ U s = [ eds Vi€ PE). (93260
Eq
/ (IET" )y, ds = /A Woprds Vpp € PH(E,), (9.3.26b)
E2 E2
/ (IET" )spds = 0 Vpy € PF(Es), (9.3.26¢)
E3

/ (T ), 4 (IE70), ) prds = / (i + is)peds Vi € PH(Ey),
FEy Ey

(9.3.26d)
/A (T 0) fyrdi =0 ¥y € PH1(T), (9.3.26¢)
T
[(I%T"w)zza“d:% = / Bopprdi Vo € PP,
T T
(9.3.26f)
/A (T ) spprdi = 0 ¥y € P1(T). (9.3.26¢)
T

For 7, € P*(T), using (9.3.25), the Green formula and the definition of @
yields

[ div(ty, o, 3)T Frdd
T

:/A(wl,wQ,wg)T-ﬁfkdg—/A((wl,w%wg)?@)fkdge
oT T

1 a’/‘k
= — WoTrdS — WolrdsS + — /w+w rds—/w
2 5 2Tk /E2 2Tk 5, 1 3)Tk 2((%2
(9.3.27)

Furthermore, we have

divid = dive — div((d2 — 21)d1, 0, 2343)7 = divii — div((&s — #1)d1, 0, £3d3) 7
(9.3.28)

Because iy = by, ggf = 621 for i = 1,3, (IRTk o = ([RTk 0)s, (9.3.26),
(9.3.27), (9.3.28), the definition of the Rav1art Thomas mterpolatlon and
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the trace theorem, we have

k . k .
BT @)sll oy = [ (TE™ @)l
1 1
— [ weds+ / Wod$ + —/ (w1 + w3)d5s
\/§ El EQ \/§ E4

<c (||ﬁ2||W1,p(f) +|dival | = 00,27

<c

Lp(ﬂ) '

(9.3.29)

For any §; € Pk(f), from (9.3.25) and the Green formula, we have

0= /A{(@l - (5%2 - f1)@1, 0,03 — f:ans)T : §}§kdf
T

= [ {(&1 — (&2 — 21)G1,0, 03 — £3G3)" - N} 5,ds
oT
— [ div(d, — (&9 — 21)q1, 0, 03 — 2343) " 5pdi.
T

Setting
§6(2) = (1= 21 — @3)bp_r, o1 € PP YD),
it holds that

/(1 — &y — &3)div(0y, 0, 93) T 1di

T

= /(1 — i’l - Zi‘g)le((jg - i’l)(jl, 0,&73(}3)T2?k_1d§3,

7
because §;, = 0 on E4, {01—(Z2—21)¢1 }n1 = 0 on aT\E4, and (03 —3G3)ng =
0 on OT\Ej.

Therefore, setting t;_; := (TR/((?CQ —21)q1,0,%3¢3)T, and using the Holder
inequality, we have

|

2

div((&9 — 21)d1, 0, #3G3)"

SC/A(l—i‘l—fi3>

L(T)

—~ 2
div((&s — #1)d1, 0, ;f:gqg)T‘ 43

7
~ ~ N T /A ~\T T A AN A AT
<c||1 -2 — 373HL00(T) ‘ div (04,0, 03) ‘ ) ‘ div((Z2 — 1)1, 0, 23G3) HLP’(?) )
Because all the norms on P*~1(T') are equivalent, we obtain
T /A AN A A~ AT T/~ ~NT R
\ V(32 — 21)d1, 0, Bds) Hm@) < ol|div(on, 0,5) | sy (9:3.30)
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Observing that Ji?/(ﬁl, 0,03)" = ({i:f(dl, 0,43)", and
Hdiv(abo?ﬁi’)) HLP < HleUHLP + HdiV(O,QIQ,O)THLP(f)
< ||d1VU||Lp + @2l wiw )

the target estimate (9.3.11b) follows from (9.3.30). O

9.4 Scaling Argument

We present estimates related to the scaling argument corresponding to [30,
Lemma 1.113].

Note 9.4.1. We use the following calculations in (9.4.2). Let & € C*+Y(T)?
with v = \Tf@, v® = Uj and v = Wopsv®.

Using the definition of Piola transformations (Definition 3.4.2) yields, for
1 <4,k <d,

ovy, (%k
oz, —det(A )h Yhi— ‘9%,
af}k . d " d 81)5 81‘;(1) " d N d avs _

— =det(A) Y [A - —— = det(A) A, -[A] ).,
oz, WZ; ni“)z—1 axz‘(l) 0% ; ni(;l axiﬁ“ n
81}5 d d 8v

1 —det.A v - A (0,1) (1)

ax:ﬁ” ' ; . i((;laxi(lo 1>[ Tlienigy

which leads to

Doy, . IRy ) a v,
75, = det(A®) det(Ar)h; " Z A [ A7 0 Z hi[A] 0 JAT] 00,0 Jurgo .
7771/:1 igl)ﬂ;govl):l
By an analogous calculation, for 1 <, 5,k < d,
00y, ~ 0y,
= det (A hihy
pr0z, ~ (AT Ml bt
82'ﬁk B d _ d 82123 . _
— det ! 755 AL,
5ras, = detld) SIA e Y 5o Al AL,
77:1 (1) j%l)il 2 1
920 d d 920
— " —det - - 7 (0,1) (1 (0,1) (1
61:?(1)8:55.(1) ‘ AT Z Z 8m.<0,1>8x .(0,1) [ATL;O’ >Z(1 )[AT]J:EO’ )A »
Ot v=1 (0,1)73-;0,1):1 i 7
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which leads to

0%y, 5 B d -~ ~
505, = det(A )det(AT)hklwzl[A Tien A7 o
hi[A]i(l)i[AT]i(O,l)i(l) h; [,A] W) [_AT] 01 (1)—V
i§1’,i§°’1)=1 ! ! ! (1)7 (0,1)_ 890 (0 1)8ZE (0 1)

For any multi-indices § and v, for 1 < k < d,
B+

85“% —
il 03P OL] - 0ay

d
= det(A*) det(Ar)hg Y [A oy [A7

nv=1
d d
> [ Al o, [ Az 00,0 - > hl AL, [Ar] 0,0 -
i1 0D =1 i) =1 ' s
511;;165
> hal Al [Ar] 0o Z hd[A] AT 00,0
.(d) .(0,d d d
{00 =1 i D=1
Bdt‘i'mes

d
> ha[A] o [Ar] o000 - ool [A] Az 00 -

(1) .(0,1 (1) (0,1

J§ )7J§ )=1 J§1>,J§1 )=1
N o

~1times

d

d
Z hd[.A]jid)d[AT]jio,d)jid) e Z hd [A]A‘jl)d[AT]j%‘d)j%’

(d) -(0,d) _

(d) -(0,d

I JWd ’]“fd )=
Yatimes
Ll 5B omn o
- - v,
O 0,1y OF (o) O (a0 (oq) O (1) - OT o1 O 0.4+ 0T (9.a)
31 gy 3 184 N J \ 1 Jg
B1times Bqtimes ~y1times

Yqtimes

Using (1.3.1), (3.6.1c) and (3.6.2), we have, for 1 <,k <d,
vy,
0z

< | det(A")[| det(Ar) | " Z LA™ Tkl | [ A7 oo |

n,v=1
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d
ov,,

h; Z [Ar], 0.0, (1)(73) 0

A0 0D Oz, (o.1)
1 %1
s 1 1 ‘%V
< |det(A%)|h, ||A Il2 E h; o

and, for 1 <1,k <d,

o4
< |det | det h v
g | < et der(Ar) ;ng JeallLAT

d d 8 v
hihj Z [AT]i(lo,ni(ln(?“i)igl) Z [.AT] (0 1) (1)(7“3) <1 m
#0400 g J0 0D
< | det(AY) LA Zhh O,
Or;0r; 0

Note 9.4.2. We use the following calculations in (9.4.3). Let v € C”l(f)d
with o = U9 and v* = Ud.

Using the definition of Piola transformations (Definition 3.4.2) yields, for
1 <i,k<d,

a@k (d avk

9 = det(A'Y)h, 3]

0v O ~ 9 -

o7, = det(A) D A Ny 30 S AL,
’ n=1 i—y Y

which leads to

S

Doy, a
= det(A%)h, ! hi[Al.
oz, (A%) ; Jkn Z ’mzax "

Fey
iy =

By an analogous calculation, for 1 < 1,7,k < d,

82@k 8 Uk
= det hy, Yhih
gios, ~ (A ik o
82'{};9 _ d _ d 82’08 " _
— = det(A) [.A_ S—ns[.A] .(1).[./4] (1) .,
0,07 ; i(l)%:1 x'ﬁl)axﬁl) iV 5
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which leads to

82/1_Ajk d » d _ d » 82 5
= det .AS h_l E ./4_1 k E h .A (1) . E h .A O T
01,01 (A = A Do 4 ]Zl ’ 4 ]31 70z, (1)890 <1)
n=1 iH_q =1
For any multi-indices 8 and v, for 1 < k <d,
EIRERT
050y, = 0 0
2 T 0ahoilory - oay
d
s 1 -1
= det(A%)h, E Ak
n=1
d d d
g haAlow, - g ha[ A D1 E hal A (d)d e E halAl ),
1 Bd
d .(d
i{M=1 it =1 i{P=1 i) =1
[1times Bdt‘i;nes
d d d d
Bl Al . - Bl Al 1y - Wil Al oy - - halAl
> 1AL o, 1AL, > al Al > al Al
it’=1 5y =1 =1 iy =1
71t2;11es th;,mes
B B 2 Y
a 1 .« .. a d a 1 .« .. a d S
s ... s s .. s s .. s s .. s n
05, - - 075, 05y -+ - 035, Ox° ) -+ - 0%y, 05 4 - - 07,
i i i i5, J1 I J1 Jvg
,6’1t‘i;I1es Bdt‘i:nes Y1times Yatimes

Using (1.3.1), we have, for 1 <,k < d,

<|ths|h Z| knlzhl <1>|3s

S

Gvk

< | det(As>|h,;1||,Z—1||QZ Z A

s Y

n=1 (1) -1 xill
and, for 1 <1i,j,k <d,
o RS v
| < e YA > g 3 w5
iOL; n=1 V=1 351)_ i Y

82 s
a’E (1)81‘ (1)

d d
< o det(A) | AT ) D Y A H

7]:1 ’igl),jil):].
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Lemma 9.4.3. Let p € [1,00). Let T® € T satisfy Condition 3.2.1 or
Condition 3.2.2. Let T C R? be a simplex such that T® = ®L1(T). It holds
that, for any © = (01,...,04)" € LP(T)? with © = (0y,...,04)" := V0 and

v = (v5,..., 057 == U0,

1/p
[0°[| Lo(reys < | det(A°) , 5| All (Z thU]HLP(T) . (9.4.1)

Let {m € Ny and k € N with 1 < k < d. Let 8 := (B1,...,84) € N&
and v = (y1,...,7) € N¢ be multi-indices with 5] = € and |y| = m,
respectively. It then holds that, for any © = (01, ..., 04)" € WIBHII2(T)d with,

b= (by,...,09)7 == Ud, v* = (v, ... )T = U5 and v = (vy, ..., 097 =
WTS/US;
< s 7 1 1 € 3
] 5, < cldet(A WS B A e S W0zl gy (94:2)
le|=€+m

If Condition 3.5.1 is imposed, it holds that, for any © = (0y,...,04)7 €
WL (TYE with © = (0y,...,04)7 = Vo, v* = (v,...,v3)7T = Ui and
v=(v1,...,0q)" = Upsv®,

f < | det(A8)| b 1HA s Z %ﬂa\ass(qf;‘}u)umq,;g(ﬂ)d.
le|=t+m

(9.4.3)

Proof. We divide the proof into three parts.

Proof of (9.4.1)

-~

Because the space C(T)? is dense in the space LP(T)%, we show (9.4.1) for

A~

b € C(T) with & = U9 and v* = U5, From the definition of the Piola
transformation, for 2 = 1,...,d,

d
1 1 ~
0;(T) = —————h0;(2), vj(z)= = Aij0;(Z),
P = Qo Ay MO ) = g g &)

where 7; = hj_ljj. This leads to

d
vilet) = det(.A )det(A ;
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Ifl1<p<oo,fori=1,...,d,

10170 (reye = lev 7oy < el det(A")[' p||A||thp 195117
which leads to (9.4.1) together with (1.3.1) and (3.6.2).

Proof of (9.4.3)

Because the space Cm(T)4 is dense in the space W™ ? (T2 we show (9.4.3)
for o € C*™(T)® with & = U9, v* = Up and v = UpaUo®. Using (1.3.1),
through a simple calculation, we have, for 1 < k < d,

GIERRR] )
oz ... dihiozT - a%
< o] det(A*)[[| A |l2hy"

07 0| =

d d d d d d d d d
B1times Bdt;,mes 71times Yatimes
Ty Ty - Hoay - Hay T %(1) Iy - I
iy leq 1q ley ]1 1 Jeg
[1times Bdt‘i;nes ~y1times Yatimes
o2 5P om o

s s s s s .. s s ... s
al'(l) ct al’(l) a!lf(d) c ax(d) 8:8 (1) aﬂf (1) aI .(d) al’ .(d)
51 '3, 31 ', J1 In J1 VR

(.

a'g ~~ ' ~~

Bitimes Bqtimes Y1times Yatimes

d
< el det(AN A ok Y Y oL

n=L le|=|B[+Ivl

Because 1 < p < o0, it holds that, for 1 < k < d,
p
\ B ‘ < det(A)P AT R S e | (o Pdas,
) el 18I+ T

which leads to (9.4.3) together with (1.6.1).

Proof of (9.4.2)

Because the space Cm(T)? is dense in the space WH# (T4, we show (9.4.3)
for o € C*™(T)4 with & = U9, v* = U9 and v = Upev®. Using (1.3.1),
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(3.6.1¢) and (3.6.2), through a simple calculation, we have, for 1 < k < d,

I

A

d
< el det(A")[|lA ok VYRR
v=1

d d
> [Az] 00,00 ()0 - > Az 0,0 (r1),00 -+
A0 ;0.0 g A0 e .
1 %1 - ﬁl ) fBl -
[1times
d d
> [Ar]j0.m,0 (ra) o - > [Ar] 00,0 (ra) @
[ 0D _y [ 0D _y Pa v
\1 o _ fa’ba S
Bgqtimes
d d
E [AT] (0,1) .(1) (7’1) (1) * - E [.AT] .(0,1) (1) (7‘1) (1) *
et 1 1 J1 ot Iy I I
(1) .(0,1 (1) (0,1
Ji a0 =1 A1 odv =1
’ylt‘i:nes
d d
g [A7] 0.0 @ (Ta) - - - g [A7] 0.0 @ (Ta) .
J1 1 1 Ivg g Jva
(d) .(0,d (d) .(0,d
@ 0Dy (@ 410D _
q/dt;'mes
Ll 5P om o
“ . “ . vl/
O (o) +++ 0T (1 O (4 0T 0.0y O (00 OT (o1 O g+ 0T (g4
i ig iy i, R J1 I g J1 Jvg
Blt;;lles Bdt‘i;nes 71times Ydtimes

d
< ol det(A A ok S ST A I0Ru,

v=1 |e|=|B|+]]

Because 1 < p < o0, it holds that, for 1 < k < d,
p ~
|osara), . < claestarp h Aty S we [ jgrolra,
b el=lBithl 7T

which leads to (9.4.2) together with (1.6.1). O

920 by,

Remark 9.4.4. In inequality (9.4.3), it is possible to obtain the estimates
in T by specifically determining the matrix Arp.
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Let & € CHT)? with & = ¥d, v° = U and v = Wpv®. Using (1.3.1),
(3.6.1c), (3.6.2) and the definition of Piola transformations (Definition 3.4.2),
we have, for 1 <1,k <d,

8'&]€ s T—1 —1 d d 8UV
57, | < At CAMIAT A 2_; 2, Hpldrdon ] Oz 0m |
v=1,0) ;01 ij
Let d = 3. We define the matrix A as
cosy —sing 0
Ap:=|siny cosg 0
0 0 1
We then have
oy, ov ov ov
< c|det(A* ey SRR ) s ) i
| < el Z( 2ol | | )

Because 1 < p < o0, it holds that, for 1 <1,k < 3,

901" < o)t (A% P A B0
il < elderanp A g
ille ()
e v ov ov || .

The following two lemmata are divided into the element on T or sf” and

the element on 5(23). Because T; = T7, we denote @7, = ®7s and ¥, = Uy
fori=1,2.

Lemma 9.4.5. Let T, € T or T} € ‘253) satisfy Condition 3.2.1 or Condi-
tion 3.2.2, respectively. Let T C R? be a simplex such that Ty = @;11 (T). Let
B:=(B1,...,B4) € NI be a multi-index with |3| = (. Let p € [0,00). It then
holds that, for any O = (01, ... L 09)T € WL (T with © = (0, ..., 09)T =
o, v° = (v§,...,v5)7T = UG and v = (v,...,09)7 == by, 0",

jvi'v Lo(F

1

< ¢| det(A%)| 7 Zhanaav Ul Loy - (9.4.4)
le|=¢

If Condition 3.3.1 is imposed, it holds that

|

S AAVINE)

T

< ¢| det(A%)|F Z%ﬂf |05. Vs - (Wl0)

=~ ”Lp(«b;ll(T))'
)

Lp(Ty)

(9.4.5)
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Proof. Because the space (T ) is dense in the space | WP (T we show
(9.4.4) and (9.4.5) for & € C**Y(T)? with & = U9, v* = U5 and v = Uqev®.
By a simple calculation, from Note 9.4.1,

~

zd: o

k=1
d ~ ~ ov
= det(A°) det(Ar) Z [A_l]kn ['A]@gl)k['Ai ]’7” [AT] i ox. (;/1)
kit i@V 21
— det(AS) det(.AT)
;j; Z &Elaxk
d

= det(A%) det(Ap)h; Y migni[AT]igo,nigl)

iD=y

d

Z [j_l]kn[j]ﬁl)k[A_ ]UV[AT] 01) 1) o Y

o, <01>8:1: 01)
knyj(l) i(0,1) _q

d
= det(AY) det(An)hy Y [l [Adl o (UM.

8x (0 1)
iD=y

For a general derivative 97V - © with order |3] = ¢, we obtain

o8l
B N V.
ajvi.v aAﬁl. aABd z
= det(A*) det(Ar)
d o~
Z hl[A]i(Ul[AT]i(Ovl)i(l) T Z hl[.A] (1) [AT] 0.1),(1) *
(0,1) ' o (1) (0,1)_ e,
21 iy =1 iz 151 =1
Bl‘c;;nes
d N d
Z hal Al ,JAT] 0.0 0 - - Z halA] <d>d[AT]
(D) (0.d)_y ' Y D) 0.y s
i sty = Bd Bd
,Bdt;,mes
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o5 5P

. \VARY
8%(0,1) O ;0.1 axiw,d) O 0.
[1times Bgtimes
= det(A%) det(Ar)
d
g hul Az 00,00 (r1) 00 - g h1[AT] 0.0 <1>(7‘1) -
(1) .(0,1 1) .(0,1
i 0D i 00—
[1times
d
g hal Az (ra) o - - E halAr], 0.0, (ra), <
() (0,d) _ (D) (0.) _
il i =1 5d Bd =1 )
Bgtimes
L] 5P
. V.
87)4(0,1) -0z ;0.1) ax.(o,d) -0z ;0.0)
31 [N 3 “84
[1times Bgtimes

It then holds that, using (3.6.2) and (1.6.1),
|07V 5 - 0] < det(A%)| > BF|OFV - v,
le]=¢
which leads to
102V - 0ll oy <l det (AT S B[OEV - vl oery
le|=¢

Using an analogous argument, if Condition 3.3.1 is imposed, for a general
derivative 97V - © with order || = ¢, we obtain

. OIA| .
AR = oo
ozt --- 0%
= det(A°)
d d d
Z hl[AL’glh"' Z h[A] i Z halA <‘“d"' Z hd[A]z‘Ej‘)d
(D _q A _q {1 Sy ¢
1 81 Bq
,81t‘i:nes ﬁdt\i:nes
bl 5P
- SR Ve - U5
8%(1) - 0x® W 8azi(d) - 0x? a0
R 1 31 o ,3d
61t\i:nes ,Bdi?i;nes
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It then holds that

V6] A
< | det(A%)|
d d
E ha|[A] il E hi|[A (1)1 E ha|[A (d)d| EE E hd|[-'4]igd)d|
V=1 i =1 D=1 i) =1 ‘
Bﬁines ,Bd‘c;:nes
o2 5P
a " a e 8 . 8 sz . ,US
Ty 0T ey Ty 0T (@
g iy a "6a_
Blt‘i;nes Bdt‘i:nes
< c| det(A%)] E |05V s - V7,

le|=¢
which leads to
10255 - 0ll gy < el det(A)T S 05 Ve - 0% o).
|e|=¢
O

Lemma 9.4.6. Letd = 3. LetT, € ng) satisfy Condition 3.2.2. Let T C R?
be a simplex such that Ty = @;21 (T). Let ¢ € Ng and k € N with 1 < k < 3.
Let B := (B4, B2, 83) € N be a multi-index with |3| = . Let p € [0,00). It
holds that, for any o = (’l}l,UQ,'Ug) € WL (Ty) with © = (y, B, 03)7 =

o, v° = = (v§,vs,v5)T == = U0 and v = (v1,v9,03)T 1= Up 0",
%k 6v
o < ¢| det(A%)| 7 ||A he || 9.4.6
25| sdameanF i S gt L as)
(T2) le|=¢ (T)
If Condition 3.53.1 is imposed, it holds that
00 oVl
afja“k < ¢ det(A%)]7 || A2 > e %
Tkl Lr(Ty) le]=¢ "k LP(Q);;(T))B
(9.4.7)

Proof. Because the space C**(T)3 is dense in the spacel/V”l’p(f)E‘, we show
(9.4.6) and (9.4.7) for © € C**H(T)? with © = U9, v* = U7 and v = Upsv®
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By a simple calculation, from Note 9.4.1, for 1 <1,k < 3,

00 YA vy
&;Z = det(A°) det(Ar) Z [A_l]kn [A]igl)k[A;l]nV [AT] (011 axljo N
D40 1

= det(A°%) det(Ar) Z [.Z_l];m[A ]m,[AT] 0.1 <1>(7“k) () Ov,

n’ylgl)ﬂ(o b B 8m (0 1)
5. ov
= det(A°) det(Ar) Z [Afl]kn[A;l]nvaT,Z’

n,v=1

%0 -

k s A -
T det(A%) det(Ar) Z A kg [AZ T

LiOTk (D) 0.1 51 01

U SR Y I
0%v,

hi[Z]igl)i[j]jpk[AT]igo,Uigl) [(Ar] om0

i Ox, i 1)033 1)

= det(A%) det(Ar) 3 A i [AZ

(D 0D SO 00

hi[Ar], 01, <1>(7’z) W [Ar], ) <1)(7”k) W

2
0“v,
8ZE (o 1)(9%' (0 1)

0%v,
nuviby .
67‘,87";6

= det(A°) det(Ar) Z [ﬂ‘l]kn[fl;l]

For a general derivative 97 g—gz (1 <k < 3) with order || = ¢, we obtain

500, ol 9y,
Tork o ... 920 Oy,
3
= det(A%) det(Ar) > [A i [Ar' ]
n,v=1
3
Z hul Az 0,00 (r1) 00 -+ Z ha[Ar], . (1)(7“1) @
(00 D O g
Blt‘i;nes
3
> hs[ At 00,0 (r3) 60 - Z hs[Ar], 0,0 (rs), ©
i3 =1 i) i =1
ﬁdt‘i?nes
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Hb 5P ov,

8334(0,1) -0z S0.1) ax.(o,s) 0w ;0.d) ory,
1 sy N ﬁd

N J/ . 7
g '

B1times Batimes
3
B 951 P8 ov
_ s 1 -1 B .. -
det(A°) det(Ar) E [A™ ko A7 T h Ory---0ry  Ory---Ory Iy’

n,v=1

B1times Bstimes

It then holds that, using (1.3.1), (3.6.1c) and (3.6.2),

0D v,
0}t Uk | < o] det(A7) A2 Z R
v=1 [e|=|3] T
which leads to, using (1.6.1),
ov 81}
ﬁ k < S —_ 1 €
5], . S ddeconTnan, o forge |

Lr(T2) le|=18

If Condition 3.3.1 is imposed, by a simple calculation, from Note 9.4.2,
for 1 <,k <3,

Dy, k S
— =det(A%) Y [Ak (Al 5
Ot 2 0 i,
3 3
~ ov?
= det(A%) > [A7w > ( ki 5
— LOT )
n=1 iM=1 1
3
~ ove
= det(A) S A, o0,
— ory
n=1
o _ o h) Y A e, 3 gy
0i0in a A 20 0 g 0
Ny =1 7 =1 1 1
3 . . 3 82 S
= det(A%) 3 (A kil A, Y (s )Ji”ﬁ
o o i OT )
L ~ 0?v?

= det(A") Y [A VkphalAlo)

51 iaximar,i'
1
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For a general derivative 97 g—;’l’z (1 <k < 3) with order || = ¢, we obtain

o8l Oy,

00
6YY%k
% 037 Oy

xaajk a”\ﬁl

3

= det(A%) Z

n=1
3 B 3 B
OPAEINIED ENE PSS R A2 TRRSD SRRE I
iM=1 i) =1 iP=1 i) =1
,Bl‘c‘i;nes Bgt‘i;nes
bl 553 ayz
Oxsy) -+ 0%y Oxl, - - Oy, ors”
. 1 61 1 531
Blt‘i;nes B3t‘i:nes
It then holds that, using (1.3.1),
00
i
&zck
N 3
< [ det (A A |2 )
n—l
3
> A Ao, |- Y i Al D hal [l Y i Ao,
iM=1 i)=1 i¥=1 i) =1
61t‘i,mes ﬂ3t‘iznes
L] H5s 81};
aIfu) A al’f(l) o al":@) ct 8:618(3) 8_7’2
1 B1 1 B3
,81t‘i;nes B3t‘i:nes
~ 3 ov?
< el det(A)[JAT D> |0
=1 [e|=|] k
which leads to, using (1.6.1),
o0 -1~ ov®
o252t < elaeriarn A 3 o om0
0z =~ ors
kIl Le(Ty) le|=|4] kIl Lp(Ts)3
O
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Lemma 9.4.7. For any T € Ty, let Vps = V(T*) — V(T) be the Piola
transformation defined in (3.4.5). Let s > 0 and p € [0,00). There exists
positive constants ¢, and cy such that, for all T € Ty, and v € W*P(T)4,

c1vlwenrye <0 lwenrsya < co|vlwer(rya, (9.4.8)
with v* = U lv.
Proof. The following inequalities are found in [30, Lemma 1.113]. There
exists a positive constant ¢ such that, for all T € T, and v € W*P(T)4,
[0 lwen(rsys < el Arll5IlAZ |2 det(AT)|§|U|WS’P(T)d> (9.4.9)
olwesrys < A7 31 Ar ol det(AD| F [0 nrne, (0.4.10)

with v* = U, lv. Because the length of all edges of a simplex and measure
of the simplex are not changed by a rotation and mirror imaging matrix and

.AT, A;l c O(d),

T
i
| 7|

| det(Ar)| o Azl =1, JAZ . = 1. (9.4.11)

From (9.7.2), (9.7.3), and (12.4.6), we obtain the desired inequality (9.4.8).
[l

9.5 Stability of the local Raviart—Thomas in-
terpolation

The following two lemmata are divided into the element on T? or 553) and
the element on 5(23).

Lemma 9.5.1. Let p € [0,00). Let T C R? be a simplex such that Ty =
O N(T). Let Ty € T2 or Ty € ng) satisfy Condition 3.2.1 or Condition
3.2.2, respectively. It holds that, for any ® = (01, ...,04)7 € W(T})¢ with
b= (0., 007 = Ud, v° = (v5,...,v)T = Ub and v = (vy,...,v9)7 =

1/}T1 Usf

k
HI:IF%T UHLP(T)d

HT € &
<c oy ]| Lo (7ys + Z h ||8TU||L,,(T)d + ||V -0l oy | - (9.5.1)

lel=1
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Proof. From (9.4.1) and (9.4.8),

k
Fa i

V|| zoerya < |l I 0% poeryye

d 1/p
< | det(AM)[ 77 | All2 (Z%’H (L 0),117, ) - (95.2)

=1

The component-wise stability (9.3.1) for 2d or (9.3.2) for 3d yields

d

k .
> HNUIET )08, 7, < € th’(mnww +IVa-olt, ) - (953)
7=1

From (9.4.2) with £ =0 and m € {0, 1},

195150,

= 1917,
T ll Lo )
P
< el det (AP ATERTT 0l 0izye + | D B 1070l Loy
lel=1
(9.5.4)
From (9.4.4) with ¢ = 0,
p—1
Ve - 0l oz < el det(A)] 7 IV - 0| oy (9.5.5)

Combining the above inequalities (9.5.2), (9.5.3), (9.5.4), and (9.5.5) with
(3.6.1b) and (1.6.1) yields

k
H[%DLT UHLP(T)d

Hr
<elgr |\v||Lp<T>d+Z_lhfnaivnmmd +hel|V - vllieery |

which is the desired estimate. O

Lemma 9.5.2. Let d =3 cmdp € [0,00). Let T C R? be a simplex such that
Ty = o, (T) LetT, € T satisfy Condition 3.2.2. It holds that, for any v =
(Ul,Ug,Ug) € W(Ty)3 with o = (0y,0a, 03)" 1= Vb, v° = (vs, 05, v5)T = Up
and v = (vi, vy, v3)T = Y0,

3
Hp
”[,ZETI“'UHLP )3 < CE [”UHLp 3 + hTZ

k=1

ory

] . (9.5.6)
LP(T)3
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Proof. The component-wise stability (9.3.11) yields

3 3 3 ~

RTF ~ a’Uk;
S N i <3 (1l + 3 [
7=1 7=1

p )
LP(Ty)

|| Oz
k=1,k#j
(9.5.7)
From (9.4.6) with ¢ = 0,
v 0
‘ :, < cf det(A°)| 7 | A || 5 (9.5.8)
0%k || o ) 07l oy
By analogous argument in Lemma 9.5.1,
||UJ le p( Tg)
00,
HUJHLP(TQ) Z Ha’\k Lp
p
< e det (A°)PHAT BT ol + | D A 1050 ] pagays
le]=1
(9.5.9)

Combining the above inequalities (9.5.2), (9.5.7), (9.5.8), and (9.5.9) with
(3.6.1b) and (1.6.1) yields

||]7]1%T’C ]RT‘IC s

|| rrys < clllz, v || oeemy)s

d 1/p
< cf det (A7) 7 [|All2 (Z ENEE 05117, )
j=1

3 3
Hr ov
< e ol + D P07 0l oy + 3 s D ‘ ary,
g lel=1 j=1  k=1,k#j kllLe(T)3
which is the desired result. =

9.6 Local Interpolation Error Estimates

The following two theorems are divided into the element on T or ‘553) and
the element on zg?’).

155



Theorem 9.6.1. Let p € [0,00). Let T C R? be a simplex such that Ty =
O N(T). Let Ty € T or Ty € ’sf’) satisfy Condition 3.2.1 or Condition
3.2.2, respectively. For k € Ny, let {T, RT*(T), %~} be the Raviart—Thomas
finite element and [RT the local interpolation operator deﬁned in (9.1. 12)

Let { be such that 0 < ¢ < k. For any © € W (1) with 5 = W5, v° = U
and v = Y, v°, it holds that

k
11770 = 0| Loy

IN

N 1720 SRy P N T 1754 ] [ o I (X R
le[=€+1 |8|=¢

If Condition 3.3.1 is imposed, it holds that

k
||[RT v — v (T)¢

Hyp el 98 (=
<C<h Z H ||as(‘I/Tllv)HLp(q>;ll(T))d

le|=0+1

+ hr Z A 05V s - (\Ijilv)HLP(é;ll(T)))‘ (9.6.2)

181=¢

Proof. Let & € W »(Ty)%. Let Iz RT* he the local interpolation operators

on T} defined by (9.1.4) and (9.1.5). If q € PYT)* C RT™(T), then I#'q = q.
We set QY = (QUH Yy, ..., QU Yy)T € PYTY)?, where QU+, is
defined by (1.6.8) for any j. We then obtain

k k
HIT@T U= U||LP(T)d < HII}?T (v— QMH)U)HLF(TW + ||Q(H1)U - UHLP(T)d
(9.6.3)

The inequalities (9.4.1) and (9.4.8) for the first term on the right-hand side
of (9.6.3) yield

ITET (v — QD) || o e

d 1/p
< f det(A%)] 7| All (Zhg?n{f#k(@ Qs >bl|’sz>> - (964)

j=1
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The component-wise stability (9.3.1) for 2d or (9.3.2) for 3d yields

Z hPH{IRTk Q(@Jrl) )

}JHLp T1

e+1 €+1
<c2h (I = QU111 g, + 195 (6 = AV, Y.
(9.6.5)

The inequalities (9.4.1) and (9.4.8) for the second term on the right-hand
side of (9.6.3) yields

HQ(HD’U - UHLP(T)d

d 1/p
< ¢ det (A")|+" [ A (2 WNQ“ D, - ﬁjn’;p(ﬁ)> . (966)

J=1

Case in which Condition 3.3.1 is not imposed

The Bramble-Hilbert-type lemma (Lemma 1.6.9) and (9.4.2),

HUJ Q(Z—H JHWlp

d

P
= oy = QU 2, i+ D [y~ Q)|
k=1 Lp (1)
& 00, ||”
<cl| Y la2elt, g, + Z ﬁa;
l=t+1 Rl (1)
p
< c| det(A*) P RPIATE | DD b jogv|| . (9.6.7)
= j 2 r Yl Lp(T)d
le|=0+1
Because from [22, Proposition 4.1.17] it holds that
div(Q“s) = Q' (divd), (9.6.8)
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from Lemma 1.6.9 and (9.4.4),
(5 — ED VY|P _ 2 e v A I

IV - (0 = Vo), 7, = Ve -0 = Q(Va - 0]
< Va9 - Q(Va- )|

< e[Va 0l 0, q = ¢ > 1197V - Mo
18I=t

< c|det(A%)[P~* Z NOEV - vl oy
le|=¢
(9.6.9)

Combining (9.6.4), (9.6.5), (9.6.7), and (9.6.9) with (3.6.1b) yields

k
127" (v = QD) | oy

IN

ENT W00l gy + R Y BEOPY ey | - (9.6.10)

T lel=e41 18=¢

Furthermore, using a similar argument, from Lemma 1.6.9, (9.4.2), and
(9.6.6) together with (3.6.1b),

19 Dy — | oy < c— > 1050l oy (9.6.11)
T ej=e41

Therefore, from (9.6.3), (9.6.10), and (9.6.11), we have (9.6.1).

Case in which Condition 3.3.1 is imposed

From Lemma 1.6.9 and (9.4.3),

0 ~
HUJ Q( +1)UJ||W1 p(Tl)

d

A Z ety
d
—c| X 182007, 5, ZZ

yl=t+1 k=1 |8|=¢

~ P
8vj
0Ty,

< C|”J’

< el det( AP IA S [ AN e | - (96.12)

le|=0+1
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Because (9.6.8), from Lemma 1.6.9 and (9.4.5),

IV - (0 — QU Vo)) a S cldet( AP Y A0 Ve - vl
el=¢
(9.6.13)

Combining (9.6.4), (9.6.5), (9.6.12), and (9.6.13) with (3.6.1b) yields

H[ka(v . Q(f—&-l)v) HLP(T)d

H
N AN | oirye + hr Y APNOL N oo 0| Loy
|a| l+1 |B|=¢
(9.6.14)

Furthermore, using a similar argument, from Lemma 1.6.9, (9.4.3), and
(9.6.6) together with (3.6.1b),

90 = iy S 5 S AN s (9:615)
|€| l+1
Therefore, from (9.6.3), (9.6.14), and (9.6.15), we have (9.6.2). O

Theorem 9.6.2. Let d = 3 and p € [0,00). Let T C R? be a simplex such
that Ty, = (IDE(T). Let T, € zg”) satisfy Condition 3.2.2. For k € Ny,

let {T, RT*(T), S} be the Raviart-Thomas finite element and IET" the local
interpolation opemtor defined m (9.1. 12) Let ¢ be such that 0 < ¢ < k. For
any v € W”lp(Tg) with © = Ud, v* = U9 and v = U, v°, it holds that

i Hr _
ITE" 0 — 0| poys < o ( Z > h mes) . (9.6.16)

k=1 [e|=t

T ark

If Condition 3.3.1 is imposed, it holds that

| IRy — | Lr(1ys

< C—< > 05 (v U)HLp(cp;Ql(T))S

\g\ —0+1
o s . (9.6.17)
"k Lr(7, (1))

+hTZZ%E

k=1 |e|=¢
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Proof. An analogous proof of Theorem 9.6.1 yields the desired result (9.6.16),
where we use Lemma 9.3.6 instead of Lemma 9.3.4, and Lemma 9.4.6 instead
of Lemma 9.4.5.

Let v € W“lp(T )3. Let IRT be the local interpolation operators on Ty

defined by (9.1.4) and (9.1.5). If q € PYT)® c RT*(T), then IE™" ¢ = q.
We set QF Dy = (QUH Vv, QU Vv, QUHYus)T € PYT)?, where Q+Yy
is defined by (1.6.8) for any j. We then obtain

J

k k
I 0 = 0| pogrys < | IFT (v — QU)o + QD0 — 0| ogrys.
(9.6.18)

The inequalities (9.4.1) and (9.4.8) for the first term on the right-hand side
of (9.6.18) yield

JET (6 = 2E0) oy
1/p
s R
< c|det(A )| P H.A||2 (Z th{IRT (0 — Qe )}JHLp T2)> :
(9.6.19)

The component-wise stability (9.3.12) for 3d yields

3
RT’“ £+1
Zh’?H{[’fz )}]HLp T2)
j=1
3 3 o R p
< Czhﬁ? <||@] Q(ZH UJHWI 2(Th) + Z ‘ OF (@ B Q(”l)@)k N ) :
j=1 k=1 kg 11 Ok Ly (T3)

(9.6.20)

The inequalities (9.4.1) and (9.4.8) for the second term on the right-hand
side of (9.6.18) yields

||Q(é+1)U _ UHLP(T)S

d 1/p
1-p IR U
< ¢ det(A%)| 7 || Al (Z h?“@(ul)q}j — WH’;()@)) : (9.6.21)

Jj=1
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Case in which Condition 3.3.1 is not imposed

From Lemma 1.6.9 and (9.4.2), we have

£+1)
||U _Q(+ ]||W1p Tg)

d
= [[6; = QU oy, o+
k=

S c Z ||a;/i>]||ll)/p(j"\) +

yl=t+1 k=1 |g|=t

p

oo 0l

1
3
- * Dy,

L (Ty)

< | det(A) PR IATE | YD B N050llpagrys |- (9.6.22)

le]=¢+1

From Lemma 1.6.9 and (9.4.6), we have

3 ’

Q@k Z+1 @vk

k=1 k] LP(T2)  p=1ktj Lr(Th)
3
zzwm
Lk#j |B|=¢ Ot Lr(T2)
s\|p—1y A-1y|p ep
< ¢|det (AP~ ATY Z > h rm (9.6.23)
k=1,k#j |c|=¢ Lr(T)?

Gathering (9.6.19), (9.6.20), (9.6.22) and (9.6.23) together with (1.6.1) and
(3.6.1b) yields
P<T>3>

). (9.6.24)
Lo(T)?

27" (v = 2 V0) 1y

<[ X e 3 S S

le]=£+1 = k=1,k#j |e|=¢

<c—< > 1050l o ,+hTZZhE

le|=(+1 k=1 |e|=¢

" ark

" 0rk

From Lemma 1.6.9 and (9.4.2),

~ S(041) ~ ~
||Uj - Q( * )Uj||ip(f2) <c Z ||agvj||}£p(j"\)

Iv|=€+1
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< | det (AP R IAE (ST B 1020 oy

le|=¢+1
(9.6.25)
From (9.6.21) and (9.6.25) together with (3.6.1b), we obtain
190 — ]| o(rys < ch— > 1050l oy - (9.6.26)
le|=t+1
Therefore, from (9.6.18) and (9.6.24), (9.6.26), we have (9.6.16).
Case in which Condition 3.3.1 is imposed
From Lemma 1.6.9 and (9.4.3), we have
H'ﬁ] Q(Z+1)Uj||i/17p(f2)
A1) | 9 51 5 |
—lh. _ O+ P 5 +
=9, - @Q UJ||L,,(@)+Z 8ik(vj Q b;) R
k=1 Lp(T3)
i 0v;
V4[| 825
<o| 3 15l + X0 3 [0l
Iy|=£+1 Lp(Ty)
P
< c| det(A”) [P Ry P ATH A0 (U, 0) ooy
le|=e+1
(9.6.27)
From Lemma 1.6.9 and (9.4.6), we have
3 3
O . g WP 00 00
Z o (Uk_Q(K-H)Uk)) = Z a_Ak‘ _Qe+1 <5 k) )
ket kg 1| Tk Lr(Ty) gty I1OTE Tk / e (@)
3
e 3 S g,
Lkt 18— al’k Lp( T2)
OV )
s 1 1yp 5 T
< cf det(A) [P |A Z > xa—r}z )
k=1,k#j |e|=¢ Lr(®7, (T))?
(9.6.28)
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Gathering (9.6.19), (9.6.20), (9.6.27) and (9.6.28) together with (1.6.1) and
(3.6.1b) yields

HIY}?Tk (U o Q(E-H)U)HLP(T)?’
<2 (S eorwgio))
= 1, YllLe (@} (1))
le|]=¢+1
3 3
Y b Y D

J=1  k=1,k#j |e|]=t

o OV, v)

S
or;,

Le (o, (T))3>

Hy €| 9 (=
< ch_( > N (g0 aaz s

T \|e|=e+1
- (U7, v)
the ) Y HF =i . (9.6.29)
k=1 |e|=¢ B llpe@zl )y
From Lemma 1.6.9 and (9.4.3),
||@] - Q(€+1)@J||}£p(f2)
< 3 1010,
[y[=¢+1
p

< el det(AT)PRTPIATE [ A0 (U, 0) oo (e
le|=¢+1
(9.6.30)

From (9.6.21) and (9.6.30) together with (3.6.1b), we obtain

Hr el Q8 (T —
190 = vy < eg— 3 AN (T 0llmep@y (963
le|=t+1

Therefore, from (9.6.18) and (9.6.29), (9.6.31), we have (9.6.17).

9.7 Global Interpolation Error Estimates

For any T' € T}, let ® be the affine mapping defined in (3.4.3). Let ¥ :
V(T) — V(T) be the Piola transformation defined in (3.4.6).
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Let {T, P = RTHT), E} be the Raviart-Thomas finite element with
k € Ny introduced in Section 9.1. We define a broken finite element space as

RT*(T,) = {vh e LX) U (uply) € RTHT) VT € Th}

The corresponding (global) Raviart—-Thomas finite element space is defined
as

VhRTk = {u, € RTk(']Th); [vn -n]p =0, VF € ]:ilz}

Setting V(Q) := W*P(Q)¢ with sp>1, p € (1,00) or s = 1, p = 1, we define
the global Raviart-Thomas interpolation IFT" : V(Q) — V;ET" as

(")l = IE (v]y) VT €Ty, Vo€ V(Q).

Corollary 9.7.1 (de Rham complex). Let k € Ny and p € [1,00). Let T} :
LY Q) = My = {on € LQ); ¢nlr € PHT) VT € Ty} be the L*-orthogonal
projection defined as

() |7 == T (ool ),

where 11%, is defined in Lemma 9.1.2. Let IRT - Wip(Q)4 — VAT be the
associated global Raviart—Thomas interpolation. Then, the following diagram
commute:

W) -4 L1(©)

k k
IRT l inh

VhRTk — M}I:;
In other words, it holds that
div(IF™"v) = I (dive) Yo € WHP(Q)4 (9.7.1)
Proof. Combine Lemma 9.1.2. O]

Theorem 9.7.2 (Stability). We impose Condition 4.5.1 with h < 1. Let
p € [1,00). It then holds that

I vl oy < cllvllwrnye Yo € WHP(Q)C

Proof. Using (9.4.8), Lemmata 9.5.1, and 9.5.2,

k k
115 0l ye = = [l Ve S € [ iy = vl
TeTy, TEeT
which leads to the desired result. O
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Theorem 9.7.3. We impose Condition 4.3.1. Let p € [1,00) and let { be
such that 0 < ¢ < k. It then holds that, for any v € W*Lr(Q)4;

(I) if all elements are composed of the type Ty € S@),zf’) and Condition
3.3.1 is not imposed,

k
HﬁTU—Wmmw

<X D WUl +h | 30 Y RPNV vl |

TETy, |e|=£+1 TETy, |B|=¢

(9.7.2)

II) if all elements are composed of the type T € ‘3(2),‘2(3) and Condition
( Yy 1
3.3.1 1s imposed,

k
170 = 0| Loy

Z ( Z H|| 0 (¥ U)”LP(@;ll(T))d

TET, \|e|=¢+1

+ hr Z «%pﬁ”afsvzs : (\I]Tllv)HLP(cbil(T))>; (9.7.3)

|8=¢

(IIT) if all elements are composed of the type Ty € §g3) and Condition 3.3.1

18 not 1mposed,
1/p
) : (9.7.4)

1E™ 0 = s < ch(Z S he
(IV) if all elements are composed of the type Ty € sg”) and Condition 3.3.1

TET), k=1 |e|=¢
1S 1mposed,

" a’”’f L1y

TR v — 0] 1o gys

<c). ( 2 %anaf(w;;mHLP@;;T))S

TET, \|e|=C+1
ol > (9.7.5)
"k Lr(7, (1))

+hTZZ%”E

k=1 |e|=¢
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Proof. If T} € 1(2),‘3§3) and Condition 3.3.1 is not imposed, using (9.6.1),

k k
10 = ol = S I 0 = 0l
TeTy
p

SN DN B D PR S 1 e
TET, \|e|=t+1 18]=¢

<cy Y WIS + 1 Y BPIOIY 0l
TEeTy |e|=0+1 |B|=¢

which leads to the desired result together with (1.6.1).
If 17 € T ‘I and Condition 3.3.1 is imposed, using (9.6.2),

k
HII?T v = UHZp(Q)d

ey ( S AN e

TET, \|e|=0+1
p
+ hr Z AP OV s - (\I’:FSIU)||LP(¢>T11(T))) ;
18]=¢
which leads to the desired result together with (1.6.1).
If 75 e ‘zg?’) and Condition 3.3.1 is not imposed, using (9.6.16),

3

[0 = ol S > BEY S b

TET, k=1 |e|]=¢

LP(T)3

which leads to the desired result.
If T3 € 553) and Condition 3.3.1 is imposed, using (9.6.16),

k
1 v = vl ooy

<o ( 3 ALy

TET), \|e|=0+1
oY)
©= O » ’
Lr(®}(T))?

3
+hr Y > 7|0

k=1 |e|=¢

which leads to the desired result.
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Chapter 10

Inverse Inequalities on
Anisotropic Meshes

This chapter presents some limited results of inverse inequalities.

10.1 Inverse Inequalities

Lemma 10.1.1. Let P := P* with k € N. Then, if d = 2, there exist
positive constants C’iIV’2, 1 = 1,2, independent of hy and T', such that, for all

on € P* = {n0 (®°)Y; ¢, € P},

aSOh IV2 11 ,
o L o, i=1,2. 10.1.1
If d = 3, there exist positive constants C’IV?’ = 1,2, 3, independent of
hr and T, such that, for all @, € P* = {py, o (®*)7; &, € P},
Ha% < V3T *‘5—||<,oh||Lp ey, i=1,2, (10.1.2)
al’z Lq Ts) ‘%
and, fori =3,
don 1V3 s 2-2 Hre 1
—/ < O30 T7| — sY. 10.1.3
' dx3 La(T#) | | hys 5 ||‘Ph||LP(T ) ( )

In particular, if Condition 3.3.1 is imposed, it holds that

&Ph
833'3

L onl (10.1.4)
% PhllLe(Ts)- L.

<cV3re|ay
La(T*)

167



Proof. Let ¢, € P°. From &; = hj_lij and 7 = A 'z, we have, for i =

1,...,d,
d n~ o~ d
ovn _ 0y 015 Z agoh _ oo 1A_
6% - 892] 8@ al‘ )
Jj=1 =
It thus holds that, for i =1,...,d,
— |4
Hawh Y[ ]9 \det(As)\/ %on| 4
8@ La( TS) 3902 T 8
PRI
< c| det(A%) |Zh q|.A Al a(fh
Iz; La(T)
Using (1.6.1), we have
Hawh < ¢|det(A%)] Zh 1|,4ﬂ1| a% (10.1.5)
O || pars) Lo(T)

All the norms in ]/i are equivalent, that is, there exists a positive constant
C¥ depending on T and s (s € Ny) such that

1enlyecy < Cllenll ey Vin € P. (10.1.6)

Together with (10.1.6) and (5.3.2) (m = ¢ =0), we have, for j =1,....d,

Opn s
9220 < Bonlhwnat < clénlung, < laetA gl
3l La(T)
(10.1.7)
Two-dimensional case
Because (3.1.4), |s| <1 and he < hy, we have
1 1
2 —=—ifi=1
—1 f-1) %ﬂ ’
> AR = | ) > 9 (10.1.8)
—1 < —=— ifi=2.

hat th = hat ji’é
From (10.1.5), (10.1.7) and (10.1.8), we have (10.1.1) for i = 1, 2.
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Three-dimensional case

Because (3.1.6), |s1| < 1 and hy < hs < hy, we have, for A1 € {A7!, A7},

(1 1 ifi=1
—=— ifi=1,
3 }|l1| S
1 G- S1 P
hUASY < < L2 =29 10.1.9
le‘ﬂ‘_ h1t1+ht1_h2t1 I ne ( )
= | 51890 +ﬁt1821| | 599 n 1 ifi—3
X hitito hotity — hato '

Because 0 <t; < 1, [s91] < 1, and |sgs| < 1, if Condition 3.3.1 is not imposed,
we have

|51592| + [t1521] |92 1
hitits hotits  hsts
%(|81822|h2h3 + |t1591|hohs + |soa|hihs 4 hihaoty)
B Lhihahstyty
< 1 (2h1h2h3t1 hihahsty hlhghgt%)
~ 6|7 hity hotq hstq

_ 2mhohy 1 2Hr 1
=3 |Ts| hoty  3hp

(10.1.10)

If Condition 3.3.1 is imposed, that is, there exists a positive constant M
independent of hr such that |ses| < M h}f—?, we have

t 1 h 1 1 1
‘81522‘+| 1821’ |522| + SM 2 +_+M_+_
hltltg hgtltg hgtg hlhgtg hltg hgtg hgtz
1 1
<2M4+1)— =2(M+1)—.
(10.1.11)

From (10.1.5), (10.1.7), (10.1.9), (10.1.10), and (10.1.11), we have (10.1.2),
(10.1.3) and (10.1.4) for i = 1,2, 3. O

Theorem 10.1.2. Let P := P* with k € Ny. Let v = (71,...,74) € N be a
multi-index such that 0 < |y| < k. If Condition 3.5.1 is imposed is imposed,
there exists a positive constant C’IVC,Amdependent of hr and T, such that,
for all gn € P* = {0 (®°)7%; ¢y € P},

1_1 _
107 pnll oy < CTVCIT* |7 7 ipnl| Lo (10.1.12)

Proof. When |y| = 0, the proof is standard (see, for example, [30, Lemma
1.138]).
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Let ¢, € P® and |y| >0. From &; = hj_ljj and 7 = A~ 'z, we have, for
1<ik<d,

2 d 2

d"¢n o,

— R h A AY
. o -, J n ]t nk
0x;0x, o= 02,0y,

It thus holds that, for 1 < i,k <d,

Together with (10.1.6) and (5.3.2) (m = ¢ = 0), we have, for 1 < j,n <d,

0*@n
030

829%
8xiamk

Ly(T) .
(10.1.13)

d
1 g ~—=1 o~
< c| det(A%)|q E h; 1hn1‘Asji HAnkﬂ

La(T*) jn=1

9
e ey 1erlwaacs) < clidulingy < et A s
(10.1.14)
Furthermore, it holds that, for 1 <,k < d,
d o~ 1
> b A A < S (10.1.15)

Jmn=1

From (10.1.13), (10.1.14) and (10.1.15) together with (3.6.2), we obtain

By repeating the above argument, we obtain, for a general derivative 07¢y,
with |7/,

1

0? 11
| < dT el

0x;0xy,

La(T*)

1_1 _
187 nllzacrsy < CTVENT |5~ 57 |onllocrs)-
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Applications
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Chapter 11

Second-order Elliptic PDEs:
Non-conforming
Approximation

11.1 Continuous Problem

We consider the Poisson problem as follows. Find u : 2 — R such that
—Au=f inQ, u=0 on 9, (11.1.1)

where f € L*(Q) is a given function. The variational formulation for the
Poisson problem (11.1.1) is then as follows. Find u € HJ(f2) such that

ao(u, ) = (f, %) Vo € Hy(Q), (11.1.2)
where ag : H'(Q2) x H'(Q2) — R denotes a bilinear form defined by
ao(U, SO) = (VU, v@)

By the Lax-Milgram lemma, there exists a unique solution u € H}(Q) for
any f € L*(Q) and it holds that

ul @) < Cp(Q)I I

where Cp(€2) is the Poincaré constant depending on €. Furthermore, if €2 is
convex, then v € H*(Q) and

[l < || Al (11.1.3)

The proof can be found in, for example, [40, Theorem 3.1.1.2, Theorem
3.2.1.2).
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11.2 Crouzeix—Raviart Finite Element Approx-
imation

11.2.1 Finite Element Approximation

We introduce the following subspace of V% for the homogeneous Dirichlet
boundary condition.

VOR = {gohEVhCR: /gphds—OVFE}",?}.
F

The Crouzeix—Raviart finite element problem is to find u$® € VG such that
a$® (SR, on) = bulen)  Veon € VGE, (11.2.1)

where a{® : (VSR + HLHQ)) x (VR + HY(Q)) — R and ¢, : VGE — R are
defined as

ai ™ (n, o) ==Y /TV%L Vpdr = (Vathn, Vien),

TeTy,

Ch(on) 3:/Qf<ﬂhd$-

This problem is nonconforming because CR}, ¢ HL ().

11.2.2 Discrete Poincaré Inequality, Well-posedness, Sta-
bility
We propose the discrete Poincaré inequality on anisotropic meshes, c.f., [62].

Lemma 11.2.1 (Discrete Poincaré inequality on anisotropic meshes). Let

pE (%, 2] and Q is W?P-regular domain in R*. We impose Condition 4.3.1

with h < 1. Then, there exists C(S2), independent of h such that

lenllzz@ < C)|enlmer,y Yeon € ViGH (11.2.2)

Proof. Let ¢, € V,5%. We consider the dual problem. Let z € W?2P(Q) N
H}(Q) be such that

—Az=¢, inQ, z=0 on 0,
with a priori estimates:

1zlm@) < Cpllenllzg),  |12llwer) < cllenllrg) < cllenll 2@,
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where Cp is the Poincaré constant and we used the fact that all the norms
in finite dimensional spaces are equivalent.

To obtain the target estimate, we first introduce simple calculations as
follows.

— /Q div(V2)ppdr = /Q (I div(Vz2) — div(V2))ppdr — /Q (I} div(V 2)) gnd
— /Q(H2 div(Vz) — div(V2))(en — ) y)da
- /Q (div IF7° (V2))pnda
— /Q div(Vz) (pn — ypn) d
_ /Q(VZ — IFT°(V2)) - Viondr + /Q Vz - Vypondr,

where

/(div IFT(V2))ppda = Z / ny - I (V2)opds — / IFT°(V2) - Viyonpda
Q tet, JOT Q

- / (V2 — I (V2)) - Vagndi — / Vs Vignde.
Q Q

We use the duality argument to show the target inequality. That is to
say, we have

B 1

a H%HH(Q)
= (= div V2,0 — pn) — (Vz — I (V2), Vagn) + (Vz, Vin)

< |1 Az||lon — Inl| + V2 — I (V2) || ooy lnl iy + |2l m o lenlmery)
< ¢ (M| Az + hlzlwer ) + |2lm1@) l€nlmi,)

< c(h+h+Cp) lenll2@lenl ),

lenllz2) (n,on) = (=Az, 1) = (= divVz, )

which leads to

lenllz@) < 2+ Cp)lenlarr,) ifh <1

Lemma 11.2.2 (Well-posedness, Stability). The map

©n > [onl () (11.2.3)
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is a norm on V,§E. For any f € L*(Q), the discrete problem (11.2.1) is
well-posedness. Furthermore, it holds that

ug, ¥ r,) < CON S Nl2e)- (11.2.4)

Proof. The nontrivial property is to show that |<ph|H1(Th) = 0 implies ¢y =0
for any o, € VGE. If |y a1ty = 0, ¢p is piecewise constant. The property
Jrlenlds = 0 for any F' e Fj implies that ¢ is globally constant on €.
Thus, ¢, = 0 follows from fF onds = 0 for any F € FP.

We easily have, for any vy, ¢, € V,$E,

’agR(whaSOh)’ < |¢h|H1(Th)‘90h|H1(’]Th)v
ay, " (Yn, ) = |1/}h|§{1(11‘h)'

The discrete Poincaré inequality (11.2.2) yields

I4
Wullwgny = sup AP < o))l < oo,

eneVSR | onl e ry)

and thus, ¢, € (V). By the Lax-Milgram lemma, there exists a unique
solution u{® € V,§® for any f € L?(Q2). For the Crouzeix-Raviart approx-
imate solution u$® € V,§% of (11.2.1), we have a stability estimate, using
(11.2.2),

Jug, "y < I ll2@llug Hlzee) < CEFl2@lug, Har ).,

which leads to (11.2.4). O

11.3 Discrete Trace Inequality

We introduce a discrete trace inequality. Let T € T, be an element. The
faces are defined to be the image by ® of the faces of the reference element
T, and these geometric entries are collected in the set Fr.

Lemma 11.3.1 (Discrete trace inequality). There ezists a positive constant
c such that, for any p € [1,00], any ¢ € WYP(T), any T € Ty, any F € Fr,
and any h,

_1 1.1 1 1
lellzer) < CKT}HQDHLP(IJT) (H‘PHZP(T) + hTHV‘PHzp(T)) : (11.3.1)
where lr p denotes the distance of the vertex of T' opposite to F' to the face.
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Proof. We follow [31, Lemma 12.15]. Let T' € T}, and ¢ € W'?(T). Assume
that p € [1,00). Let F be a face of T and let Pr the vertex of T' opposite to
F. Consider the Raviart—Thomas function

|F|

Op(z) = dT]

(l’ — PF)

One can verify that the normal component of 0 is equal to 1 on F and 0
on the other faces of T'. Because divfp = lﬂ we infer using the divergence

theorem that
1l =/ !solp(eF-n)ds:/div(weF)dx
ar T

B /(|90|” div 0 + pelelP*(0p - V)@)dx

_ 17 L HE|
7 ez

P20 P .

Using Holder’s inequality and introducing the length ¢ defined as the largest
length of an edge of T having Pr as an endpoint, we infer that

P’ MF

p V )

||¢||LP |T‘||¢|| ) d|T| ||7£|| || (;5||LP(7)
Togeth W'ththfttht%<l<3€<h d—'l———d! W
ogether wi e fac at p ee 2 + T an |Tl| g We

conclude that

1
lellzrm) < ¢ TFM\Lp(T (HsoHLp +hTHV90H£p(T)>,

which is the desired result for p <oo. The bound for p = oo is obtained by
passing to the limit p — oo in (11.3.1) because ¢ is uniform w.r.t. p and
because limy o0 || - ||r(r) = || - || oo (1) O

Lemma 11.3.2 (Discrete Poincaré inequality on faces). There ezists a pos-
itiwe constant ¢ such that, for any T € Ty, any F' € Fr, and any h,

I — @rllL2r) KTFhT|<pIH1(T), (11.3.2)
for any o € HY(T) with ¢p := ﬁ [ eds.

Proof. We use the idea of the proof in [32, Lemma 36.8]. Let @ := ¢ —
\T1| Jp¢dx. We then have

oot [ pto o=k [
Y —Pr =Y T 0 pYar —Yrp =Y — 77 pas.
7| Jr \F] Je
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The Cauchy—Schwarz inequality yields
1 ) ) 1/2 1/2
H—/@ds =|F|2 / pds < |F|"2 </ 12ds) (/ ¢2d5>
|F| F L2(F) F F F

= 1@l 22(m)-
The triangle inequality implies that

le — orlle2r) < 2(D|| L2y

Using the trace inequality (11.3.1) together with (1.6.12) and V@ = Vo
yields

1
2

_ 1 1 1
1%lc2r) < clziel@ ey (17132 + hrll Ve )
_1
< CKT,%hT|90|H1(T)7

which leads to the desire result. O

11.4 Second Strang Lemma

The starting point for error analysis is the Second Strang Lemma, e.g. see
[30, Lemma 2.25].

We introduce the space Vi = H%(Q) + VG equipped with the norm
| v, defined as

1/2
el = <|90ﬁ{1(1rh> + 3> trpll(ng - V)90|T||%2(F)> - (114.0)

TeTy, FCOT

We assume that € is convex, and we impose Condition 4.3.1 with h < 1. For
any ¢y, € V,$E, using the discrete Poincaré and trace inequalities,

lnlvy, < cglonlmi(r,)- (11.4.2)

Lemma 11.4.1. We assume that ) is convex, and we impose Condition
4.3.1 with h < 1. For any f € L*(Q), let u be the solution of (11.1.2) and
uS'E the solution of (11.2.1). It then holds that

CR
. a u, - )
lu—ug v, < (1+cg) inf |u—uvply, +cp sup a1, on) = (f (’Dh)|.
v €VGH ereV,GE |90h|H1(Th)

(11.4.3)
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Proof. For any v, € V$E, using (11.4.2) yields

lu—ug v, < |u—uvnlv, + vn — up v,

< |u— Uh|V# + cplun — UgR|H1 (Tr)

CR CR
as% (v, —u
< |u—vnly, +cp sup " (vn = s )]
oneV,GE |on|m (Tr)

aCB(y — yCR
< (1—|—c#)\u—vhlv#+c# sup | h ( h 7(Ph)|
onevr  enlmim)

which leads to (11.4.3). O
We define the global interpolation I5* : H} (Q) — V,GF as follows.
(Lo )l = I7"(elr) VT € Ti, ¥ € Hy(Q).

Lemma 11.4.2 (Best approximation). We assume that € is convex. For
any [ € L*(Q), let u be the solution of (11.1.2). It then holds that

(I) if Condition 3.5.1 is not imposed,

lIlf \u — Uh’V § c h + h|’LL‘H2(Q) .
(11.4.4)
(IT) if Condition 3.3.1 is imposed,
u 0 Orps
inf |u —uply, <c (Z a 5 & (uo Pr-) - h|u|H2(Q)> .
eV TETy ij=1 LT} N pagegiry
(11.4.5)

Proof. Because  is convex, u € H*(Q2). From the trace inequality (11.3.1),
we have, for any F' C 0T,

(g - V) (u = Iig )l )

< CfilF <|U - ]l%Ruﬁ-Il(T) + hrlu — ]I%RU|H1(T)|U|H2(T)>

3 1
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If Condition 3.3.1 is not imposed, from (1.6.1), (7.3.1) and (11.4.6), we

have

inf |u—w <lu-—1 CrRy,
oneVeR | h|V# | hO |V#

1/2
= (Iu— I ulie, + > > £T7F||<nT'V)<u_Ii%Ru”TH%Q(F))
TET), FCOT

+ h‘u’H2(9)> .
TeTy ¢,7=1 L2 T)

By analogous argument, if Condition 3.3.1 is imposed, from (1.6.1), (7.3.3)
and (11.4.6), we have

inf |u— vulv, <C<Z Z

VC
vn€ TEeTy, i,j=1

8 8x]

625

+ h|u|H2(Q)) .

i L2(T*)

11.5 Classical Consistency Error Analysis

We first investigate the jumps of functions in V;$® on meshes violating the
shape-regularity condition. We use the idea of the proof of [32, Lemma 36.9].

Lemma 11.5.1. Let F € F} with F = TyNTy, T, Ty € T, and F € F{ with
F=TnNoQ, T € Ty,. There exists a positive constant ¢ such that, for any
S Vh%R7

> wmin{lr phil, o, ph Y Il e < P IV (on — )z

FeFy, veHo
(11.5.1)

where if F' € Fy, the coefficient min{{r, Fth lr, phy } means that lr, Fh

Proof. Let ¢, € VGE. For any T € Ty, we set HX(T) := {¢ € HYT) :
J;¢dx = 0} and let Fr be the collection of the faces of T'. For any F € Fr,
we consider the Neumann problem as follows. Find ¢z € H}(T) such that

OYr p OV p
on on

1
—AYrp=0inT, = er,pl} phy'[en] on F, = 0 otherwise,
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which leads to the weak form:
1
/ Virp - Vodr = eijf%th}l / [en]ods Vo € HX(T), (11.5.2)
T F

where e := ngp - np = £1. This problem is well-posed because ¢}, € VhCOR,
and the compatibility condition: for any F' € F},,

. phy' / [en]ds =0
F

holds. Because {7 € H}(T), the trace inequality (11.3.1) together with the
Poincaré inequality (1.6.12) implies that
1
| pllzer) < clpZhrlrelm @)

Setting ¢ := ¢r p as a test function in (11.5.2), we have

1
Yr.plH ) = erpli phyt / [en]vr rds
F

l —
< 3 phr | lenll 2oy |orp Ml 2y
< clllenlllrzrm) [Wor,rlm ),

which leads to

el < clllen]llzr)- (11.5.3)

Let v € H}(Q). Let cr be the mean value of the function ¢, — v over
T. The restriction of (¢, — v — cr) to T is in HX(T). Let F € F; with
F=TiNTy, T1,Ty € T, or F € F?. Setting ¢r := (o — v)|r — cr as a test
function in (11.5.2) and summing over T' € T, we have, if F € F},

> / Virp - V(en — v)|rda
T

TeTEr

= Z /V¢T,F'V¢le’
T

TeTr

= Z 5T,F€%,Fh;1/[[¢h]]¢Td8

TeTr F

1
= Z 5T,F€%,Fh51 / [on](onlr —v —cr)ds
F

TeTr
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1 1
> min{l, phy', 03, ohy)'} Z €TF/ on](@nlr — v —cr)ds

TeTR

> Hlin{g%,Fhil7K%Q,Fh”;gl} /F [enllen —v — cr]ds
> win{h ph! th, i} [ Tl — ol
> min{63, phyl, 6, ph} /F lionl?ds,

and F € FP,

/ Viorr - V(e —v)|rde = ETFh / [on]?ds,

where we used that [,[¢s]ds = 0 to eliminate c7 and the fact that v € Hj(Q)
to eliminate [v] = 0. Using the Hélder inequality and (11.5.3) yields

/ Ve - Vlpn — v)lrde < [Veors | |1V (on — o)l
T
< c|llenlll 2y IV (on = v)|7l L2 (r)
which leads to
. 1 1 1
min{l, phy! 02, phy Hlenlll2g < ¢ Z IV (on —v)|rllL2er)
TeTEr
Therefore, we have
min{lr, rhz’, br, mhg HenllFa0m < ¢ Y IV (0n = )zl
TETF

which leads to (11.5.1). O

From the discrete Poincaré inequality on faces (11.3.2), we have a consis-
tency error inequality.

Lemma 11.5.2 (Asymptotic Consistency). We assume that Q is convex.
For any f € L*(Q), let u be the solution of (11.1.2). It then holds that, for
any h and any ¢, € V,GE,

1/2

CR _ hi

|aj, " (us o) (fa@h)|§c Z : T 2|U|%[2(T) . (11.5.4)
|90h|H1(Th) TeT (

5 MM FeaT), gT,F)

where OT}, denotes the set of all faces F of T € Ty,
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Proof. Because Q2 is convex, u € H*(Q2). The normal derivative [, (ny-V)u
is then meaningful in L2(0T). Let @5, € VG, Because —Au = f, we have

B (o) = (f,on) Z/ (Vu -V, — fop)de

TEeTy

-y ¥ / 0 - Vugnds.

TET, FeaT),

Because each face F' of an element T located inside {2 appears twice in the
above sum, we have

(U on) — (fson) = Z Z/TLT u (o — Pn) ds

TET), FEIT),

_ 1 /
Pon =1 | nds.
1F| Je
Furthermore, we get

i uon) = (Fren) =D > /nT (Vu—Vu) (pn — Pr) ds

TEeT), FedTy,

with the mean value

with the mean value

N 1
Vu := —/ Vuds.
IF| Jr

The Cauchy—-Schwarz inequality yields
|ai " (u, 0n) = (f on)] < Z Z IV — WHH(F)dH@h = @nllr2r)

TEeTy, FedTy,

From the discrete Poincaré inequality on faces (11.3.2), we have
— 1
HVU — V'LLHLQ(F)d S C€T72FhT|u’H2(T)

_1
lon — Pullzzry < clpihrlenlm @)
We consequently get

lag " (u, 0n) = (f,n)| < ¢ Z Z —|U|H2 [ nl i (r)

TeT, Fea’ﬂ‘h
.
<c Z 7 ————————u|m2()|on|m1 (1)
Te mlnFeO’ﬂ‘h T,F
1/2
uliery D len
( (minpesr, €TF ||H2 TeTh| |H1 ) 7
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which leads to (11.5.4). O

Because the order of the nonconforming term does not necessarily become
the order h, this inequality may be overestimated.

Example 11.5.3. Let s € R with 0 <s < 1. When we use meshes including

the tetrahedra T with vertices (0,0,0)7, (s,0,0)7, (0,s,0)T, and (0,0, s°)7,

we have, for cihr < s < cohrp,
h

(mingear, l1.r)

2(2—
Nul2 iy < chg = ulZe -

To overcome the difficulty, we use the relation (11.6.1) in Lemma 11.6.1, e.g.,
see also [2, 67].

11.6 Error Analysis on Anisotropic Meshes

The following relation plays a vital role in the Crouzeix—Raviart finite element
analysis on anisotropic meshes.

Lemma 11.6.1. It holds that

/Q (vn - Vi )bpda + /Q divopppde =0 Vo, € V', v, € HL(Q) + VR,
(11.6.1)

Proof. For any v, € V,FT" and ¢, € HL(Q) + V,$F, using Green formula and
the fact vy, - np € P°(F) for any F' € F,, we can derive

/(Uh . Vh)iﬂhd.%’ + / div U}ﬂﬂ}ﬁlﬂf
Q Q

=) /8 T(Uh - np)nds

TeTy,

= Z /F[[@hwh) -npds

FeFy,

- Z /F (ﬂvh ) nFﬂ{{¢h}} + {{Uh}} . TLF[[Q/Jh]]) ds

FeFy,
=0.

184



Lemma 11.6.2 (Asymptotic Consistency). We assume that 2 is convez,
and we impose Condition 4.3.1 with h < 1. For any f € L*(2), let u be the
solution of (11.1.2). It then holds that

(I) if all elements are composed of the type Ty € ‘3(2),55(13)

3.3.1 1s not imposed,

and Condition

|agR(Ua on) — (f5on)

sup
Pn€V,GR |90h|H1 (Th)
co(Sonfgv, snrtan)i e
TET), i=1 LX(T)

(IT) if all elements are composed of the type Ty € ‘3(2),‘3[53) and Condition
3.8.1 1s 1tmposed,

i ™ (u, 1) = (f,0n)]

sup

PreV,OR \90th1 (Tr)
<c Z ( Tllvu) + hr|[ Vs - (\I’T11VU>HL2(¢>;1(T))>
TeT, L2(27, (7)) '
+ ch| fllr2@); (11.6.3)

(IIX) if all elements are composed of the type Ty € 5(23) and Condition 3.5.1
s not imposed,

|agR<Ua on) — (f5on)

sup
eneVQR |nlm(Tp)
3
¢ (Z Z hi + thHL2(Q)) ; (11.6.4)
TET), i=1 LP(T)3
(IV) if all elements are composed of the type Ty € Tg?’) and Condition 3.3.1
s tmposed,
CR .
sup |ah (ua Soh) (f, QDh)|
eneV QR lonl (T,
—1
Vu)
<o3 (Lo hniv agwal )
TET), 2(@;21(T)) T L2(<1>;21(T))3
+ ch| fllr2@); (11.6.5)
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Proof. Because ) is convex, u € H?*(2). Using (11.6.1), we have, for any
Wp € VhRTO,

|ag " (u, o) — (f, on)] |(Vu — wy, Vien) — (divwy, + f, @h)|.

sup = sup
en€VGR ol () PreV,SE |onl a1

(11.6.6)
We set wy, == IFT°Vu. From (9.7.1), we get
div(IF7°Vu) = 119 div(Vu) = 119(Aw).
Furthermore, we have, for any ¢, € Vh%R,
(—If + f, IMhpn) = 0.
We thus obtain

(Y — IET"Nu, Vien) — (=T0f + f, o)
= |(Vu — —U?Tovua Vaen) — (=10 f + f,0n — en)|
< ||Vu - IfTOVU||L2(Q)d|90h|H1(Th) + 1f = ) Fll 2y len — I enll 2 (-

(11.6.7)
From the definition of II9), we have
If =T fll e < (f = I f, f =T f) = (f = I f, f)
<|If =T fll 2l fll 2
which leads to
If =R fllze) < 1 flle2)- (11.6.8)
From Theorem 6.3.1,
”Sph — HgﬁthLQ(Q) < Ch|(ph|H1('[rh). (1169)

If all elements are composed of the type 17 € ‘5(2),‘353) and Condition
3.3.1 is not imposed, from (9.7.2),

IV u = V| aqye < e | D> hE0EVull g2y + bl Aul| 2
TeTy, |€|:1

(11.6.10)
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Therefore, (11.6.2) follows from (11.6.6), (11.6.7), (11.6.8), (11.6.9), and
(11.6.10).

If all elements are composed of the type 17 € 5(2),5(13) and Condition
3.3.1 is imposed, from (9.7.3),

||]5T0vu — V| 2 ()

<ey (Z A0 (U, V)l 2oy oy + 1| Ve - (U V) (e, T))>

TeTy, |6| 1

(11.6.11)

Therefore, (11.6.3) follows from (11.6.6), (11.6.7), (11.6.8), (11.6.9), and
(11.6.11).

If all elements are composed of the type T € ’5:53) and Condition 3.3.1 is
not imposed, from (12.4.6),
LQ(T)3)

Sc Z (Z h* HaiquLP(TP + hTW\HZ(T))- (11.6.12)

TeTy |E|:1

ITE"Vu — V| 20

3
<c Z (Z h* Haivuum(’f)3 + hTZ

TeTh |g|:1

0
a—rkVu

Therefore, (11.6.4) follows from (11.6.6), (11.6.7), (11.6.8), (11.6.9), and
(11.6.12).

If all elements are composed of the type T5 € ‘Igg) and Condition 3.3.1 is
imposed, from (9.7.5),

I TRV — Vul| 2y

—1
_ Vu)
<c) <Z A0 (V) V)|t GT; >
TeT), \|e|=1 b L2(@7,) (1))
(11.6.13)
Therefore, (11.6.5) follows from (11.6.6), (11.6.7), (11.6.8), (11.6.9), and
(11.6.13). O

We consequently obtain the error estimate of the Crouzeix—Raviart finite
element method on anisotropic meshes.

Theorem 11.6.3. We assume that ) is convez, and we impose Condition
4.8.1 with h < 1. For any f € L*(Q), let u be the solution of (11.1.2) and
uS'f the solution of (11.2.1). It then holds that
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(I) if all elements are composed of the type Ty € 1(2),‘353) and Condition
3.8.1 is not imposed,

u — R\V#§C<ZZ

TeTy 1,9=1

+thHL2(Q)); (11.6.14)

L(T)

II) if all elements are composed of the type T € ‘3:(2),‘}:(3) and Condition
( Yy 1
3.3.1 is imposed,

|u - uhR|V#
(uo O ) B
<e ) axsax 1 || Ve (U3 V)| 2oy
TeT, \ij=1 L2(@/(T))
+ ch| 2o (11.6.15)

(III) if all elements are composed of the type Ty € ‘Zgg) and Condition 3.5.1
18 not 1imposed,

|u_uhR|V#gc<z S h,

TeTy 1,5=1

T

+ h||f||L2(Q)) ; (11.6.16)

L2(T)

IV) if all elements are composed of the type Ty € T and Condition 3.3.1
( Y 2

1S imposed,
|u - uhR|V#
2 NN 7=av
SCZ 0*(uo @r,) +hTZ (U7, Vu)
st&t N or}, _
TeT), \ij=1 L2(®7,) (T) k=1 L2(®7,) (1))
+ ch|| fl 2 (11.6.17)

Proof. From (11.4.3), Lemma 11.4.2, and Lemma 11.6.2,

i ™ (u, 1) = (f,0n)]

lu—ug v, < (1+cy) inf |u—vh|v#+c# sup

o EVGR oneVER |enl ey
(1 + c#)\u B IhO U‘V# + Cu  SUp |a’h (Uv ‘Ph) - (f7 Qoh)|’
oneVER lonlmi(ry)
which leads to the desired results. O
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11.7 L? Error Estimate

We next give the L? error estimate of the Crouzeix Raviart finite element
method on anisotropic meshes, also see [67, 22].

Theorem 11.7.1. We assume that € is convex, and we impose Condition
4.3.1 with h < 1. For any f € L*(Q), let u be the solution of (11.1.2) and
u$'® the solution of (11.2.1). If Condition 3.3.1 is not imposed, it then holds
that

d
”U — ugRHLz(Q) S ch (Z Z hz

TET), i,j=1

0

2u
87’1-8.1‘]-

+ thHL2(Q)> . (11.7.1)

L3(T)

Proof. We set ¢;, := u — u§®. Let z € H*(Q) N H}(Q) satisfy

ao(ip, 2) = (p,en) Vo € HY(Q) (11.7.2)
and 25 € V,GF satisfy
ay, " (on, 24 ) = (en,en)  Vion € Vg™ (11.7.3)
We then have
lenllZei) = (ensen) = af (u, 2) — ai " (ug ¥, 2F)
= ap M (u —uy ™ 2 — 27+ ag w =l ) a2 - 2T
O
+aS T (u—uf® 2% — IR 4 af T (u —uf R, IR 2)
+aS B — I, 2 — 207 + af B (I, 2 — 257, (11.7.4)
Theorem 11.6.3 and Theorem 7.3.1 yield
1z — 25 Bl mr,) < chllenllzz@), (11.7.5)
’Z - I]%RZ|H1(Th) < Ch”@}LHLZ(Q), (1176)
||Z — [}%RZ||L2(Q) S Ch2||€h||L2(Q). (1177)

Using Theorem 11.6.3 and (11.7.5), the first term on the right hand side
of (11.7.4) can be estimated as

aon(u —ug ™,z — 257) < Ju—ug ¥,z — 25 )
d 0%u
< chllenllze | DY hi A + bl fllz2e | -
TET, i,j=1 eI NL2(T)

(11.7.8)
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For the second and fourth terms on the right hand side of (11.7.5), using
Theorem 11.6.3, (11.7.5) and (11.7.6), we have

CR CR ,CR _ jCR
ap (= 2, = Tz

= agp(u — ufR, zSR — 2) + aop(u — ugR, z— I,%Rz)

<|u-— UgR’Hl(Th) (‘Zf?R — zlm,) + 12— [f%Rz|H1(Th))

d
0*u
< ch|len]2(0) (Z Z h; T, + thHLz(Q)> , (11.7.9)
TET), i,j=1 v IL(T)
and, analogously;,
al B (uS T — IEfu, 2 — 251
d
0*u
< chllenl 2@ (Z > b 5 + h||f||Lz(Q)> . (11.7.10)
TET, 4,j=1 v NL2(T)

From (11.7.2), (11.7.3) and (11.6.1), we have
a$f(u —uf® I 2)
= ay, " (u, Iy 2) — ai (i, I 2) = (Vu, Vilig™2) — (f, I '2)
= (Vu, ViItz = V2) — (f, I5F 2 — 2) + (Vu, Vz) — (f, 2)
= (Vu — IT°Vu, V, ISE: — Vz) — (f + div(I[7'Vu), ISRz — 2).

From div(IJ7"Vu) = I9(div Vu) = —II9f, using (9.7.2), (11.6.8), (11.7.6),
and (11.7.7), we have

aon (v — u§® ISR 2)
= (Vu— IFT"Vu, VISR — V2) — (f = TOf, IGFz — 2)

0
< |Vu = LIVl el T2 = 2l + 1 = T f e iz — 2l 2@

d
0?u
<ch 2 h; h 2 . 11.7.11
< chllenllz2@) (Z > hillg el RISl m)) (1L.7.11)
TeTy 1,9=1 JILA(T)
Analogously, from div(IFT°Vz) = —II%;, we have

P
= (VplPu — Vu,Vz — ],?TOVZ) — (IfFu — u, e, + diV(I,?TOVz))

0
< |Ifu — ul g,V 2 = IV 2| 2oy + | g w — wll 2@ llen — Ienl|z2)

d 0?*u
< chllen|| L2 Z Z h;

or;0x;
TEeT), i,j=1 v

+ h||f||L2(Q)> ; (11.7.12)

L2(1)
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where we used

0%u
6ri8x]~

)

L*(T)

d
|]}%RU - u|H1('I[‘h) S C Z Z hz

TeTh 4,j=1

IVz — I}?TOVZHLQ(Q)d < ch|z|p2(q).-

Combining (11.7.4), (11.7.8), (11.7.9), (11.7.10), (11.7.11), and (11.7.12), we
finally get

d
0%u
lenllz) < ch (Z Z hill gl Lt h]|f||L2(Q)> ,
TeTy 1,5=1 JNLA(T)
which leads to the target estimate. O]

11.8 What happens if the Synge’s condition
is violated? - Numerical Results

This section presents results of numerical examples. Let Q := (0,1)3. Let
uf and u$® be the P'-Lagrange and P'-Crouzeix—Raviart finite element
solutions, respectively, for the model problem

—Au=2y(l —y)z(1—2)+22(1 —2)z(1 —2) +2z(1 —2)y(l —y) inQ,
u=0 on 0,

which is the exact solution u = z(1 —x)y(1 —y)z(1 — 2). Then, u € H}(2)N
W2(Q).

Let M be the division number of each side of the bottom face and N the
division number of the height of Q with N ~ M7 (see Fig. 11.1). There are
two elements as shown in Fig. 11.2. We set h := % with M = 4,8,16,32. In
this mesh sequence, the Synge’s condition is not satisfied for v > 1 because

H
—T:h%r_7—>oo as hp — 0.

hr
We set H := H(h) := maxrer, Hr. = O(h*77), and it holds that

hmax

hmin

<ec.

For T € Ty, let Iz : C(T) — P' be the local Lagrange interpolation
operator and let I} : C(Q) — Vj, the (global) Lagrange interpolation operator

191



such that Ik(ulr) = (IFu)|r, where Vi, C H}(2) is the piecewise linear
Lagrange finite element space.
From (5.8.11) in Corollary 5.8.3 with (5.3.11), we have

1 H s 3-7
[w = Irulmr) < C|T!2h—T D 10 wree(rey < chy *lulwassr).
T =1

The theoretical error estimate in the Lagrange element finite element method
is then as follows:

_ < inf |u—
lu — uf |1 (o) U}ILIEIV U — vp| ()
< |Ju— Ifulgia) < ch3’%]u|W2,oo(Q) if € <6. (11.8.1)
However, expected theoretical error estimates are then as follows:
u—uy gy = O(H), |u—u;| = O(H?),
u — g | r,y = O(H),  lu —ui ™| = O(H?).

If an exact solution u is known, the error ey := u—wuy, and ej,/2 == u—uy /2
are computed numerically for two mesh sizes h and h/2. The convergence
indicator r is defined by

r = 1 log< ”ehHX ) .
log(2) lensallx

We compute the convergence order with respect to Hi and L? norms defined
by

_ L _
ET’T’}[;(Hl) — |U H/IZl’ﬁl(Q), Errh (LZ) . HU|’|AU|T||’
u u
u—uCR\Hl T lu—wu R“
E?"?"CR(Hl) — ’ h ( h), ETTCR(LQ) . h ’
" | Aull | Aull

for three cases: v = 1.5, v = 1.9 and v = 2.0. In order to compute the above
norms, we use the five-order fifteen-point numerical integration introduced in
[54]. The results are give in Table 11.1, Table 11.2 when v = 1.5, Table 11.3,
Table 11.4 when v = 1.9, and Table 11.5, Table 11.6 when v = 2.0. Further,
NpL and Npc R denote respectively the degrees of freedom for the P!-Lagrange
finite element and the P!-Crouzeix—Raviart finite element.

Observing the numerical results, the convergence indicators r in each
norms are respectively

[u = ug o) = O(H),  |lu—ugll = O(H?),
lu = |,y = Oh), - lu—ui™|| = O(R?).
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Table 11.1: Error of the P!-Lagrange finite element solution (y = 1.5)

M|N [h | H | NE [ Errp(HY) | v [Errp(L?) [r
4 [8 [250e-01 | 5.00e-01 | 225 1.2043e-01 9.5321e-03

8 |22 | 1.25e-01 | 3.54e-01 | 1,863 | 7.0318e-02 | 0.78 | 3.1646e-03 | 1.59
16 | 64 | 6.25¢-02 | 2.50e-01 | 18,785 | 4.4662e-02 | 0.65 | 1.2570e-03 | 1.33
32 | 182 | 3.13e-02 | 1.77e-01 | 199,287 | 2.9479¢-02 | 0.60 | 5.4477e-04 | 1.21

Table 11.2: Error of the P'-CR finite element solution (y = 1.5)

M[N |h | H | NOF | EredB(HY) [ v | ErrR(L) | r

4 |8 2.50e-01 | 5.00e-01 | 1,440 8.2569e-02 3.8242e-03

8 |22 | 1.25e-01 | 3.54e-01 | 14,912 4.0629e-02 | 1.02 | 8.8356e-04 | 2.11
16 | 64 | 6.25e-02 | 2.50e-01 | 168,448 2.0042e-02 | 1.02 | 2.0485e-04 | 2.11
32 | 182 | 3.13e-02 | 1.77e-01 | 1,889,024 | 9.9579¢-03 | 1.01 | 4.8960e-05 | 2.07

Table 11.3: Error of the P!-Lagrange finite element solution (y = 1.9)

M|N |h | H | NE | Errp(HY) | v [ Errp(L?) | r
4 [ 14 [2.50e-01 | 8.71e-01 | 345 1.4873e-01 1.4032e-02

8 |52 | 1.25e-01 | 8.12e-01 | 4,293 | 1.2167e-01 | 0.29 | 9.3061e-03 | 0.59
16 | 194 | 6.25e-02 | 7.58¢-01 | 56,355 | 1.0919e-01 | 0.16 | 7.4989¢-03 | 0.31
32 | 724 | 3.13e-02 | 7.07e-01 | 789,525 | 1.0128¢-01 | 0.11 | 6.4558¢-03 | 0.22

Table 11.4: Error of the P'-CR finite element solution (y = 1.9)

M|N |h H | NOT | ErrR(HY) [ v | Eref®(L?) | r

4 | 14 | 2.50e-01 | 8.71e-01 | 2,496 7.9756e-02 3.2993e-03

8 |52 | 1.25e-01 | 8.12e-01 | 35,072 3.9708e-02 | 1.01 | 7.7177e-04 | 2.10
16 | 194 | 6.25e-02 | 7.58e-01 | 509,568 1.9814e-02 | 1.00 | 1.8781e-04 | 2.04
32 | 724 | 3.13e-02 | 7.07e-01 | 7,508,480 | 9.9003e-03 | 1.00 | 4.6546e-05 | 2.01

Table 11.5: Error of the P!-Lagrange finite element solution (v = 2.0)

M|N [|h | H | N} | Errp(HY) [r [ Errf(L?) [r
4 [16 | 2.50e-01 | 1.00 | 425 1.5862¢-01 1.5909¢-02

8 |64 |1.25e-01 | 1.00 | 5,265 1.4079¢-01 | 0.17 | 1.2472e-02 | 0.35
16 | 256 | 6.25e-02 | 1.00 | 74,273 | 1.3597e-01 | 0.05 | 1.1646e-02 | 0.10
32 | 1,024 | 3.13e-02 | 1.00 | 1,116,225 | 1.3474e-01 | 0.01 | 1.1442¢-02 | 0.03
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Table 11.6: Error of the P'-CR finite element solution (y = 2.0)

M|N [|h | H | NJE | ErrR(HY) [ r | Ereg®(LP) | r
4 [16 | 2.50e-01 | 1.00 | 2,848 7.9473e-02 3.2264e-03

8 |64 | 1.25e-01 | 1.00 | 43,136 3.9647e-02 | 1.00 | 7.6153-04 | 2.08
16 | 256 | 6.25e-02 | 1.00 | 672,256 | 1.9803e-02 | 1.00 | 1.8680e-04 | 2.03
32 | 1,024 | 3.13e-02 | 1.00 | 10,618,880 | 9.8984e-03 | 1.00 | 4.6458¢-05 | 2.01

If Qis convex, u € H*(Q) N H}(Q). In these numerical examples, the
Crouzeix-Raviart finite element approximation is superior to the Lagrange
finite element approximation on these anisotropic meshes. The theoretical
explanation of this point is still open.

Remark 11.8.1. As described in Remark 4.1.3, imposing the Synge’s condi-
tion for mesh partitions guarantees the convergence of finite element methods.
As this numerical example, when v € H}(Q2) N W*>(Q), the theoretical
error estimate was such as (11.8.1). That is, we impose the assumption v < 6.
However, the numerical result implies that the numerical solution diverges
when v > 2. There is a gap in the parameter v range. We can see from this
argument that Synge’s condition is sufficient for safe numerical calculation.
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Fig. 11.1: Mesh: M =8, N =22
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Fig. 11.2: Elements
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Chapter 12

Dual Mixed Formulation of
Elliptic Problem

12.1 Babuska—Brezzi Theorem

In this section, we consider an abstract problem, e.g., see [32, Chapter 49.4
and 50.1].

Let V and M be two real Banach spaces. Let A: V — V'and B:V — M
be two bounded linear operator. We consider the model problem as follows.
Find (u,p) € V' x M’ such that

A(u) + B*(p) = f, (12.1.1a)
B(u) =g, (12.1.1b)

where B* : M' — V' is the adjoint of B, f € V', and g € M.

Let us assume that V' and M be reflexive Banach spaces and let us set
Q = M’'. We thus have B € L(V;Q’') and B* € L£(Q;V’). Note that
Q' = M" = M. Consider the two bounded bilinear forms a and b defined on
V xV and on V x @ such that

alv, w) = (A(v), whyry,
b(U, q) = <B<U)> Q>Q'7Q'
We set

b
||a]| := sup sup M, ||b]| := sup sup M (12.1.2)
vev wev [|v]lv[lwlly vev 4eq [vllviialie

For any f € V' and g € (), the abstract problem (12.1.1) is reformulated as
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follows. Find (u,p) € V' x @ such that

a(u,w) + b(w,p) = f(w) Yw eV, (12.1.3a)
b(u,q) = g(q) Vqe€Q, (12.1.3b)

where f(w) := (f,w)yv and g(q) := (9,9)q o

Theorem 12.1.1 (Babuska—Brezzi). The problem (12.1.3) is well-posed if
and only if

it sup AU (12.1.4a)
veker(B) weker(B) HUHVHw”V
Vw € ker(B), [Vv € ker(B), a(v,w) =0] = [w = 0], (12.1.4b)
and the Babuska—Brezzi condition holds:
b
inf sup LGS =:3>0. (12.1.5)

9€Q eV ||U||V||CI||Q B

Furthermore, we have the following a priori estimates:

lullvy < el fllv: + callaller, (12.1.6a)
Iplle < el fllv: + callalle, (12.1.6b)

where cl = é} Cy 1= %(1 + ”%:H% C3 1= %(1 —+ @), and Cy = H;ZH(CL—F @).

Proof. The proof is found in [32, p. 358]. [

Remark 12.1.2 (Coercivity). The conditions in (12.1.4) are automatically
fulfilled if the bilinear form a is coercive on ker(B). Let v € ker(B). Assume
that

Jag >0, a(v,v) > aollv|l}.
Condition (12.1.4a) is readily deduced from

a(v,v)S sup a(v, w)
”UHV weker(B) “w”V

aollvlly <

Let w € ker(B). Setting v := w yields

sup CL(’U,UJ) > CL(U),U)) > O‘OHwH%/
veker(B)

Therefore, sup,cyer(5) @(v, w) = 0 implies w = 0.
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A conforming Galerkin approximation of (12.1.3) is obtained by consider-
ing finite-dimensional subspaces V;, C V and @), C ). The discrete problem
is as follows. Find (up,pr) € Vi X @), such that

a(uh,wh) + b(wh,ph) = f(wh) Ywy, € Vh, (1217&)
b(un, qn) = glan)  Van € Qn. (12.1.7b)

Let By, : Vi, = @, be the discrete operator of the operator B : V — (), that
is,

(Bu(vn), an)q;,.@n = (B(vn), an) ;. = b(vnan) V(v qn) € Vi X Q.
The null space of By, is such that
ker(By,) == {vn, € Vi © b(vn,qn) = 0 Vg, € Qn}-

Note 12.1.3. One important aspect of the discretisation is that the surjec-
tivity of B does not imply that of By,. In general, ker(B),) is not necessarily
a subspace of ker(B).

Proposition 12.1.4. The problem (12.1.7) is well-posed if and only if

la(vp, wp)]

inf sup T = ay, >0, (12.1.8a)
vh€ker(Bh) o), eker(Bp,) ||Uh||v||wh||v
b
inf sup Ol _ g (12.1.8b)
01 €Qn vV, [|vallvlgnlle
Proof. The proof is found in [32, p. 364]. O

12.2 Dual Mixed Formulation

The Poisson equation (11.1.1) —Awu = —divVu = f can be written as the
following system. Find (o,u) : © — R? x R such that

oc—Vu=0 1in (12.2.1a)
dive =—f in Q, (12.2.1Db)
u=0 on 0f. (12.2.1c)

We consider the following dual mixed formulation: Find (o,u) € V =

H(div; Q) x Q := L*(Q) such that

a(o,v) +b(v,u) =0 Yv eV, (12.2.2a)
b(o,q) = —(f,a) Vqe€Q, (12.2.2b)
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where bilinear forms a : V x V — R and b : V x Q — R are defined by

a(o,v) := (o,v), b(v,q):= (divw,q).

To show that the problem is well-posed, we introduce the inf-sup condi-
tion, e.g., see [32, Lemma 51.2].

Lemma 12.2.1. Let D C R? be a Lipschitz domain. The operator div :
H(div; D) — L?(D) is surjective, and it holds that

div vgdx
inf  sup [ Jp div vgde] > 3, (12.2.3)
q€L?(D) ye H (div;D) HUHH(div;D) HQHL2(D)

where 8 := (Cy(D)* + 1)~z with Cp(D) is the Poincaré constant.

Proof. Let q € L*(D). Let ¢ € H}(D) be such that
(Vo, Vi) = (q.¢) Vo € Hy(D).
We then have
elapy < Co(D)llgllzzp),

where Cp(D) is the Poincaré constant.
Setting vy := —V, we have vy € H(div; D), divyy = ¢, and

[vollFr a0y = IV0ll72(0) + lall72(0) < (Co(D)? + Dllgll72(p)-
We hence obtain

“up [, divugdz [, divoggde - ||Q||%2(D) lall 2oy

vEH (div;D) ||v||H(div;D) N ||UO||H(diV;D) B ||q||L2(D) ||U0||H(div;D)
_1
> (Cp(D)? + 1) 72 lal 2 ()

]

Proposition 12.2.2 (Well-posedness). For any f € L*(Q), the problem
(12.2.2) is well-posed.

Proof. We apply Theorem 12.1.1. We set Xy := {v € V; b(v,q) = 0 Vq €
Q}. Because

0= b(v,dive) = [[divolljzq Yo e Xo,
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we have ||v[|y = [|v]| 2 for any v € X,. We observe that
a(v,v) = v} Vo € X,

and the bilinear form b(.,. ) satisfies the inf-sup condition

b
inf sup DS g (12.2.4)
079€Q ozvev [[v]|vllallo
where || - |lv == || - [|a(aiv;0) and || - |, == || - ||z2(2)- The problem (12.2.2) is
then well-posed. Il

12.3 Raviart—Thomas Finite Element Approx-
imation
Let k € Nyg. We consider the following Raviart—Thomas finite element ap-

proximate problem. Find (ofT", uf™) € Vj, := V;ET" x Q), := M} such that

k

(o op) + blon, ufT) = 0, Yoy, € Vi, (12.3.1a)
Dol aqn) = —(f.an).  Van € Qn- (12.3.1b)

This setting is conforming because Vj, x Q, C H(div; Q) x L*().
The following lemma is fundamental in the analysis of mixed finite ele-
ment approximations.

Lemma 12.3.1. Let D C R be a Lipschitz domain. For any g € L*(D),
there exists v € H'(D)? such that

divv=g inD (12.3.2)
and
vlgipya < lgllzzpy,  vllz2@)e < Cp(D)gllL2(p), (12.3.3)
where Cp(D) is the Poincaré constant.

Proof. We follow [17, Lemma 2.2].
Let B C R? be a ball containing D. We set

. Jg inD,
9730 i B\D.
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Then, there exists a unique solution p € Hy(B) N H%(B) such that
div(Vp)=Ap=¢ inB, p=0 ondB.

It is known that p satisfies the a priori estimate (e.g., see [40, Theorem,
2.4.2.5, Theorem 3.1.1.2])

Ipla2(py < [Pl < | Apll2y < 119l 2s) = 9llz2(p)

We also get the a priori estimate

Pl ) < |pluvs) < Cr(D)|Gl2m) = Cr(D)lIgllL2p)
Therefore, setting v := Vp € H'(D)?, we have (12.3.2) and (12.3.3). O

To show that the problem is well-posed, we introduce the discrete inf-sup
condition,

Lemma 12.3.2 (Discrete inf-sup condition). We impose Condition 4.3.1
with h < 1. Then, there exists a constant B, depending only on the Poincaré
constant, such that

b
inf sup | (Uha Qh)|

VAL > 8, >0, (12.3.4)
€Qn vyevy, |Vnllvillanllq,

where || - [lv, = || - llv and || - llg, := I - [lo-B

Proof. Let ¢, € Q. From Lemma 12.3.1, there exists v € H'(Q)¢ such
that dive = g, in Q, [v[m@e < [lanllg,. and [[v][r2 @ < Cp(Q)llanllq,-
From the Gauss—Gauss formula and the definition of the Raviart—Thomas
interpolation, we conclude that, for any pj, € M},

/le(IRT )prdx = Z /le [RT v)ppdx

TET),
= Z/ (IfTv ) - nrprds — Z/ IRTk Viprdx
Tet, YT TET,
Z/ v - nTphds—Z/v V)prdx
Tet, Y OT TET),
Z /dlvvphd:p—/dlvvphdx—/thhdx
TET),
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which leads to div(IFT"v) = gj. Furthermore, setting pj, := ¢, yields

[ A Dz = oy
Q

From the stability of the Raviart—-Thomas interpolation,

H[f?TkU‘ %/, = H]f?TkUH%Q(Q)d + |l diV(II?TkU)HiQ(Q)
< ¢ (0132 + 1ol @ ) + lanlzo
< (c(Cp()*+1) +1) ||Qh||%2(9)-
We thus have
b(vy, b IRTkU, 1
Vs fwﬁ? - ﬁlngnq;) * @ el

]

Proposition 12.3.3 (Well-posedness). For any f € L*(Q), the problem
(12.3.1) is well-posed.

Proof. We apply Proposition 12.1.4. We set Xpo := {v, € Vi; b(vp, qn) =
0 Vg, € Qn}. Because divwy, € P* for any v), € Xj0, and

0 = b(vp, divuy) = || divvh||%2(g) Yo, € X,
we have |va|lv, = ||val| 2 for any v, € Xpo. We observe that
a(vp,vp) = ||oally Yo, € Xpo,

and the bilinear form b(.,. ) satisfies the inf-sup condition

b
inf  osup —mdn) o (12.3.5)
0£4,€Qn 00,6y, |[Vnl|Vi l|anll @
The problem (12.3.1) is then well-posed. O

Remark 12.3.4. If the extension of IF7* to H(div; Q) is done, we can adopt
the operator I57" as the Fortin operator. Unfortunately, this is not possible
(Chapter B). However, the operator I ,?Tk is well-defined on the space V :=

H(Q)?. Thus, if the domain allows for an inf-sup condition of the form

fQ div vgdx

inf sup > [>0.
Qe |[vllpllalle
where || - || := || - || g1 (q)ya, We can construct the Fortin operator IFT | The

case of minimum regularity H (div;€)) require us to extend domain of the
Fortin operator, e.g., see [32, Lemma 51.10].
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12.4 Error Analysis

From the discrete equations (12.3.1) and their continuous counterpart (12.2.2),
we obtain the Galerkin orthogonality

a(o — Jf‘T ,vp) + b(vp, u — uh ) =0 Vo, €V, (12.4.1a)
b(o —of qn) =0 Vau € Qn. (12.4.1b)

We then get the following Céa-lemma-type estimates with the help of
(12.4.1) and the inf-sup condition (12.3.4).

Theorem 12.4.1. Let o € H'(Q)? and o™ € Vi, be the solutions of (12.2.2)
and (12.3.1), respectively. We then have

k
o — ofT" L2 < llo = IF o p2(qa- (12.4.2)

Furthermore, let (o,u) € H'(Q)% x L*(Q) and (oF7 uB™) € Vi, x Q, be the
solutions of (12.2.2) and (12.3.1), respectively. We impose Condition 4.3.1
with h < 1. It then holds that

o = uf™ |y < = ullpoy + B0 — oF T a@pe, (12.43)
where B, is the constants appearing in Lemma 12.3.2.

Proof. We first have

lo = i |20 = alo — of™ 0 — o)
=alc—of" o0 — I 0) +alo — o I o — oFT).

From the definition of I, }?Tk and (12.4.1b), we have

b(]f?T o— o’ th) 0, Vg, € Qn.

Indeed,
DI o qn) = > / div(IF"" o) gpda

TeTy
Z Z/ ) - npqnds — Z/ (IF" 5 - V) qpda
TeT), FCoT TET),
Z Z/a nthds—Z/a V)qndx
TEeT), FCoT TET),
Z /le oqndr = b(o, qp).
TETh
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Because div(IF™" o — ofT") € Pk, we can substitute div(IF™" o — oFT") for
gn to conclude that

div(I" o — o) = 0.
Therefore, setting vy, := IFT" o0 — oBT" in (12.4.1a), we have
a(o — o [P — o) = 0,
We thus obtain, using the Holder’s inequality,
lo = oi iz < o = oi™ lzayallo = L ollaye,

which concludes (12.4.2).
From (12.4.1a) and the definition of the L?-projection, we have

a(o — a,}ka,vh) + by, Tu — uka) =0 Y, €Vp,
because div vy, € P* and
b(vp, u — TTFu) = 0.

With help of the discrete inf-sup stability (12.3.4) and Hélder’s inequality,
we obtain

k k
lu — uf™ [ r2g0) < llu — Mpull 2 + 1w — w2

b(wp, Iiu — u,]ka)

< |u — qu”LQ(Q) + 8.1 sup

vREV th”Vh
B a(oFT" — o vy,
<l = Tul oy + B sup % _—020n)
vREV] thHVh

_ k
< lu — Tyul| 2@ + B oh™ = oll 2,
where we used that ||vp |2y < [|vn|lv;, O

Theorem 12.4.2. For k € Ny, let £ € Ny be such that 0 < ¢ < k. Let
(o,u) € HH(Q)4 x HHY(Q) and (oF™ ,ul™) € Vi, x Qp be the solutions of
(12.2.2) and (12.3.1), respectively. We impose Condition 4.3.1 with h < 1.
It then holds that

(I) if all elements are composed of the type Ty € 5(2),‘3?) and Condition
3.83.1 1is not imposed,

k
o — U}?T ||L2(Q)d

<ey | >0 KNl +hr Y PPNV ol | ;
TeT, \|e|=0+1 |8|=¢
(12.4.4)
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and

k € - 4
= ™ oy < e D 3 b O5ulluery + B2 o — o™ ey
TeTy, |E|:€+1
(12.4.5)

(IT) if all elements are composed of the type Ty € ‘Ié?’) and Condition 3.3.1
18 not imposed,

k
o — UfT HL2(Q)3

3
do
=5 5( B SRUTIREEE ) o1 12l |
TET), \|e|=t+1 k=1 |e|=¢ L2(T)
(12.4.6)
and
k I3 € — k
lu =i ey < e Y Y W l0%ulliair) + B o — o e
TET), |e|=t+1

(12.4.7)

Proof. Using Theorem 12.4.1 and the interpolation error estimates of The-
orems 6.3.1 and 9.7.3, we thus have the error estimates of the mixed finite
element approximation (12.3.1) on anisotropic meshes. [l
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Chapter 13

Relationship between the
Raviart—Thomas and
Crouzeix—Raviart Finite
Element Approximation for

d=3

13.1 Preliminaries for Analysis

Let us consider a tetrahedron K C R3 such as that in Figure 13.1. Let
z; (i = 1,2,3,4) be the vertices and m;; the midpoints of edges of the
tetrahedron; that is, m;; = %(xz + ;). Furthermore, for 1 <i < 4, let F;
be the face of the tetrahedron opposite z;. Then, by simple calculation, we
find the equality

4
L= Z |z — :EK|2 = [mi4 — m2,3|2 + [maiz — 77”L2,4|2 + [mig — m374|2,

=1

(13.1.1)

holds, where x is the barycentre of K such that xg := %Zle T;.
We present a quadrature scheme over a simplex K C R? (e.g., [82, p.307])
that is easily conformed.

Lemma 13.1.1. For any f € C°(K), the quadrature scheme

[ e~ GG s+ 5 T som)

1<i<j<4
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Fig. 13.1: Tetrahedron

s exact for polynomials of degree less than or equal to 2;

K| < K]
=1 1<i< j<4
Define the function ¢ by
or(r) =L —12|x —zg*, on K.
We then have the following lemma.

Lemma 13.1.2. It holds that

1
m/ er(r)ds =0, i=1,2,34,
7 F;

1 2
W/ ok (x)dx = —L,

144
V de = —L.

Vf e PXK).

(13.1.2)

(13.1.3)

(13.1.4)
(13.1.5)

(13.1.6)

Proof. From second-order three-point numerical integration over Fi,

[ swas = (msa) + Fms) + om0
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we have
1

— vk (x)ds
7] Sy, 7

1
=3 (pr(mas) + @r(msa) + or(maa))
1
3 (3L —12 (\mgg — $K| + |TTL34 — IK| + |m24 — IK| ))
1 12
=3 (3L— Vi (|m23—m14] + |maa — myo|® + Mo — ma 3| )) =0,
which leads to (13.1.4).
Next, using (13.1.2), we have

1
K] J 2o
1 o 1
Z—%ZSOK(%)‘FE > ex(miy)
i=1 1<i < j<4
1 1 2
= 4L_1QZ;$1_Q;K\ +o 6L 12 > Imiy — akl
i=1 1<i < j<4
2
= I,
5

which leads to (13.1.5). We here used

> miy—axl

1<i< j<4
= |mis — 2k|* + M1z — 2x|* + [Mmig — 2K|?

+ |m2,3 — $K|2 + |TTL2,4 — $K|2 + |m374 — [L’K|2
1

L

We similarly obtain
1 / 9
— Vog(x)| dx
7 [ [Vex(@)

242

which leads to (13.1.6). O
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13.2 Relationship

This section shows the relationship between the Raviart—Thomas and Crouzeix—
Raviart finite element problems. Find (777, af™") € V;E™ x M? such that

a(@i ™ o) + b(on, @) =0 Vo, € VT, (13.2.1a)
b(of™ ) = —(I5f.qn) Vau € My, (13.2.1b)

and find uf, " € V" such that
ai " (", on) = (L f,0n) Ven € Vi, (13.2.2)

Here, (13.2.2) is the Crouzeix—Raviart finite element approximation of the
Poisson equation

~Aa=If inQ, @=0 ondQ. (13.2.3)

In the case of d = 2, it is well known that there exists a relationship
between (757 af7") and a$" introduced by Marini; for example, [69]. See
also [66, 55, 67]. We here show the relation in the three dimensional case.

For T € Ty, let L be defined such as (13.1.1) on each 7. Define the
function @7 by

L—12|z —x7)*, onT,
x) = 13.2.4
or(z) {0, otherwise, ( )
where z7 is the barycentre of T'. We set the bubble space By, by
By, := {by € L*(Q); by|r € span{or}, VT € Ty} (13.2.5)

Then, for any vy, € VhCOR and b, € By, because one writes by|r = cppr for
¢, € R, it holds that

(Vatbn, Viaby) = Z cb/ Vi, - Vordz
T

= Z Cb{ Z(”F'V¢h)/
FcoT r

TeTy

prds — / Azbhgonx} =0.
T

We here used the facts that (13.1.4), ng- V), is constant on F', and Ay, =0
on T. That is to say, two finite element spaces VG and By, are orthogonal
to each other. Furthermore, we define the finite element space X?°F by

XpOR = ViCE + By = {bn + bi; n € VISR, b € By} (13.2.6)
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bCR c XbCR

We consider the following finite element problem. Find wuy such

that

aS (R, o) = (VaulC®, Vien) = (0 f, 1) Veon € XpCR. (13.2.7)
The solution u?“f € XP¢% is then decomposed as ut“f = @l + by, with
as' € VG and by, € By,. Note that a$® and by, respectively satisfy (13.2.2)

and the equation
ahCR(bh, Ch) = (Vhbh, thh> = (H%f, Ch) Ve, € By,. (13.2.8)
On each element 7" € T}, (13.2.8) has the form

oy / Vor - Vordr = / Iy fordr, ~r €R,
T T

where by, := Y1 and ¢, := ¢ on T. From (13.1.3) and (13.1.4), we have

1
V= 5HO f VT €T, (13.2.9)
Theorem 13.2.1. Let ut“®? € XPF be the solution of (13.2.7) and( RTO ghT?y ¢

VET® 5 M? the solution of (13. 2 1). We then have Vyul“® € VT and

i = vubCr YT e Ty, (13.2.10)
al = R VT e Ty, (13.2.11)
Proof. The proof can be found in [45]. O

From Theorem 13.2.1, for d = 3, the following lemma holds.

Lemma 13.2.2. Let TS € VICE be the solution of (13.2.2) and (G5, al™") €
VET® 5 M? be the solution of (13.2.1). We then have the relatzonsths

1
|y = vag® — gl f(z —ar) VT €Ty, (13.2.12)
1
_ 0
al |, = %.al" + =0 Tf; |z, — xp|? VT €Ty, (13.2.13)

where x;, 1 € {1 : 4} are the vertices of T € T},

Proof. Recall that we u?“® = 4{F+b;, with a$'" € V,$% and by, = vopr € Bh.
From (13.2.10), for any T" € T},

51" = VulCR = Va{® + v Ver

:vu§R+(72HUTf) (—24(z — x7)),
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which leads to (13.2.12). From (13.2.11), for any 7" € T},

— RTO 0 bCR 0-CR
uyp ' = pu, ™ = 1y, +’YTHT80T

_ 1 2
=1

which leads to (13.2.13). Here, we used that, from (13.1.5),

1 2
I1° = — dr = =L.
T7eT ’T|/T<PT T 5

]

Using the relationship between the Raviart—-Thomas and Crouzeix—Raviart
finite element methods, we have the error estimate of the Crouzeix—Raviart
finite element approximation with the bubble function.

Lemma 13.2.3. We assume that () is convex. We impose Condition 4.3.1
with h < 1. Let u € H}(2) N H%(Q) be the solution of (13.2.3) and ub“" €
XPCR pe the solution of the Crouzeiz—Raviart finite element problem (13.2.7).
There then exists a constant ¢ >0 independent of u, h, such that

(I) if all elements are composed of the type Ty € “S(Z),if’) and Condition
3.3.1 is not imposed,

@ — up i,y < e Y0 NGV 2y + BT fll 220

TEeTy le|=1

(IT) if all elements are composed of the type Ty € ‘Eég) and Condition 3.3.1
s not imposed,
L2(T )

o= sy < 3 (2 Wl
TeT, \|e|=1

Proof. Let (657", al""") € VT x M? be the solution of (13.2.1). From

Theorem 13.2. 1 1t holds that thbCR € VT and 6T = V,ubCF. Setting

o:=Viue Hl(Q) we then have

1/2
_ 0
|U_uh |H1 (Tn) = (Z lo — RT ||L2 T)d) ]

TGT}L

87’k

which leads to the desired results using Theorem 12.4.2. O]
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Chapter 14

Stokes Equation

14.1 Continuous Problem

This section treats continuous settings of the Stokes equations, e.g., see [32,
Section 53.1], [37], [52], [81], and [84, 85]. In this section, let 2 be a Lipschitz
domain in R%. The (scaled) Stokes problem is to find (u,p) : Q@ — R? x R
such that

—vAu+Vp=f inQ, divu=0 in€Q, u=0 ondQ, (14.1.1)

where v is a non-negative parameter and f : Q — R?is a given function. We
set function spaces as follows.

Vi=H} Q)Y Q:=L%Q) = {q € L*(Q); / qdx = O} ,
Q
with norms:

|- lv =" |H1(Q)d7 - lle =1 ”LZ(Q)'

The variational formulation for the Stokes equations (14.1.1) is then as fol-
lows. For any f € L2(Q)¢, find (u,p) € V x @ such that

a(u, 9) +b(p,p) = (f,9) VpeV, (14.1.2a)
b(u,q) =0 Vqe€Q, (14.1.2b)

where a : H'(Q)? x HY(Q)? — R and b : H'(Q2)¢ x L?(2) — R respectively
denote bilinear forms defined by

d
a(v,v) == 1// Vv : Vidr = VZ/ Vu; - Vidz, by, q) == — / div ¢qdzx.
Q = Ja Q
Here, the colon denotes the scalar product of tensors.
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Lemma 14.1.1 (Inf-sup condition). It holds that

b
it sy 0]

> 3>0. 14.1.3
085U Fuly Tallo (14.1.3)

Proof. The proof is found in [52, Theorem 3.46], [32, Lemma 53.9], and [37,
Lemma 4.1]. O

Remark 14.1.2 (Inf-sup condition in W'P-L?). Let p € (1,00) and let
p € (1,00) be such that }17 + z% — 1. Then, the operator div : WyP(Q)¢ —
Ly(Q) :={q e LP(Q) : [, qdx = 0} is surjective, that is, identifying (L§(£2))’
with L (), we have

b
inf sup b, )
g€LE () vew P (Q)d [l @ HQHLPI(Q)

= ﬁﬂp > O,

see [33, Remark 53.10].
Remark 14.1.3 (Helmholtz decomposition [33, 52, 81]). We set

HYQ) = HY(Q)NLYQ), H:={vel*(Q)*: divev=0, v|sqg-n =0},

where dive = 0 and v|sg - n = 0 mean that [,(v - V)gdz = 0 for any
q € H}(Q). The following L*-orthogonal decomposition then holds true:

L) =He V(H(Q),

see [33, Lemma 74.1]. The L2-orthogonal projection Py : L*(Q)? — H
resulting from this decomposition is often Leray projection.

Theorem 14.1.4 (Well-posedness, Stability). For any f € L*(Q)? or f €
V', the weak formulation (14.1.2) of the Stokes problem is well-posed. Fur-
thermore, if f € V', it holds that

1
uly < ;Hva', (14.1.4)
2
Ipllq < Ellfllvu (14.1.5)
If f € L*(Q)4,
Cp
[uly < —=1Pu(H)ll20)a, (14.1.6)

where Cp is the Poincaré constant.
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Proof. We apply Theorem 12.1.1. We set Xy := {v € V; b(v,q) = 0 Vq €
Q}. We observe that

a(v,v) = vjv|}, Vo € X,

and the bilinear form b(.,. ) satisfies the inf-sup condition (14.1.3). Therefore,
the problem (14.1.2) is well-posed.
Let f € V'. Setting v := u in (14.1.2a) and ¢ := p in (14.1.2b) yields

vfufy = [ f - uds < | fllvluly,
Q

which leads to (14.1.4). Here, we used the Hoélder’s inequality. For the
estimate of the pressure, using the inf-sup condition (14.1.3), the equation
(14.1.2a), the Holder’s inequality, and (14.1.4) yields

b(v,p [ fo, - vdi — alu,v)|
Blpllo < sup PPN _ o o
veV ’U|V veV |U|V
fllve|vlv + v|ulv|v
< sup Wlvolv - vfulviol e < 21l
veV |U|V

which leads to (14.1.5).
Let f € L?(2)%. Because u is divergence-free and vanishes at the bound-
ary, we have u € H, and

/Qf-udx:/QPH(f)-udx.

Setting v := wu in (14.1.2a) and ¢ := p in (14.1.2b) yields

v|uly = / Pu(f) - ude <[Py (f)| 2@ llull 22 e
Q
< Cpl| Py (f)l 2y lul 1 @)e,

which leads to (14.1.6). Here, we used the Holder’s and Poincaré inequalities.
O

Remark 14.1.5. If f € L*(Q)¢, the inequality (14.1.6) can be estimated as

C
july < 2| flz2(ee. (14.1.7)

However, a priori estimate (14.1.6) is shaper than this estimate.
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14.2 Crouzeix—Raviart Finite Element Approx-
imation
14.2.1 Finite Element Approximation
Let p € (1,00). We define the Stokes elements (V},, Q) as
Vi = (Vh%R)da Qh = Mi(z) N Lgl(Q)a

with norms

d 1/p
vnlvi, = [vnlwiwe,)e = <Z |Uh,z‘|lv)v1,p(qrh)> s Nlanllen = llanll L ()
i=1
for any vy, = (vp1,...,vn4)7 € Vi, and g, € Q. Observe that Vj, is noncon-

forming in W, ?(Q)%. Therefore, we define ay, : (V 4 V) x (V 4+ V4) — R and
by : (V 4+ Vi) X Qn — R which is the discrete counterparts of the bilinear
forms a and b as follows.

d

ah(uh,vh) =Vv E / thh,i . thhﬂ'dl',
; Q
=1

br(vn, qn) = —/dth Upqnd,
Q

We consider the Crouzeix—Raviart finite element approximate problem for
the Stokes equation (14.1.1) as follows. Find (uy, pr) € Vi, X Qp, such that

an(un, va) + bp(vn,pn) = (f,vn) Yo, € Vi, (14.2.1a)
bh(uh,qh) =0 th S Qh. (1421b)

Definition 14.2.1. The vector-valued local interpolation operator
ZER W)Y — PHT)® VT € Ty,
is defined component-wise, that is,
TERy = (IE vy, . ISR Yo = (v, .. 09)T € WHY(T)<.
We define the global interpolation operator ZC® : W, ' ()¢ — Vj, by

(IR0 |p = IEB(v]p) VT €Ty, Yo € Wy (Q)2.
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14.2.2 Discrete Inf-sup Condition, Stability

Lemma 14.2.2 (Discrete inf-sup condition). Let p,p’ € (1,00) be such that
Ly L —1 We impose Condition 4.3.1 with h < 1. It holds that

p p

b(vn, qn)|
inf sup
n€Qn v,evy, [Vnlwrwcry)allgnll o o

> o> 0. (14.2.2)

Proof. We follows [32, Lemma 55.18].

For any r € L}(Q), there exists v, € Wy (Q)? such that divv, = r and
e [wieya < c||rf|r) (see Remark 14.1.2).

Using Vg, = 0 on T and the definition of Z¢' v, yields

bh(UmQh) = Z /leUthiL‘— Z/ Uy - T thS

TET, TET),
= Z / (Zh Uy ) qpds = Z /le o) qnde
Tet, Y OT TET,

= bh (I}?RU’M Qh)

Because
_ _ _ CR
/ rqpdz = b(v,, qn) = bn(vr, qn) = bn(Zy, vy, q1),
T

using the W, 7P (Q)%stability (see (7.3.5)) of ZCF together with the above
bound on v, yields

rqpdx b N
laal < sup Lorodel T e )

reLP(Q) ||7"||LP(Q) relb(Q) ||7‘||Lp

— sup ‘bh(ICR’Ur,Qh)! |I]?RUT|W17P(Th)d
rel? () ‘Ih UT’WIP(Th) HTHLP(Q)

< sup |br (05 1) \Z5 o lwor,
LASE |Uh|W1’P(Th)d rel? () HrHLP(Q)

< ¢ sup |bn (v, qn)| sup |UT|W17P(Th)d

vRLEVR |Uh‘W1’p(Th)d TELS(Q) HTHLP(Q)
which leads to (14.2.2). O

Remark 14.2.3 (Fortin operator [35]). Let p = 2. The Crouzeix—Raviart
interpolation operator acts as a nonconforming Fortin operator. To show
this, a simpler proof is possible than the proof of Lemma 14.2.2.
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Let v € V and ¢, € Q). We have, using Vg, = 0 on T and the definition
of Z%Rv,

(v, qn) Z/dlvvqhdx— Z/ v - ny)grds

TET), TET,
Z / Ih v nr)qpds = Z /le Ih v)gndx
TeT), YT TET,

= b (T P, qn).

Because that A(IhCRvZ) =0onT €Ty, and ny - V(IFEv;) € P° on a face of
T, we have, for i =1,...,d,

11¢ v,|H1 /|VI By da
—/ SV (IE R I yds — /A([h vi) IF Fvd
or T
:/ ny - V(IR vids
or

—/ ny - V(IF vzds—i—/v By - Vugda
aT
< IF R0 g oy i oy

This concludes that
d
IZ5 0l o, ya Z I Rl < ) il = 10l
i=1

Lemma 14.2.4 (Stability). For any f € L*(Q)%, let (up,pn) € Vi x Qp, be
the solution of (14.2.1). It then holds that

c
unlv, ;HfHL?(Q)da (14.2.3a)

C
IPellQn < =N fllze()e- (14.2.3b)
Bo

IN

Proof. Setting vy, := uy, in (14.2.1a) and ¢, := py, in (14.2.1b) and using the
discrete Poincaré inequality (11.2.2) yields

V|Uh|§11(1rh)d < ||f||L2(Q)dHuh||L2(Q)d < C||f||L2(Q)d|uh’H1(1rh)d7

which leads to (14.2.3a). For the estimate of the pressure, using the inf-
sup condition (14.2.2), the equation (14.2.1a), the Holder’s inequality, the
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discrete Poincaré inequality (11.2.2), and (14.2.3a) yields

by (Vk, Ph | Jo f - vndx — ap(up, vp)|
Sollonllan < sup bl o Lo
vpEVR |Uh|Vh vpEVY, |Uh|Vh
cll fllL2yalvnlvi, + vlunlv, lonlv,
< su
v EVR |vh|Vh
< cf| fll 2@y
which leads to (14.2.3b). O

Remark 14.2.5. For any f € L*(Q)%, let (un,pr) € Vi x Qp be the solution
of (14.2.1). In general, the following equality does not hold.

/f'uhdZE:/PH(f)'Uhdiv- (14.2.4)
" Q

Indeed, because f € L?(Q)%, by the Helmholtz decomposition,
f="Pu(f)+Va, q€H(Q).

= c[|fllr2@)e + v|unly,

We then have
/ frupdr = / Py(f) - updx + /(uh - V)qdzx. (14.2.5)
Q Q

Q
Setting gy, := divy, uy in (14.2.1b) yields

dth Up = 0 in L2(Q)
The second term of the right hand side in (14.2.5) does not vanish because

/Q (- V)gdr = 3 /T (wp - V)gda

- Z /[[(uh‘nF)Q]]dS— Z /divuhqu
FG]‘—h F TET}-L T

= > | [(un- nr)alds,
FeFy, F

and V}, is nonconforming in H(div;{2). Remark that the normal component
[un - np] in Vj, can jump across the mesh interfaces. The elements of vector
space V}, are generally not divergence free in 2. This means that the discreti-
sation is not well-balanced ([32, Remark 53.22]). For this difficulty, in [63], a
well-balanced scheme is is proposed, c.f., see [5] on anisotropic meshes. The
scheme is constructed by using a lifting operator mapping the velocity test
functions to the lowest-order Raviart—Thomas space in order to recover the
property of (14.2.4).
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Remark 14.2.6. We set
VET" .= {u), e VET" . v, -n=0VF € F}. (14.2.6)
If uy, € VET it holds that

/Q(uh -V)qdr = Z [(up - np)q]ds

FeF, F

= Z /F[[uh -nplqds =0,

FeFi

which leads to (14.2.4).

14.3 Second Strang Lemma

Lemma 14.3.1. Let (u,p) € V xQ be the solution of (14.1.2) and (up,pp) €
Vi, X Qp, be the solution of (14.2.1). It then holds that

lu — unly, + [lp — prllq,

: 1. 1
< (@) { inf lu= v+ 3 f I~ il + 3 Euuop) b (143.)

vRLEVH
where

- b
Eh(u,p> = sup |ah(u’wh) (f: wh) + h(wh,p)|‘
whEVh lw v,

(14.3.2)

Proof. Let v, € V},. Setting ¢y, := up, — v, € V3, we get the decomposition
U—Up =U— UV — Ph-
With an arbitrary ¢, € Qp, we have, using (14.1.2b) and (14.2.1b),
br(¢n, p — pn) = bn(un — u,p — pr) + bu(u — vp, p — pr)
= bp(up — u,p — qn) + bu(u — vp, p — pr),
because @), C Q. Using (14.2.1) and he Hélder’s inequality yields
V|90h|%/h = ap(un — Vn, Pn)
= ap(u — vy, on) + an(un, on) — an(u, @p)
= ap(u — vn, on) + (f, 1) = br(@n, pr) — an(u, on)
= ap(u — v, on) + (s 0n) = br(@n, p) + bu(en, p — pr) — an(u, ¢n)

< v|u — vy, [enlv, + En(u, p)|onlv,
+ Mi|up — ulv, [|p — qnllq, + Milu — vilv,|lp — pullg,-
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Using the above inequality, we have
viu —unly;, < 2vlu— vl +2vlenly,
< 2vfu — valy, + 2vfu — iy, enlv, + 2B (u, p)lenlv,
+ 2My|un — ulv, lp — anllQ, + 2Mifu — vnlv, lp — palla,,
< 2lu — vy, + 2vfu — vy, lun — uly, + 2v)u — v},
+ 2En(u, p)u, — uly, + 2E4(u, p)lu — valv,
+ 2My|un — ulv, lp — anllQ, + 2Mifu — valv, I — pullQ,-

Using Young’s inequality ab < 2a? + 1b? with a,b € R, and arbitrary ¢ >0,
we have, for any 1,65 >0,

Ve 4v
2vlu — vplv; [un — uly;, < Tl|uh —ulf, + —lu— il
1
Ve 4
2E (u, p)|up, — uly, < Tl|uh —ul}, + —En(u,p)?,
Ve
ey 2 7 2
Milun = ulv P = anlln = =~ lun = uly;, + ——=llp = aullg,
veq
4M?2y

E2
2Mi|u — vplv, |lp — pallq, < EHP —ullg, + lu—vpl3, ,

v 4
2E5 (u,p)lu — vply, < Z|u —wply, + ;Eh(u,p)Z.
Setting €, := 1, we obtain

16M2 AM?

32
) |u — vnl§, + 7”1? —anlly, + ﬁEh(U,p)Q

lu—uly, < (33 +

€9
+ lip = pl,

The intermediate result will be used later on.
For estimating the pressure error ||p — psl|q,, we use the inf-sup stability
relation (14.2.2) with p = 2. With an arbitrary ¢, € Qp, it follows that

o —pillo, < e — anllo, + llan — prllo,
br(Vhs qn — Dh)

1
<|lp—arllq, + 5 sup

60 v EVY, |Uh|Vh
<Ilp — anllon
b — 1 b —
+— sup h(Vns gn — p) + = sup n(Vn, P — D)
/80 v EVR |Uh|Vh /80 vRLEVR |Uh’Vh

1 1 br(Vn, p — Pn)
< 1+_) P—an + = sup ———.
( 50 || ||Qh /80 v EVY |vh|Vh
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Furthermore, we have

br(vn, p — pn)
sup —————
’L)hEVh |Uh|Vh
~ sup an(u, vn) + bp(vn, p) — (f, vn) + an(up — u, vy)
v €EVY |Uh|Vh

< En(u,p) + v|u — uplv,.
Therefore, it holds that

2

1\? 9y
lp = pally, <9 (1 + %> Ip—anlld, + BgEh<u )’ + —§|U — upl3, -

Combination of the intermediate results and choosing 5 := % 32 yields
Ju — 3,
16 % 18]\42 AN? 32
<A B3+ —— ) lu—wlty, + —5llp — anlld, + 5 En(u,p)?
32 v v
B2 1\? 1 1
to, 1+5 HP—QhHéhﬂLﬁEh(%P)QJF§’U—Uh\%/h,
which leads to

1 1
o= why < G0 {lu— b+ 3o~ o, + S Balur) |

for some a positive constant C1(5y). We thus have

1 1
[P = prlle, < Ca(Bo) {!U = Whlv, + ~llp = anllq, + ;Eh(%p)} ,
for some a positive constant Co(fp). These estimates implies the desired
result. O
Lemma 14.3.2. Let (u,p) € V X Q be the solution of (14.1.2) and (un, pp) €
Vi, X Qp, be the solution of (14.2.1). It then holds that

1
lu — uply, <2 1€n)£ lu — vplv, + Eho(u p), (14.3.3a)
hO

1 1
Ip—prlloy < (1 n %) I = avllow + - (Bl ) + vl = )
(14.3.3b)

where

ap(U, Wp Wh
EhO(u7p) ‘= Sup | ( ) (f )l
’whEXh() |wh|Vh

(14.3.4)
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Proof. Let v, € Xyg. Setting o, := up — v, € Xpo, we get the decomposition
U—Up =U— Vp — Pp.
Using (14.2.1) and he Hélder’s inequality yields
vienly, = an(un — va, on)
n(w = vn, n) + an(un, on) — an(u, on)

h(u — Up, SOh) + (f7 SOh) - ah(% SOh)
< y|u - Uh\vh|90h\vh + Eh0<u7p)‘90h‘Vh'

=a
=a

We hence have

viu —uply, <viu—uvuly, +v|enlv,
< 2vju — vplv;, + Eno(u,p),

which leads to (14.3.3a).
By analogous argument in Lemma 14.3.1, we have (14.3.3b). O

14.4 Consistency Error Analysis on Anisotropic
Meshes

The essential parts for error estimates are the consistency error terms (14.3.2)
or (14.3.4).

Lemma 14.4.1. We impose Condition 4.5.1. Let (u,p) € (V N H*(Q)%) x
(Q N HY(Q)) be the solution of the homogeneous Dirichlet Stokes problem
(14.1.1) with data f € L*(Q)%. If all elements are composed of the type
T, € ‘3(2),‘353) and Condition 3.3.1 is not imposed, it then holds that

|an(u, wy) — (f, wp) 4 bp(wh, p)|

Ep(u,p) = sup
wpEVy |wh|Vh
d )

<oy > hy 5, Vi + cvh|| Aul| 2 (e + chlpla) + chll £l 2@,

= T; 2(7\d

TET), i,j=1 J LA(T)
(14.4.1)

Proof. For:=1,...,d, we have

div([,fTO (vVu; — pe;)) = Hg div(vVu; — pe;) = Hg (I/Aui — gp) = —H?Lfi,
€T
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where (e, ...,eq) denotes the Cartesian basis of R<.
Setting v, = IFT"(vVu; — pe;) and using (11.6.1), we have, for any
wp, € Vyandi=1,...,d,
V/ Vi - Vywyde — / fiwp, idx — /(pei) - Vywy, i dx
Q 0 Q
= /(Vvui —vp) - Vwydx — /(fi + div vp)wp i dr — /(Pei) - Vywydx
Q Q Q
=v / (Vu; — IFT" V) - Vywygda — / (fi — IO f:) (wp i — My, ;) da
0 Q
+ /(I,?TO (pei) — pe;) - Viwyde,
Q

which leads to

d
ah(% wh) - <f7 wh) = VZ/(V%‘ - [;I;”Tovui) - Vywpdx

—Z/ thz Wh; — H?Lw;m)dx

+ Z/ (IET (pe;) — pe;) - Viwpdx
=1+ 1)+ Is.

Using the Hélder’s inequality and (9.7.3), the term I is estimated as

d
’11’ S VZ Z HVUZ - I,?TOVUZ»HLz(T)d|wh,i|H1(T)

i=1 TcT),
d 12,y 1/2
0
< (3 19 Al ) (303 oo |
=1 TeTy i=1 TEeTy
1/2
d d
<cv Z Z Z hQEHaivuiH%?(T)d + Z Z h||V - VUz’H%z(T) |wh im0
i=1 TET}, |e|=1 i=1 TETy,
1/2
< CV(Z Z h Vul +h (Z Z HAUZHL2 T)) > |wh|H1(Th)d.
TET), i,j=1 L2(T)d i=1 TET,

The term I is estimated as, using the Holder’s inequality, (6.2.1) and
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(6.3.2),

d
1L <) Ifi = 105 fill gy 1w — TIwn il r2qe)

=1
< ch|| fll L2 e |wh] gy, ya-

We estimate 5 as follows. Using the Holder’s inequality and (9.7.3), we have

d
13| < Z 1157 (pe;) — peill 2 [whil eny)

=1
1/2
(Z Z H]RTO (pei) pez‘H%Q(T)) |Wh |1 (1)
=1 TET}L
1/2

< c(z S S e B+ 3 3 BRIV - (el ) e

1=1 T€T}, |e|=1 i=1 T€eTy

/

< ch (Z Z ax ) |wh’H1(Th)d.

i=1 T€T), tHLA(T)

Gathering the above inequalities and using the Cauchy—Schwarz inequality,
we conclude that

|an(u, wn) — (f, wn) + bp(wp, p)|

’wh|Vh
<y Z h; Vuz + cvhl| Aul| 2 ya + chlp|aa) + chl| £l 2@,
TeTy ¢,7=1 L¥(T)4
which is the desired result. O

Remark 14.4.2. For i =1,...,d, we have
div(IE" (vVu;)) = 1) div(vVu;) = 119 (vAw,) .

Setting vy, := I,fTO(l/Vui) and using (11.6.1), we have, for any wy, € Xpg
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and2=1,...,d,
y/ Vi, - Viywpde — / fiwp, idx
Q Q
= /(qui — ) - Vywyde — /(fl + div vp)wy, ;dx
Q Q
= V/(Vui — I,?TOVUZ-) - Vywy, i dx
Q
0 dp
— [ (—vAu; + v Au))wy i de — | ——wp, ;dx,
Q o O;

which leads to

d
ah(% wh) - (f7 wh) = VZ /Q(Vuz - ];?Tovui) - Vywy, dx
=1

d
— I/Z /Q(—Aui + HgAui)wmdx — /(wh - V)pdx
i=1

Q

= J1+J2+J3.

Because p € H(2), as described in Remark 14.2.6, if w;, € VBT it holds
that

Jy = /Q(wh - V)pdz = 0. (14.4.2)

Using the Holder’s, Cauchy—Schwarz inequalites and (9.7.3), the term .J;
can be estimated as I; in Lemma 14.4.1. The term Jy can be estimated
as Iy in Lemma 14.4.1 by using the Hélder’s inequality, (6.2.1) and (6.3.2).
Therefore if J3 = 0, it holds that, for any w;, € X,

|an(u, wy) — (f, wh)] vy Z h Vuz + cvh|| Aul| 2 ()
|[whvs, TET), i,j=1 L2
which leads to
1
L e 3 S u 2w retlaulio
TeTy i,j=1 Ly
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Then, the error estimate (14.3.3a) is described as

[u — unly,

1
< 2 inf — —-F
< vhlenxho |u — vply, + » on(u, p)

87"]'

+ ChHAUHLQ(Q)d

d
<2 inf |lu—w +c h;
- ’UhEXhO ‘ h’Vh Z Z J L2(T)d

TETy, i,j=1

(14.4.3)

A notable feature is that v does not appear on the right-hand side of (14.4.3).
To achieve this, schemes should be constructed so that J; = 0.

14.5 Well-balanced Scheme

In this section, we introduce a well-balanced scheme proposed in [63] and in
[5] under the maximum-angle condition. The schemes have features described
in Remark 14.4.2.

We define the global lowest-order Raviart-Thomas interpolation I7T" :
HY Q) & Vi — VET as

IV = I (vlr) YT €T, Wo € HY(Q)' @ Vi

We then consider the well-balanced type Crouzeix—Raviart finite element ap-
proximate problem for the Stokes equation (14.1.1) as follows. Find (up, ps) €
Vi x @y, such that

ah(uh, Uh) + bh(vh,ph) = (f, ];%Tovh) Yo, € Vi, (14.5.1&)
bh(uh, qh) =0 th c Qh. (1451b)
Lemma 14.5.1 (Stability). Assume that Q is convex. We impose Condition

4.3.1 with h < 1. For any f € L*(Q)%, let (up,pr) € Vi X Qp be the solution
of (14.5.1). It then holds that

C
[unlvi, < — [l fll 2@, (14.5.2)

Proof. Let v, € V},. Using the discrete Poincaré inequality (11.2.2), (9.4.8),
Lemmata 9.5.1, and 9.5.2,

0 0
[bits Uh||%2(9)d = Z 117" Uh”%?(T)d <c Z ||Uh||cll{1(T)d < C|Uh|%/h,
TeTh TET}L
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which leads to
H[}%TOU}LHLQ(Q)d < c|vn| g r,)e- (14.5.3)
Setting vy, 1= uy, in (14.2.1a) and gp, := py, in (14.2.1b) yields

0
V‘uh‘%{l('ﬂ‘h)d < Hf”m(fz)dH[ﬁ)T up||z2@pa < |l fllz2@yalun] micr, e,

which leads to (14.5.2). O

14.6 Consistency Error Analysis of the Well-
balanced Scheme

Lemma 14.6.1. We impose Condition 4.3.1. Let (u,p) € (V N H3(Q)%) x
(Q N HY(Q)) be the solution of the homogeneous Dirichlet Stokes problem
(14.1.1) with data f € L*(Q)?. If all elements are composed of the type

T, € 5(2),‘153) and Condition 3.3.1 is not imposed, it then holds that

lan (u, wp) — (f, I wy)]

1 1
;EhO(u7p) ‘= — sup

V wpeXno |wh|Vh
a B,
TET, i,j=1 J LX(T)d

Proof. Setting vy, := I’ (vVu;) and using (11.6.1), we have, for any w, €
Xypandi=1 ... .d

1//thi.Vhwh7idx—/fi(lﬁ)Towh)idw
Q Q
= /(VVW —vh)~Vhwh,l-dx—/fi([ﬁ)Towh)idSE—/diVthh,z'dl'
0 Q Q

= y/(Vui — I,?TOVUZ-) - Vywy, i dr — / (—yAui + @> (I,%Towh)idx
Q Q a:L'

)

—v / (T19 A (wny — (I wy, )y )dw — v / (110 Awy) (I w), )i
Q Q

— / (Vu; — IFT° V) - Viwygda + v / (Au; — 10 Aw;) (IET wy,)sd
Q Q

— u/(H%Aui)(whvi — (I,%Towh)i)da: — / @([;%Towh)idl',
Q q 0T

228



which leads to

d
ap(u, wy) — (f,wp) = I/Z/(Vui — ]fTOVui) - Vywy, dx
— Jo
d
- / (s — T Awg) (I wy,) s
i=1 7

d
- /Q (119 Aus) (s — (187w )s)d
=1

/ (IE" w) - V)pda
Q
= K1+KQ—|—K3+K4.

Using the Hoélder’s, Cauchy—Schwarz inequalities and (9.7.3), the term
K can be estimated as [ in Lemma 14.4.1, that is,

1/2
wi<or( S Snze] (S Siauti) ) b
L2(T)4

TeTy ¢,7=1 TeTy, i=1

Using the Holder’s, Cauchy—Schwarz inequalities, (9.4.8), (6.2.3), (6.2.12)
and (9.6.2), the term K, can be estimated as

Vu,

| <UZ/ | Ag — T A | (1w ) — wn il

+v Z/Q | Au; — H?lAuinh,i — H%wh,ﬂdx

< evhl|| Aul| p2(ya |wi| gty

where we used the fact that
Q

Using the Hoélder’s, Cauchy—Schwarz inequalities, (6.2.12) and (9.6.2), the
term K3 can be estimated as

|K3| S CVhHAuHLQ(Q)d|wh|H1('ﬂ~h)d.

Because p € H!(2) and ],]L%Towh € Vh]gTov

K, = —/((],%Towh) - V)pdz = 0.
Q

Gathering the above inequalities yields the desired result. Il
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Remark 14.6.2 (L? error estimate). The L? error estimate of the well-
balanced scheme on shape-regular meshes is proven in [65]. However, the L?
error analysis on anisotropic meshes is still open. For the standard Crouzeix—
Raviart approximate problem, it is possible to obtain the L? error estimate.

14.7 Further Topics

14.7.1 The k-th order Crouzeix—Raviart Finite Element
Methods

We consider the case of d = 2 and k > 1. The k-th order Crouzeix—Raviart

finite element method is constructed in [71] and is analysed on shape-regular

meshes.
For any T' € T}, the enriched space V¥(T) is defined by

VH(T) .= PH(T) + S*NT), k€N,

where ¥2(T) = () for k = 1. Examples of the subspace L*1(T") c P*1(T)
is introduced later. We define discontinuous finite element spaces by

Py = {an € L*(Q); qulr € VH(T) VT € Ty},
Zc_,flz = {qn € L*(Q); qulr € P HT) VT € Ty}

Furthermore, we define the (weakly continuous) nonconforming finite element
spaces by

Plﬁc’h = {vh € Pfqh : /pk_l[[vh]]pds =0VEF € Fp, Vpp_1 € Pk_l(F)} ,
F

Vulfc,h = (P'Lﬁc,h)dﬂ

k— k—
h b= Qdc,i ne,

with norms

J 1/2
[onlye = <Z|vh,i|§p(th)> o lanllge-r = llanllz2@)
i=1
nand g, € QF'. When k =1, P}, is
just the standard Crouzeix—Raviart finite element space.

Let k> 2. Let Ar; : R? > R, i=1,...,3 be the barycentric coordinates
of the element T € T}, such that the edge Er; of T' corresponds to Ar; = 0,
i =1,2,3. We define the subspace L*(T) c P*1(T) by

SEHNT) := span{bp A PNy g i =0,... k — 2},

. T k
for any v, = (vp,...,004)" € Vi
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where

bT = ()\T,l - /\T,2)<)\T,2 - )\T,3>(>\T,3 - )\T,l)'

We give the local nodal functionals on H'(T}) by

. 1 [t . _ ,
N;ET’Z-(U) = _/ U(xET,i(S)vyET,i(s)”TLJ(S)dS? J=0, i=1,2,3,

2 1
; 1 ; . k(k—1
N%(U) = m/j:v(xay)M%CU?y)d:Ea J= 17' S ( 9 )a

where {M37} is an arbitrary but fixed basis of P*~2(T) and L/ is the j-th
Legendre polynomials. The edge Er; with end points A = (z4,y4)" and
B = (xp,yp)" is parametrised by s € (—1,1) such that

s+1 s+ 1

5 (xp — 4), yET,i(S) =ya+ 9 (yB — ya)-

mET,i(s) =TaA+

For each element 7" € T}, and any integer k > 2, we define the set of nodal
functionals by

Np={Nf, :i=1,23, =0, k—=1}U{N}: j=1,... . k(k—1)/2}.

The set N of nodal functionals is V*(T')-unisolvent ([71, Theorem 1]). The
triple (7', V¥(T'), N'F) is then a finite element. We define the local interpola-
tion operator

I{fw C HY(T) — V(T
as

Ni(Iyerp) = Nilp) Yo € H(T), VN, € N7

14.7.2 Inf-sup Conditions

It is an interesting theme to consider the Stokes element (V},, ;) on anisotropic
meshes satisfying the inf-sup condition (12.1.8b).

14.7.2.1 The k-th order Crouzeix—Raviart Finite Element Pair
(Va, Qn) := (Vi Q3 1)
When k£ =1 and d € {2, 3}, also see Remark 14.2.3.
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Lemma 14.7.1. Assume that there exists a local interpolation operator
IYoq : H(T) = VHT) VT €Ty,

satisfying the following properties: for any ¢ € HY(T),

w

/pk_l(fkcﬁT(p —p)ds=0 Vpy_, € P*Y(F), FcoT (14.7.1a)

F

/ Gh—2(Lyertp — p)dz =0 Vgp_o € P**(T), (14.7.1b)
T

Let TF

wen V= H} () — Vlfc,h be the global interpolation operator defined
as

(Ikc7hv)|T = IL’ZC’T(MT) VI €T, YveV.

w

Then, the operator I{fw’h has the following properties:

bh(Izlf;c,hUJ qh) = bh(U, qh) YveV, Vq,e€ inl, (1472)
’Iqlf;c,hU’Hl(ﬂrh)d < ’U|H1(Q)d Vo eV, (14.7.3)

that 1is, the operator I{fjc,h acts as the Fortin operator.

Proof. Let v € V and ¢q;, € Qi’l. Using Vg, = 0on T it k =1, Vg, €
PE2(T)% if k > 2 and the definition of Zf_ ,v yields

bn(v, qn) = Z /diVUthx
T

TeTy

= Z {/BT(U'”T)thS—/T(U-V)qhd:p}

TeTy,

- Z {/ (‘,Z’.f}c U nT)ths - /(I’IIZC U V)thl'}
aT ' T ’

TeTy,

= Z /diV(I{f]C’hU)qhdI = bh(Iffw’hv,qh).
T

TeTy,

The H'-stability is shown as follows. Remake that A(I},,v;) = 0if k = 1,
AL, o) € PR2(T) if k > 2 and n - V(I v;) € P*'(F), where F is a

232



face of T' € T,. We then have, fori =1,...,d,
|Itltczc,hvi|§{1 / |v we, hvl de

- / V(Iilf)c hvi)Iﬁc,hvidS - / A(Iic,hvi)jf)c,hvidx
oT T

= / ny - V(IF, v vids — / A(IFv)vde
or ’ T ’

= / ny - V(I pvi)vids — / nr - V([ff]qhvi)vids

oT

/V wchvz -Vvdx

= | wc,hvi’Hl(T)|vi|H1(T)

This conclude that

d
|Iqlf;c,hv|%ll(11‘h)d = Z |I£c7hvi|%11 < Z |UZ|H1(T) |U|H1 (Tp)e
=1

14.7.2.2 Taylor—-Hood Element

We define the H*'-conforming finite element space by

Pl ={vn € Pl : [ulr=0VF € F},
Pl ={vn € P, w|p=0VF € F}},
Vckho = (Pckho)d>
h = Pckh ne.
It is known that the Stokes element (V,, Q1) = (V5. Q") which is the

lowest order Taylor-Hood element satisfies the discrete inf-sup condition on
anisotropic triangulation meshes ([16]).

14.8 Numerical Tests

Let Q := (0,1)%. We set ¢(x1,z2) := 22(xy — 1)%23(25 — 1)?. The function f
of the Stokes equation

—Au+Vp=f inQ, divu=0 inQ, u=0 on 0,
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is given so that the exact solution is

Ui S
()zrotgpz dw |, p=axi—
u2 _8_:c1

Let M be the division number of each side of the bottom edge and N the
division number of the height of €2 with N ~ M7. We set h := %

0.9F

0.8

0.7

0.6

0.5

0.4F

03}

0.2

0.1k

Fig. 14.1: Anisotropic Meshes v = 1.5 (M=8, N=22)

If an exact solution u is known, the error e, := u—wuy, and ej,/2 == u—wuy /2
are computed numerically for two mesh sizes h and h/2. The convergence
indicator r is defined by

r= L log< lenllx ) .
log(2) lenslx

We compute the convergence order concerning norms defined by

[u—unlv, + P — pullQ,
|ulv,, + [Pl
||u — uh||L2(Q)2

Err,(ll) (Vi; Qn) :=

)

9

Err?(L?) =
) = i ey

for a case: v = 1.5.
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FreeFem-++

For numerical computation, we use FreeFem++ which is an open source
PDE Solver using finite element methods [43], also see [72]. We consider the
following approximate problem with a penalty. For a sufficient small € >0,
find (u5,p5) € Vi x Qp, such that

an(uy, vp) + bu(vn, 05,) = (f,vn) Vo, € Vi,
br(uy,, qn) —(pf,qn) =0 Y, € Qp,

where Vj, and @Q), are finite element spaces. Remark that Q), C L*(€2). How-
ever, in FreeFem++, one cannot calculate norms such as

lu—unlv,, P —pull,, v —unllL2@)e.

Therefore, some ingenuity is required. Let II;,. be the interpolation into a
finite element space on the finest mesh. Using this operator, one calculates
the following norms:

|Hfineu - Hfineuhlvha HHfznep - HfinethQ;ﬂ ||Hfineu - Hfineuh”LQ(Q)Q-

Listing 14.1: FreeFem++ Code

mesh ThO = square(256,4096) ;
mesh Th = square(4,8);

real alpha=1.0;

fespace VhO(ThO, Pinc);
fespace QhO(ThO, PO);

© 00 N O Ut W N

fespace Vh1(Th, Pinc);
Vhl ul, u2;

Vhil v1, v2;

fespace Qh1(Th, PO);
Qhl p, q;

e e el
T W NN = O

VhO uel= alpha*x*x*(x—1)*(x-1)*(2xy*(y-1)*(y-1)+2*xy*xy* (y
-1));

16 VhO ue2= —alpha* (2¥x* (x-1)*(x—1)+2*kx*xx* (x-1)) *y*y* (y-1)*(y
-1);

17 QhO pe=x*x-y*y,

18

19 func f1 = -alpha* (12*x*x—12%x+2)* (2ky* (y=1)* (y—1) +2*y*y* (y
-1))-alpha*12*x*kx* (x—1) * (x-1) * (2%y-1) +2%*x;

20 func £2= alpha*12%(2%x—1)*y*y*(y-1)*(y-1)+alpha* (2*x*(x-1)

* (x—1) +2%x*x* (x—1) ) * (1 2%y*y—12%y+2) - 2%y ;
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21
22
23
24

25
26
27
28
29
30

31

32
33
34
35
36
37
38
39

40

Note

0;
0;

func gdil
func gd2

solve stokes([ul,u2,pl,[vl,v2,q]) = int2d(Th) ( dx(ul)*dx(v1)
+dy (ul) *dy (v1) +dx (u2) *dx (v2) +dy (u2) *dy (v2) ) - int2d(Th)
(px(dx(v1)+dy(v2))) - int2d(Th) (g*(dx(ul)+dy(u2))) +
int2d (Th) (p*q*0.000001) - int2d(Th) ( fl*vi+£f2%v2) + on
(1,2,3,4,ul=gd1,u2=gd2) ;

VhO uul=uil;
VhO uu2=u2;
QhO pp=p;

real erruH0l = sqrt(int2d(ThO) ((dx(uul)-dx(uel))”2 + (dy(uul
)-dy(ue1)) 2 + (dx(uu2)-dx(ue2)) 2 + (dy(uu2)-dy(ue2))
"2));

real exuH01 = sqrt(int2d(ThO) ((dx(uel)) "2+ (dy(uel)) "2+ (dx(
ue2)) 2 + (dy(ue2))"2));

real errul2 = sqrt(int2d(Th0) ((uul-uel) "2 + (uu2-ue2)~2));
real exul2 = sqrt(int2d(ThO) ((uel) “2+(ue2)"2));

real errpL2 = sqrt(int2d(Th0) ((pp-pe) ~2));
real explL2 = sqrt(int2d(Th0) ((pe)~2));

cout << "(erruHOil+errplL2)/(exuHO1l+expL2) = "<<(erruHO1l+
errpL2) / (exuHO1+expL2) <<endl;
cout << "errulL2/exul2 u = "<<errulL2/exul2 <<endl;

14.8.1. The finite element spaces available in FreeFem++ can be

found in [42].

14.8.1 Standard Crouzeix—Raviart Finite Element Ap-

proximation

The first case gives numerical results for the pair (V,, Qy) := ((V,$F)?, M2 N
L%(€)) in Section 14.2. As mentioned above, we use the penalty method with
the space @), instead of ();,. The theoretical results are as follows.

lu — uplv, + [P — prllg, = O(h),
HU - UhHm(Q)d = O(hQ)-
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Table 14.1: Error of (Plnc, P0) (y = 1.5)

M ‘ N ‘ h ‘ Errgl) ‘ r ‘ Errf) r

4 8 2.50e-01 | 5.5680 6.0771e-01

8 22 1.25e-01 | 2.6855 1.05 | 1.7162¢-01 | 1.82
16 64 6.25e-02 | 1.2336 1.12 | 4.6020e-02 | 1.90
32 182 3.13e-02 | 5.4162¢-01 | 1.19 | 1.2049e-02 | 1.93
64 512 1.56e-02 | 2.2997e-01 | 1.24 | 3.0752e-03 | 1.97

256 (Finest mesh) | 4,096 | 3.91e-03 |

|

|
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14.8.2 Taylor—-Hood Element

For k£ € N, we consider the Taylor-Hood element introduced in Section
14.72.2. We set (Vi,Qn) = (V, *~1). For any k, the theoretical re-
sults are anticipated as follows.

= unly, + lp = prllgy = OY), = unllpzgoye = O(H).
We change the finite element space parts of FreeFem++ Code as

Listing 14.2: Taylor-Hood Element: P2-P1

1 fespace Vhi(Th, P2);
2 fespace Qh1(Th, P1);

Table 14.2: Error of (P2, P1) (y = 1.5)

M ‘ N ‘ h ‘ E?"r,(Ll) ‘ r ‘ Errf) r

4 8 2.50e-01 | 2.2935e-02 2.2127e-02

8 22 1.25e-01 | 5.3493e-03 | 2.10 | 2.3790e-03 | 3.22
16 64 6.25e-02 | 1.2819e-03 | 2.06 | 2.6868e-04 | 3.15
32 182 3.13e-02 | 3.1180e-04 | 2.03 | 3.6669e-05 | 2.87
64 512 1.56e-02 | 7.7957e-05 | 2.00 | 1.8446e-05 | 0.99

256 (Finest mesh) | 4,096 | 3.91e-03 | \ \ \

We change the finite element space parts of FreeFem++ Code as

Listing 14.3: Taylor-Hood Element: P3-P2

1 load "Element_P3"
2 fespace Vh1(Th, P3);
3 fespace Qh1(Th, P2);

Table 14.3: Error of (P3, P2) (y = 1.5)

M ‘ N ‘ h ‘ Err}(}) ‘ T ‘ Err}(f) T

4 8 2.50e-01 | 2.5136e-03 1.8342e-03

8 22 1.25e-01 | 2.1973e-04 | 3.52 | 7.9844e-05 | 4.52

16 64 6.25e-02 | 2.1433e-05 | 3.36 | 1.8368e-05 | 2.12

32 182 3.13e-02 | 5.0865e-06 | 2.08 | 1.8031e-05 | 0.27

64 512 1.56e-02 | 4.1195e-06 | 0.30 | 1.8030e-05 | 7.20e-05

256 (Finest mesh) | 4,096 | 3.91e-03 | ‘ ‘ ‘
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14.8.3 Mini Element

We consider the MINT element which is (Vi, Qx) := (V{, P}, N L§(Q2)). On
shape regular meshes, the theoretical results are as follows.

lu—unlv, + P = pullo, = O(h),  [Ju — upl 29y = O(R?).

However, when using anisotropic meshes, it is anticipated that a convergence
rate is not optimal, e.g., see Example 5.4.6. We change the finite element
space parts of FreeFem++ Code as

Listing 14.4: Mini Element: P1b-P1

1 fespace Vhi(Th, Pib);
2 fespace Qh1(Th, P1);

Table 14.4: Error of (P1b, P1) (v = 1.5)

M N [h (BT [r [Ex® [

4 8 2.50e-01 | 1.5424e-01 3.1793e-01

8 22 1.25e-01 | 7.4447e-02 | 1.05 | 7.9766e-02 | 1.99
16 64 6.25e-02 | 4.2053e-02 | 0.82 | 1.8909e-02 | 2.08
32 182 3.13e-02 | 2.8596e-02 | 0.56 | 4.5285e-03 | 2.06
64 512 1.56e-02 | 2.1982e-02 | 0.38 | 1.0866e-03 | 2.06

256 (Finest mesh) | 4,096 | 3.91e-03 | \ \

Table 14.5: Error of (P1b, P1) (v = 2.0)

M ‘ N ‘ h ‘ ETT’}(LI) ‘ r ‘ Err}(f) r

4 16 2.50e-01 | 3.3410e-01 3.2072e-01

8 64 1.25e-01 | 2.2491e-01 | 5.70e-01 | 7.9418e-02 | 2.01
16 256 6.25e¢-02 | 2.0708e-01 | 1.19¢-01 | 1.9515e-02 | 2.02
32 1,024 | 3.13e-02 | 2.0382e-01 | 2.29¢-02 | 4.8150e-03 | 2.02
64 4,096 | 1.56e-02 | 2.0306e-01 | 5.43e-03 | 1.16340e-03 | 2.05

128 (Finest mesh) | 16,384 | 7.81¢-03 | \

From numerical results, we observe thta

[u—unly, +[lp = prllg, = O(h*™7), lu—un]lr2 ey = O(h?).
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14.8.4 Discontinuous Pressure Element: (P? P))

We consider the pair (Vi, Qn) = (V2,0 My N L§(9)).

meshes, the theoretical results are as follows.

lu — up,

vi + 0 — prllg, = O(h),

[ = un 20y = o(hn?).

We change the finite element space parts of FreeFem++ Code as

Listing 14.5: Discontinuous Pressure Element: P2-P0

On shape regular

1 fespace Vh1(Th, P2);
2 fespace Qh1(Th, PO);

Table 14.6: Error of (P2, P0) (y = 1.5)

M ‘ N ‘ h ‘ Err,&l) ‘ r ‘ Err,(f) r

4 8 2.50e-01 | 2.5407e-01 4.2074e-01

8 22 1.25e-01 | 1.2983e-01 | 9.69e-01 | 1.2097e-01 | 1.80

16 64 6.25e-02 | 6.6121e-02 | 9.73e-01 | 3.2709e-02 | 1.89

32 182 | 3.13e-02 | 3.3488e-02 | 9.81e-01 | 8.5259e-03 | 1.94

256 (Finest mesh) | 4,096 | 3.91e-03 | ‘ ‘ ‘
Table 14.7: Error of (P2, P0) (y = 2.0)

M ‘ N ‘ h ‘ Err,gl) ‘ r ‘ Err,(f) ‘ r

4 16 2.50e-01 | 2.5854e-01 4.6615e-01

8 64 1.25e-01 | 1.3534e-01 | 9.34e-01 | 1.3269e-01 | 1.81

16 256 6.25e-02 | 6.9370e-02 | 9.64e-01 | 3.5091e-02 | 1.92

128 (Finest mesh) | 16,384 | 7.81¢-03 | \ \ \
Table 14.8: Error of (P2, P0) (y = 2.5)

M ‘ N ‘ h ‘ Errg) ‘ r ‘ Errﬁf) ‘ r

4 32 2.50e-01 | 2.6683e-01 4.9044e-01

8 181 1.25e-01 | 1.3869e-01 | 9.44e-01 | 1.3683e-01 | 1.84

64 (Finest mesh) | 32,768 | 1.56e-02 |

|

|

|

From numerical results, we observe that

lu — up,

vi + 0 — prllg, = O(h),

where when v > 3, numerical verification may be necessary.

24
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Appendix A

Proof of Theorem 4.3.2 for d = 3

In this chapter, we show the proof of Theorem 4.3.2 for d = 3. For simplicity,
we prove that there exists v9 > 0 such that

Hr.
= <. (4.3.2)
I

if and only if there exists a constant 0 <7 <7 such that

QTSJHELX < M1, wTS,max < Y11- (434)

We prove for each standard positions (Type i) and (Type ii) defined in Section
3.2.
In this chapter, we locally use the following notation.

A.1 Notation

Let {T,} be a family of conformal meshes. Let T be the standard element
in R? with vertices, Py, Py, P3 and P,. Let F; be the face of a simplex T°
opposite to the vertex P;. We denote by 1%/ the angle between the face F;
and the face Fj, see Figure A.1. Note that ¢ = %', Furthermore, we
denote by (9; the internal angle at the vertex P; on the face F; and by (b;'- the

angle between the face F; and the segment P;P;.
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Table A.1: %

[A R FF

Table A.2: 0;

LA B[R] F
P - @ &6
Py 0| - [ 050
Py [ or[62] - |of
ARG

Fl _ ¢1’2 ¢1,3 wl,él
F2 1/}2,1 _ ¢2,3 ¢2,4
F3 1/}3,1 ¢3,2 _ ¢374
F4 w4,1 ¢4,2 2/}4,3 _
Table A.3: gb;
LA [F]F]F
P - |97 ¢%]d
Pyl ¢y | - | &5 | &
Pyl ¢35 | 3| - | 05
IAEAE AR
Py
Py
Py
Py

Fig. A.1: Tetrahedra
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0

Py

Fy

B

Fig. A.2: Face 1
Py

Fig. A.4: Face 3
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Fig. A.5: Face 4



A.2 Preliminaries: Part 1

Lemma A.2.1. Let K C R? be a simplex and let 01, 05 and 05 be internal
angles of K with 61 < 0y < 65. If there exists 0 <0y <m, 0y € R, such that
03 < 6y, we then have

: : O
sin 0, 81n932mm{sm 5 0,511190}.

Proof. Because 0, + 0, + 03 = 7 and 0; < 0, < 03, we have

91+¢92 7T—93 7T—80
> > > > >
0203202 ——=>——2——,

which leads to the target inequality. O

Lemma A.2.2. Let K C R? be a simplex with internal angles 0y, 05 and 05.
For any fized v € R with 0 <~y <m, we assume that m1 — v < 6;, i € {1,2,3}.
We then have 0,11, 0;10 <, where the indices i, i + 1 and © + 2 have to be
understood ” mod 37.

Proof. Because 0; + 05 + 05 = m, we have

ei-i-l:W_Hi—0i+2<71'—0iS?T—(?T—’y):’y,

O
Lemma A.2.3. Let v € R with 3 <y <m. It then holds that
oyl
sing +1 7
Proof. Because cosy = 1 — 25sin? 3, we have
cosy+ 1 2—2sin2% .y
— = — :2<1—sm—>.
sing +1 sin 3 +1 2
Therefore, for 7 <~y <, the target inequality holds. O]

A.3 Preliminaries: Part 2

Let {T,} be a family of conformal meshes. Let T be the standard element
in R3.
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Lemma A.3.1 (Cosine rules for the sides and for the angles). It holds that

- . o o
cos 77 = cos 07 cos 6277 + sin 67 sin 677 cos I, (A.3.1a)
- iy s e Ui L
cos )" = cos 67" cos ¢/ + sin ) sin 677 cos /A, (A.3.1b)
+2 +3 1| o i3 o it 13,
cos 677 = cos 677 cos 627 + sin 677 sin 677" cos I (A.3.1c)
JHLi+2 i o d 2,043 o i +3,5+1 J+3 J+2,5+3 J+3,5+1
cos Y = giny sin ¢ cos ;" — cos v cos Y ,
(A.3.1d)
JH2,943 _ qin oI T3IFL qipy oI T2 J+1 J+3,5+1 J+1,5+2
cos Y = siny sin ¢ cost;" — cos ¢ cos Y ,
(A.3.1e)
cos wj+3,j+1 — Slnwg+1,j+2 sin w]+2,]+3 COS G;Jr — oS w]+1,j+2 COoS ,l/}j+2,]+3’
(A.3.1f)

where the indices j, j+ 1, j + 2 and j + 3 have to be understood ” mod 4.
Proof. The proof is found in in [36, 86]. O

Lemma A.3.2. Let Yy € R with 2 < Ymax <T satisfy the maximum-angle
conditions (4.3.4) for the mazimum solid Ors max and the mazimum dihedral
Vs max of T°. Assume that for each j = 1,2, 9;1 s not the minimum angle

of AP, P, P3y and 9;-* < 5. Then, setting 6 := O(Ymax), 0<0 < 5 such that

. COS Ymax + 1 1/2
sind = o T ,
sin £ 4 1

it holds that

P> o 3 >4, (A.3.2)
where the indices j and j + 1 have to be understood ~ mod 27.
Proof. From Lemma A.2.3, we have

COS Vmax + 1 <1
sin g 1 7

)

because 2 < Ymax <. Therefore, ¢ is well-defined.
We use proof by contradiction. Suppose that

0<yit < 0<y®t <y,
that is,

0 <siny/ T sin e <sin? g, and 1 > cos /1% cosp>* > cos? § > 0.
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From Lemma A.2.1 and assumption, we have

T — Ymax m

which implies

T — “Ymax . max
O<cos§§l < cos (77) = sm,y )

We thus obtain

7H13,X

sin ¢/ 14 sin ¢** cos 0] < sin® § sin -

Using the cosine rule (A.3.1d) with j = 1 and the above inequalities yield

COs 1y 3 = sin Y3 sin ¢*? cos 0] — cos >4 cos

< sin® § sin % — (1 —sin?4)

_ COSYmax + 1
sin 25 1

(sin %I;X + 1) — 1 = COS Vmax-

This is contradiction for the maximum-angle condition 0 < 9?3 < . < T,
that is, cos 1> > coS Ymax.

Analogously, using the cosine rule (A.3.1f) with j = 2 and the above
inequalities yield

cos Y1 = sin > sin ™! cos 0 — cos** cos Yt

< COS Vmax-

This is contradiction for the maximum-angle condition 0 < '3 < 4. < T,
that is, cos 1" > coS Ymax. O

Corollary A.3.3. For each j = 1,2, under assumptions in Lemma A.3.2, it
holds that setting Cy := min{0, Ymax }

sing/ T > Cy,  or siny® >

where the indices j and j + 1 have to be understood ~ mod 27.

Lemma A.3.4. Foranyi,j € {1,2,3,4}, 1 # j and k € {1,2,3,4}, k # i, 7,
it holds that

sin gb; = sin 9;-“ sin y™*
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Proof. We only show the case : =4, j =1 and k = 2. We then have

sin ¢} = | P, Py| sin 0] x sin 1)?* = sin 67 sin ¢>*.

| PPy

]

Lemma A.3.5. Assume that there exists a positive constant M; (j = 1,2)
with 0 < M; <1 such that

sin9§‘sin¢?>Mj, 7 =12

Setting y(M;) == m—sin~" M; (j = 1,2), we have T <~(M;) < and it holds
that for each j = 1,2,

01, 0, 05 <~(M;),
037 027 0%7 927 0%7 9?7 w2747 w374<’y(Mj>'

Proof. From assumption, we have, for each 7 =1, 2,

d S i g i A4
sinf; > sin6; sin 97 > M;,
sin ¢} > M;.

The definition of y(M;) and Lemma A.2.2 yield, for each j =1, 2,

T — ’y<9§ <v(M;), 9;-1“ <v(M;), 9?+2 <y(M;),

where the indices j, j + 1 and j 4+ 2 have to be understood ~ mod 3”.
We obtain, from Lemma A.3.4,

sin ¢] = sin 67 sin 1p** = sin 03 sin ¢>* > M;, j=12
We then have, for each j = 1,2,
sin 62, sin®*, sin 67, siny** > M;,
that is,
m—(M;) <63, 0F, >, P <A (M;).
On AP, P, P, and AP, P3Py, using Lemma A.2.2 yields

03, 03, 03, 05 <~y(M;), j=1,2.
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By analogous argument with Lemma A.3.5, we get the following two
lemmata.

Lemma A.3.6. Assume that there exists Mz with 0 < M3 <1 such that
sin 03 sin ¢y > M3.
Setting v(Ms) := 7 — sin™' M3, we have T <~(Ms) < and it holds that
03, 03, 03, 03, O3, ™1, U <o(Ms).
Proof. From assumption, we have
sin 03 > sin 03 sin g3 > M3,  sin ¢3 > M.
Using the definition of v(Mj3) yields
Ty <0 <y(My), m—y<¢i<y(Ms).
We obtain, from Lemma A.3.4,
sin ¢} = sin 63 sin > = sin 63 sin ¢ > M.
We then have
sin 9%, sin*!, sin 9§, sin > Ms,
that is,
T —y(Ms) <63, b5, v>1, Yt <Ay(Ms).
Meanwhile, on AP, P3Py, using Lemma A.2.2, we have

Lemma A.3.7. Assume that there exists My with 0 < My <1 such that
sin 0 sin ¢y > M.
Setting (M) := m — sin~! My, we have T <vy(My) < and it holds that
03, 03, 05, 03, 05, V12, O <y (My).

Proof. The proof is obtained by using an analogous argument with Lemma
A.3.6. O]
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A.4 Proof of Theorem 4.3.2 in (Type i)

A.41 (4.34) = (4.3.2)
We set t; := sin 7 and t, := sin ¢{. We then have

Hre  hihohy 6

hrs — |T5| — sinéfsin¢}’

We here used the fact that |T%| = $hihohgsin 0] sin ¢f. By construct of the
standard element (Type i), the angle 61 and 63 are respectively the maximum
angle and the minimum angle of the base AP, P,P; of T°. We hence have
01 <%. From Lemma A.2.1, we have
T T
2

<Ot <7, sinf] > min {sin ,sinfyll} =: (.

Due to Lemma A.3.2, setting 0 := 0(711), 0 <0 < 7 such that

- cosvyir + 1 1/2
sing = [ ———
sin Bt + 1 ’

it holds that
v >68, or 3 >4
Suppose that 1>* > §. By Corollary A.3.3 and Lemma A.3.4, we have
sin ¢] = sin 07 sin** > Cy sin 07

By construct of the standard element (Type i), the angle 6? is not the mini-
mum angle of AP, P3P,. From Lemma A.2.1, we have

T — 711

<0} <, sing? > 0.
We thus obtain
sin qﬁ‘ll > CyCh.
Suppose that 3% > §. By Corollary A.3.3 and Lemma A.3.4, we have

sin ¢} = sin 63 sinp>* > Cy sin 63
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By construct of the standard element (Type i), the angle 62 is not the mini-
mum angle of AP, P,P,. From Lemma A.2.1, we have

T =71

< 9% < 1, sin@? > (.
We thus obtain
sin gzﬁ‘ll > CoCh.
In both cases
P >4, or PPt >4,

gathering the above results yield

Hrs 6 6
hrs  sinffsingi = CoC? 1
that is, (4.3.2) holds. O
A.4.2 (432) = (4.3.4)
From assumption, it holds that
Hrps  hihohg 6
- = — 4 . 4 S 79~
hs 7| sin 07 sin ¢7

Remark that % <1 because 6} <% and sin 6} sin ¢ < 1. Therefore, we have

6
sin 0] sin ¢} > — =: Cs.
79

From Lemma A.3.5 with j = 1, setting 7(Cy) := 7 — sin™' C,, we have
7 <7(C2) <7 and it holds that

9411> 637 0§<7(C2)>
0, 03, 07, 03, 07, 07, V>, > <y(Cy).

Furthermore, we write

—_

1 1 o —
|Ts| = =X §|P2P3||P3P4|SIHO§ X hg Siﬂ(bé = 6h2’P2P3||P3P4|Si1’18§ Siﬂ(ﬁ})’

=W

< ghlhghg sin 9% sin Q%,
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where we used the fact that |P3Py| <|PyPy| + |Pi P3| < 2h3 on AP, P3Py and
| P, P3| < hy. We thus have

S Hryps - 3
7= hrs ~ sinflsin¢l’

that is,

3
sin 03 sin ¢y > — =: Cs.
79

From Lemma A.3.6, setting 7(C3) := m — sin~' C3, we have T<v(Cs) <7
and it holds that

03, 05, 03, ', M <y(Cy).
Due to the cosine rule (A.3.1f) with j = 2, we get
COoS ¢1,3 = sin ¢3’4 sin ¢4’1 COS 9;1 — CoS ¢3,4 oS ¢4,1‘

By construct of the standard element (Type i), the angle 65 is the minimum
angle of AP, P,P3. Therefore, we have

cos 05 > % because 05 < %,
sin¢**sin¢*! cos 3 >0, because sin ¢)>*siny*' >0,
and thus
cos p1? > — cos ** cos Pt
Using sin ¢3* > 0y and sin ¢*! > O3 yields
cos Y13 > — cos 3 cos !
> —|cosp®?|| cosypt!| = —\/1 — sin? ¢3:4\/1 — sin? bl
>—\/1 —cg\/1 —C2=:Cy>—1.

Setting v(Cy) := cos™! Cy, it holds that
1/)1’3 < ’7(04) <.
Due to the cosine rule (A.3.1d) with j = 1, we get

cos w2,3 — sin w3,4 sin w472 coS 9411 _ cos w374 oS w4’2‘
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By construct of the standard element (Type i), the angle 65 and 65 are
respectively the maximum angle and the minimum angle of the base AP, P, P3
of T®. We hence have 0f < 5. Therefore, we have

T
Ea
sin¢®*sin¢*? cos @] >0, because sin ¢>* sin ¢*? > 0,

cosf >0 because 0 <

and thus
cos ?? > — cos >4 cos 2.
Using sin ¢** > Cy and sin¢*? > C, yield
cos >3 > — cos > cos pt?

> —| cosp®?|| cos yp*?| = —\/1 — sin? ¢3’4\/1 — sin? ¢4:2
>—(1-03)=:Cs>—1.

Setting v(Cj5) := cos™! Cs, it holds that
w2,3 < ’Y(Cg,) <.
We set Ymax = max{y(C3),v(Cy),7(C5)}. We then have 0 < ypax <,
that is, (4.3.4) holds. 0

A.5 Proof of Theorem 4.3.2 in (Type ii)

A51 (4.34) = (4.3.2)
We set t; := sinf; and t, := sin ¢}. We then have

Hre  hahghs 6
hps — |T5| — sin6isin¢?’

We here used the fact that |T%| = $hyhohgsin 63 sin ¢f. By construct of the
standard element (Type ii), the angle 63 and 6} are respectively the maximum
angle and the minimum angle of the base AP, P,P3 of T®. We hence have
03 <Z. From Lemma A.2.1, we have

mw— .
T < 9t < vy, sindl > Cy.
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Due to Lemma A.3.2, it holds that
Pt >68 or Y3t >4
Suppose that 1'* > §. By Corollary A.3.3 and Lemma A.3.4, we have
sin ¢ = sin 0 sin™* > Cy sin 6.
Furthermore, it holds that

|P2P4| sin Cb%
hs ’

sin ¢ =

By construct of the standard element (Type ii), the angle 6] is not the min-
imum angle of AP, P3P,. From Lemma A.2.1, we have

mw— .
T <9} <y, sinbl > Cy.

Because hsy = | Py Py| < |PyPy| on AP, P, Py, we thus obtain

| Py Py
hs

sin ¢411 = sin QZ5§ > CoC.
Suppose that 3% > §. By Corollary A.3.3 and Lemma A.3.4, we have

sin ¢] = sin 63 sinp>* > Cy sin 63

By construct of the standard element (Type ii), the angle 67 is not the min-
imum angle of AP, P,P,. From Lemma A.2.1, we have

™ — 71

5 gQi’g”yn, sin9§’26’1.

We thus obtain
sin (/5‘1l > (Cy(C.
In both cases
Y =6, or yi >4,

gathering the above results yields

Hrs 6 6
hrs  sinf3singt — CoC? e
that is, (4.3.2) holds. O
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A5.2 (4.32) = (4.3.4)
From assumption, it holds that

Hre  hyhohy 6
hrs — |T%| — sin63sin

P < Yo.
Remark that - <1 because 03 < § and sin 3 sin ¢} < 1. Therefore, we have

6
sin 0, sin ¢f > — = C,.
Y9

From Lemma A.3.5 with j = 2, it holds that

6117 937 6§<7(02)7
9%7 027 9:1))7 9%7 927 Q%a sza ¢374<’7(02)'

Furthermore, we write

1 1
7% = = x §|P2P4||P2P3|Sin€% X h3Sin¢}1

< Ehl hohs sin 95 sin (b}l,

=

where we used the fact that |PsPy| = hy and | P Py| < hy. We thus have

_Hr 6
o= hrs ~ sinflsin¢l’

that is,

6
sin 0y sin ¢y > — = Cs.
Y9
From Lemma A.3.7, it holds that
Oy, 01, 03, V12, P12 <y(Co).
Due to the cosine rule (A.3.1e) with j = 2, we get

cos Yt = sin 13 sin p** cos 03 — cosp'? cos 4.

By construct of the standard element (Type ii), the angle 63 is the minimum
angle of AP, P,P,. Therefore, we have

1
cos 03 > 2 because 6 < %,

sin!? sin¢** cos 3 >0, because sinp'? sin > >0,
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and thus
cos ! > — cos 13 cos 2.
Using sin ¢!% > Oy and sin¢3* > O, yield
cos !t > — cos 3 cos >

> —\/1 — sin? 13 \/1 — sin? ¢34
>—(1-C3) =Cs>—1.

It then holds that
Y <~(Cs) < 7.
Due to the cosine rule (A.3.1d) with j = 1, we get
cos *? = sin > sin *? cos 0] — cos >4 cos Y2,

By construct of the standard element (Type ii), the angle 6} is the minimum
angle of AP, P,P3. We hence have 0] < - Therefore, we have

1 s
cos 0] > 2 because 07 < —,

3
siny**sin¢*? cos @] >0, because sin > sin )*? > 0,

and thus
cos *® > — cos >4 cos 2.
Using sin ¢** > Oy and sin ¢*? > O, yield
cos *? > — cos >4 cos Y*?

> —\/ 1 — sin? ¢3»4\/ 1 — sin? ¢42
>—(1-C2)=Cs>—1.

It then holds that
77[)2’3 < ’7(05) <.

We set Ymax := max{y(Cy),v(C5)}. We then have 0 < ypay <, that is,
(4.3.4) holds. O

257



Appendix B
H(div; D) Finite Elements

In this chapter, we refer to [17, 18, 30, 31, 37, 53, 79].

B.1 Normal Trace

In this section, we follow [31, p. 43].
Let D be a Lipschitz domain of R?. Let p € (1,00). We consider the
following Banach space:

2*"(D) := {v e L(D)% divv € LP(D)} . (B.1.1)
When p = 2, we denote the function space by
H(div; D) := Z%*(D),
which is a Hilbert space with the inner product and norm:

(4, ) H(div;p) = (u,v) + (divu, divv),
/
1/2 :
0]l 2 aivipy = (Uav)h{(div;D) = <|’U||%2(D)d + | leU”%Q(D)) :
The trace operator 79 : W' (D) — W%’p,(aD) begin surjective, we infer
c 1y .

that there exists C7° such that, for all £ € W»* (9D)?, there exists w({) €
W' (D) such that v9(w(f)) = ¢ and [w ()|l (py < C7 KHW%J,,(&D).

We define the linear operator v¢ : Z%(D) — W (0D) as

(v-V)q(l)dz + /Ddiv vq(0)dz, (B.1.2)

(' (0), )op = /

D
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for all v € Z%7(D) and all £ € Wr?(9D), where ¢(¢) € W'¥ (D) is such that
v9(q(€)) = ¢, and (-,-)sp denotes the duality pair between Wﬁi’p(aD) and
W%’p,(aD). One can verify that v%(v) = v|sp - n when v is smooth, ¢ is
bounded, and the definition of v? is independent of the choice of g(¢).

Theorem B.1.1. The following holds true:
(I) ¥4(v) = v|ap - n whenever v is smooth.
(I1) v% is surjective.

Z%P(D)

(IIT) Density: setting ZJ* (D) := Cg°(D) , we have ZJ"(D) = ker(y%).

Proof. The proof is found in [31, Theorem 4.15]. O

B.2 The Function Space H(div; D)

Let D be a Lipschitz domain of R,
Theorem B.2.1. The space C*°(D)? is dense in H(div; D).

Proof. The proof is found in [37, Theorem 2.4]. The condition of "bound-
edness” is entered the assumptions because we use the space C*(D)<. [

Theorem B.2.2. The trace operator v : C*(D)¢ — C>®(0D) which maps
© = @ -nlgp can be extended to a continuous, linear mapping

v H(div; D) — H_%(aD),
where H=2(dD) is the dual space Hz(dD).
Proof. The proof is found in [37, Theorem 2.5]. O]
Theorem B.2.3. The trace theorem is optimal in the sense that
~%: H(div; D) — H™2(dD),
1S surjective.

Proof. Let u € H™2(dD). To show is that there exists v € H(div; D) such
that

v-n=yp ondD,
||U||H(div;D) < ||U : n||H7%(8D)'
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We know that the problem

—Ap+¢=0 in D, 8—(’0zu on 9D
on

has a unique solution ¢ € H'(D) satisfying
leliZneo = 1 2Don < il -3 g el (B2)

see [37, Section 1.4 and (1.16)]. Setting v = V¢, we have v € H(div; D),
v-n = p, and

[0l 71 (aivsp) = <||U||2L2(D)d + diVU||2L2(D>>1/2 = [lellm o)
<l 59 = Wl 30m, = 100l o
O
Theorem B.2.4. [t holds that
Hy(div; D) := ker(y?) = {v € H(div; D) : v-n|sp = 0}.
Proof. The proof is found in [37, Theorem 2.6]. O

Theorem B.2.5. Let
H, :={v € Hy(div; D) : divv = 0}.
It then holds that
L*(D)=H,® H,

where H+ denotes the orthogonal of H, in L?*(D)? for the scalar product,
that s,

H*:={v=Vq: qc H(D)}.

Proof. The proof is found in [37, Theorem 2.7|. Remark that D is open,
bounded, connected, and a Lipschitz set, because D is a Lipschitz domain of
R4, m
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B.3 Conforming Subspaces of H(div; D)

Let T), be a subdivision of the domain D. Let k € Ny. Recall that the
Raviart-Thomas polynomial space of order k as RT* := (P*)?+ 2P* for any
z € RY. We set

W, = {Uh € LI(D)d : Uh|T S RTk<T> VT € Th},
Vii={v, € Wy : [op-n]r =0VF € F}}.

Lemma B.3.1. It holds that
Vi, C H(div; D).

Proof. Let v, € V},. Because its restriction to every T' € T}, is a polynomial,
it is differentiable in the classical sense. Let us consider the function wy, €

L*(D) defined on T by wy|r = div(vy)|r. Let ¢ € C§°(D). Then, using the
Green formula yields

wppdr = /wgodm
Jypte= 32 o

TeTy,
= — Z /(vh)\T -Vdr + Z /[[vh-n]]pwds.
TeTy VT reri ' F

Owing to [vp - n]r =0,

/ wppdr = — / (v, - V)pdz.
D D

Therefore, the distributional divergence of vy is wy. Because wy, € L*(D),
divv, € L*(D). O

Recall that for v € RT*(T), the local degrees of freedom are given as
/ v-nppds, Vp, € PHE), F; C T, (B.3.1)
F;
/ v qurdr, Vg, € PFHT)L (B.3.2)
T

Here, np, denotes the outer unit normal vector of 1" on the face F;. Note
that for £ = 0, local degrees of freedom of type (B.3.2) are violated.

261



Lemma B.3.2. Let T € Ty,. For anyv € RT*(T) and any F C 0T, it holds
that

divv € PH(T),
v-nlp € PH(F). (B.3.4)

—~
o
~—

The divergence operator is surjective from RT* to P*, hence,
div RT* = P*. (B.3.5)

For the divergence free functions,

RTF := {v € RT": divv =0} C (P*). (B.3.6)
Proof. The proof is found in [53, Lemma 4.2.11]. n
Lemma B.3.3. For the simplicial Raviart-Thomas element in R?, it holds
that
dim RT* = (d + 1) dim P* — dim P*~!
= (d* + kd + d)% (B.3.7)
Proof. The proof is found in [53, Lemma 4.2.12]. O

Lemma B.3.4. The Raviart-Thomas element with the nodal values in (B.3.1)
and (B.3.2) is unisolvent.

Proof. The proof is found in [53, Lemma 4.2.13]. O

B.4 Remarks on the Definition of the Raviart—
Thomas Interpolation

We cite [31, Section 17.1], [18, Section 2.5.1] and [53, Example 4.2.23].

Let T € Tj, and F a face of T'. Let v be a vector field defined on 7". The
goal is to search smoothness requirements on the field v to give a meaning to
the quantity [,(v-nr)@ds, where ¢ is a given smooth function on F (e.g., a
polynomial function) and nr is the outward unit normal vector on 97

Let v € H(div;T). As described in (B.1.2), the normal trace v%(v) €
H2(dT) is defined as

(Y (0), Bhor = / (v~ D)w(®) + (div v)uw(y)) d,

T
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for any 1 € H2 (9T, where w(1p) € HY(T) is a lifting of 1, that is, 79 (w(¢))) =
Y. Here, v9 : HY(T) — H%((?T) is the trace map. However, this situation
is too weak for our purpose, because we need to localise the normal trace to
functions ¢ only defined on a face F', that is, ¢ may not be defined on the

whole boundary 0T. As an example, we introduce the following remark ([18,
Remark 2.5.1]).

Remark B.4.1. Given a function xy € H~2(9T), even if we are allowed to
take

/ xds = (x, ) with ¢ =1,
oT

we cannot take the integral over an edge F of 0T. The typical answer
is: ”Because the function identically equal to 1 on the whole boundary OT
belongs to H %(8T), while the function that is equal to 1 on the edge F' and
0 on the rest of T does not belong to Hz(T).”

As a example to think about this situation, see [18, Remark 2.5.1] and
[53, Example 4.2.23].

A key observation is to extend 1 by zero from F' to 0T. Because the ex-
1
tended function is not in H2(97T"), one need to change the functional setting.

Therefore, we use the fact the zero-extension of a smooth function defined
1
on a face F of 9T is in W' #4(9T) with ¢ < 2.

B.5 Face-to-cell Lifting Operator

In this section, we discuss about a face-to-cell lifting operator, see [31, Section
17.1].

Let p,q be two real numbers such that
>2 > 2d
b= 4=o%a

Let v be a vector field on T" such that

ve LP(T), divee LYT).
Let p € (2,p] be such that ¢ > ﬁ’%. Let p' be conjugate number such that
% + }% = 1. Let LL : W%’ﬁ/(F) — WU (T) be a lifting operator such that,

for any ¢ € W%’ﬁ(F), LL(¢) is a lifting of the zero-extension of ¢ to 9T,
that is,

Y(LE@O)|ore =0, 2(LE(9))|r = ¢. (B.5.1)
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Note that the domain of L% is W~ tf(F) with ¢ := j <2. We observe that
Lix(¢) € WH(T) N L7 (T),

with conjugate numbers p’ and ¢’ such that %%— 1% = 1 and é—l—& = 1. Indeed,
LE/(QS) € Wh(T) follows from p’ < (that is, p < p). Meanwhile, LE(9) €
LY(T) follows from W7 (T) — L7(T) owing to the Sobolev embedding

theorem (since ¢ < dﬁ_/ < can be verified from d > 2>p and & — é =
4 p
1,1 _1_ 1 i
1—(ﬁ~|—d) <1 pil because ¢ > p‘—f—d)'

With the lifting operator L% and fixing ¢ € WP '(F), we define the linear
form x4 on V(T) :={v € LP(T)%: divv € LI(T)} as

Xs(v) = /T ((v-V)LE(®) + (dive)Li(e)) da. (B.5.2)

The right-hand side of (B.5.2) is well defined owing to Hélder’s inequality,
and whenever the field v is smooth, we have, from (B.5.1),

Yolv) = /8 (o) (LE)ds = /8 (v o,

Thus, the linear form v — x4(v) is an extension of the linear form v —
Jop(v - n)éds, which is meaningful for smooth fields v € C°(T)% This
extension is bounded for all v € V(7).

Remark B.5.1. This thesis does not address this situation on anisotropic
meshes. We leave them for future work.

264



265






Conclusions

In this thesis, we have developed the anisotropic interpolation error theory.
We found that the new parameter, geometric condition equivalent to the
maximum-angle condition, and another geometric condition deduces that the
interpolation error estimates are optimal. Therefore, the above two geometric
conditions are straightforward and may be useful.

In much literature, as a mesh condition, the shape-regularity condition is
widely used and well known to obtain optimal interpolation error estimates.
However, in some cases, it is not necessary for the shape-regularity condition.
As usual, to do the interpolation error analysis, we need to set an affine map-
ping. Our idea is to divide it into three mappings. The Euclidean condition
number of the Jacobian matrix of the affine transformations is bounded by a
geometric quantity. We can naturally consider the new geometric condition
as being sufficient to obtain optimal order estimates. The error estimations
may be applied to arbitrary meshes, including very “flat” or anisotropic
simplices. Furthermore, it is proven that the geometric condition is equiva-
lent to the maximum-angle condition. Therefore, We expect the new mesh
condition to become an alternative to the maximum-angle condition.

In anisotropic interpolation error estimates, the heart of our analysis is
to do a delicate scaling argument. From this argument, one realises that
it is possible to obtain more precise results by adding a specific condition
to the maximum-angle condition. As usual, in error analysis, we use the
Bramble-Hilbert-type lemma on the reference elements; however, there are
some points to take care of in anisotropic analysis. We need to apply the
lemma component-wise. However, the proof is generally not valid because
the order exchange between differentiation and interpolation does not hold.
To overcome this difficulty, we need to construct a set of functionals. The
optimal interpolation error estimates can be obtained under slightly stricter
assumptions than the normal error ones through these preparations.

We analyse the interpolation properties of the Raviart-Thomas finite el-
ement space. The analogous argument above makes it possible to obtain
the anisotropic Raviart—Thomas interpolation error estimates. The heart of
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our analysis is also to do a delicate scaling argument. However, we need to
use the Piola transformation for the analysis of a vector field. Our idea is
to divide it into three transformations. This argument makes it possible to
obtain more precise results by adding a specific condition to the maximum-
angle condition. As usual, to deduce the interpolation estimates, we use the
Bramble-Hilbert type lemma on the reference elements. However, in gen-
eral, it is known that the component-wise stability of the Raviart—Thomas
does not hold. The answer to this difficulty is to realise that one can try to
7kill” degrees of freedom. Through these preparations, the optimal Raviart—
Thomas interpolation error estimates can be obtained under slightly stricter
assumptions than the normal error ones.

We finally introduced application examples. In this thesis, we teated the
Crouzeix-Raviart finite element approximation for the Poisson and Stokes
problems and the dual mixed formulation of the Poisson problem. Due to
time constraints, we could not give more applications. There is still more
work to be addressed. These are left as work for the future.
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